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Abstract. Remarkable e�orts have been made to develop the job shop scheduling problem
up to now. As a novel generalization, the stage shop can be de�ned as an environment in
which each job is composed of some stages and each stage may include one operation or
more. A stage can be de�ned as a subset of operations of a job such that these operations
can be done in any arbitrary relative order while the stages should be processed in a
predetermined order. In other words, the operations of a stage cannot be initiated until all
operations of the prior stage are completed. In this paper, an innovative lower bound by
solving the preemptive open shop (using a linear programming model in polynomial time) is
devised for the makespan in a stage shop problem. In addition, three metaheuristics, namely
�re
y (FF), Harmony Search (HS), and Water Wave Optimization (WWO) algorithms, are
applied to the problem. The results of the algorithms are compared with each other with
the proposed lower bound and a commercial solver.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

One of the important factors that a�ect the perfor-
mance of manufacturing systems is their scheduling
approach [1]. In particular, the job shop scheduling
problem has various applications, even out of the
manufacturing environments (e.g., see [2] for train
scheduling). However, in practice, job shop assump-
tions are restrictive and cannot be applied to many
cases. Therefore, researchers have presented several
extensions of the job shop scheduling problem.

For instance, a mixture of job shop and open shop
is de�ned as mixed shop, which is known as an NP-hard
problem in its general form. In this problem, the set of
jobs is partitioned into two separate subsets: one subset
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of the job shop type and one subset of the open shop
type. Shakhlevich et al. [3] discussed the complexity
of the mixed shop problems with several performance
measures and illuminated the border between the NP-
hard and polynomially solvable problems.

Moreover, there exist several other extensions
of the job shop problem. Ramudhin and Marier [4]
de�ned a problem called \shops with a partial ordering
of operations pertaining to each job or machine," which
was solved by an extension of the shifting bottleneck
method. Besides, Kis [5] proposed a generalization of
the job shop scheduling problem in which the routing
of each job was a collection of alternative subgraphs
constituting a directed acyclic graph. In this con�gu-
ration, some operations were included in a subgraph,
which determined their order of processing. �Ozg�uven et
al. [6] developed a mathematical programming model
for 
exible job shop scheduling problems with process
plan 
exibility and presented its computational results
for hypothetically generated test problems. Nasiri
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and Kianfar [7] solved the partial job shop scheduling
problem using hybrid scatter search. In another
research, Nasiri and Kianfar [8] combined the genetic
algorithm and tabu search to solve a new generalization
of the mixed shop problem. In [9], Dugarzhapov and
Kononov studied a mixed shop problem with preemp-
tions and at most two unit operations per job. They
presented a new exact polynomial-time algorithm for
solving this problem. Doh et al. [10] suggested a prac-
tical priority scheduling approach. In this approach,
a combination of operation/machine selection and job
sequencing rules is used to concurrently decide about
the routing and scheduling of jobs. Nasiri [11] proposed
a modi�ed Arti�cial Bee Colony (ABC) algorithm to
solve the stage shop scheduling problem. He compared
the results with the basic ABC and a new algorithm
called Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES). Inspired by a real industrial case,
another extension of the mixed shop problem called the
hybrid stage shop was proposed by Rossi et al. [12].
Jin et al. [13] developed several novel mixed integer
linear programming models for the scheduling of a job
shop 
exible manufacturing system. They considered
the integration of process planning and scheduling
to e�ciently utilize the manufacturing resources. In
another research, Gao et al. [14] worked on a 
exible job
shop scheduling problem with the aim of minimizing
the weighted combination of two minimization criteria,
namely the maximum completion time (makespan)
and the mean of earliness and tardiness. In order to
solve the problem, they developed a discrete Harmony
Search (HS) algorithm. Bo_zek and Werner [15] sug-
gested models and optimization approaches to a 
exible
job shop scheduling problem with lot streaming and lot
sizing of the variable sublots. Zubaran and Ritt [16]
presented a heuristic for the partial shop scheduling
problem. They solved various problem sets and showed
that their method was e�ective.

For an optimization problem with min (max)
objective function, a lower bound (an upper bound)
may be required in order to compare the results with
an approximation algorithm. Obtaining this bound
helps us estimate the gap between an arbitrary solution
and the optimal solution to a problem. In this paper,
a new lower bound for the stage shop scheduling
problem is computed using a novel method, in which
several open shop problems are solved. In addition,
the Water Wave Optimization (WWO) algorithm is
applied to a scheduling problem for the �rst time and
compared with �re
y (FF) and HS algorithms using a
new statistical approach.

The remainder of the paper is organized as fol-
lows. In Section 2, the stage shop scheduling problem
is introduced and its formulation and notation are
presented. Section 3 describes the new method for the
computation of the lower bound. In Section 4, three

proposed stochastic search algorithms are discussed.
The computational results are given in Section 5.
Finally, Section 6 concludes the paper.

2. Problem de�nition and notation

In a stage shop, each job consists of several stages
comprising operations the relative order of which is
under control of the decision maker. If all operations
of a job constitute one stage, the job can be considered
as an open shop one. The execution order of the stages
of a job is predetermined the same as the operations of
a job in a job shop. Consequently, if each stage of a
job consists of merely one operation, it resembles a job
shop job.

Consider a set of jobs J = f1; 2; :::; ng and a
set of machines M = f1; 2; :::;mg. Job j includes sj
stages of operations such that these stages should be
completed successively pursuant to the stage numbers:
1; 2; :::; sj . Stage k of job j includes a set of operations
denoted by Hjk. Indeed, it is permitted to initiate the
execution of the operations of the stage k + 1 of job
j only when the execution of all operations of stage k
(i.e., operations in Hjk) is terminated. The processing
of each operation a should be done on a predetermined
machine without any interruption for pa time units.
It is worth noting that there is no precedence relation
between the operations of a particular stage. The other
assumptions are as follows:

� From time zero on, all machines and all jobs are
accessible;

� None of the jobs visits a particular machine more
than once; in other words, recirculation is not
allowed;

� There is no precedence relation between the opera-
tions of di�erent jobs;

� Transportation times between machines are negligi-
ble;

� Only one job can be in execution on a machine at
any instant of time;

� There is an in�nite bu�er capacity between any two
machines.

The criterion which should be optimized in this
paper is makespan (Cmax). For the mathematical
model and more information about the stage shop
problem, the reader is referred to Nasiri and Kianfar [8].

3. The new lower bound

Inspired by Carlier's lower bound [17] for the JSSP, a
simple lower bound for the makespan of the stage shop
problem has been presented by Nasiri and Kianfar [8].
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Their lower bound and the required notation for com-
prehending the calculation of the new lower bound are
presented in Appendix A.

Understanding similarities between the stage shop
and open shop scheduling problems can be helpful
in introducing a new lower bound for the makespan
criterion of the stage shop problem. In the next
subsection, the open shop problem that is required for
�nding the new lower bound is de�ned �rst and then,
the relation between the objective function of the open
shop problem and the new lower bound will be revealed.

3.1. De�nition of the open shop problem
Consider the operations that should be processed on
machine i in a stage shop problem, which are denoted
by Ii. As can be seen in the assumptions of the
stage shop (recirculation prohibition), at most one
operation from each job is supposed to be processed
on a particular machine. If the operation that should
be processed by machine i is at stage k of job j, then
ordered pair (j; k) is added to Ki. In other words:

Ki = f(j; k) j9a 2 Ii : a 2 Hjkg : (1)

Now, there is at most one stage in each job and all oper-
ations in the selected stages form an open shop problem
(OpenShopi). In the new problem, the operations
of each job can be performed in any arbitrary order
without violating the stage shop constraints, because
they are from the same stage of the main stage shop
problem. Therefore, any solution to the de�ned open
shop problem is a partial solution to the main stage
shop problem.

Example 3.1. See Appendix B.

3.2. Release dates and due dates
After de�ning the open shop problem, release dates
and due dates should be de�ned for OpenShopi (which
can be represented as Om0 jrj jLmax) according to the
well-known idea of heads and tails [18], respectively.
According to the notation given in Appendix A, for
each job j, the release date is equal to rj and the due
date can be calculated by dj = LB1 � qj (rj = ra and
qj = qa, which respectively denote the head and tail of
job j, are the same for every a 2 Hjk).

3.3. Calculating the new lower bound
Using the provided de�nitions for OpenShopi, release
dates, and due dates, it is su�cient to �nd the optimal
value (minimum) of the maximum lateness (L�max) in
OpenShopi.

Theorem 1. LB1 + max f0; L�max (OpenShopi)g is a
lower bound for the stage shop problem.

Proof. It is assumed that there is no recirculation.
Therefore, all the operations of job j in OpenShopi are

from the same stage of the stage shop problem. The
processing of each operation a at stage k of job j can
be started only after the processing of the prior stages
of job j is �nished. Thus, rj can be considered as
the release date of job j. In addition, the time that
is required after the completion of job j is at least
equal to qj . Therefore, for each feasible sequence of
operations in OpenShopi like S and the corresponding
schedule in the stage shop problem, the completion
time of job j(Cj) plus the tail of job j(Cj+qj) is a lower
bound for the stage shop makespan of any solution with
a sequence of operations identical to S (for common
operations). Now, if the maximum value of this bound
is obtained for all the jobs of OpenShopi, a lower
bound is achieved for the makespan of the mentioned
order of the operations in the stage shop problem.
Consequently, the lower bound can be calculated as
the minimum value of this bound for all feasible
sequences of OpenShopi. Furthermore, because LB1
is a constant, we have:

min
S

�
max
j
fCj + qjg

�
= LB1

+ min
S

�
max
j
fCj + qjg � LB1

�
= LB1

+ min
S

�
max
j
fCj � (LB1 � qj)g

�
= LB1

+ min
S

�
max
j
fCj � djg

�
= LB1

+ min
S
fLmax (OpenShopi)g = LB1

+L�max (OpenShopi) ;

where dj denotes the due date of job j, as de-
�ned above. Since L�max (OpenShopi) can be neg-
ative and we want to improve the previous lower
bound, the new lower bound can be LB1 +
max f0; L�max (OpenShopi)g.�

In order to convert the problem to standard form,
one can imagine that we want to add the maximum
possible quantity to the previous lower bound (LB1 in
Eq. (A.3)).

A more e�cient lower bound can be obtained by
solving all the open shop problems OpenShopi for i =
1; 2; :::;m.

Corollary 1. Eq. (2) de�nes a lower bound for the
stage shop problem.

LB2 = LB1

+ max
�

0; max
i=f1;:::;mg fLmax (OpenShopi)g

�
:
(2)
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Proof. LB2 represents the maximum lower bound
obtained by solving each OpenShopi and obviously, it
is also a lower bound for the stage shop problem.�

Example 3.2. See Appendix B.
Because the problem Om jrj jLmax is NP-

hard [19], considering its preemptive counterpart which
can be solved polynomially is useful. In the next
subsection, the application of the preemptive open shop
is discussed.

3.4. Application of preemptive open shop
The optimal objective function of problem
Om jrj ; prmpjLmax is a lower bound for the �tness
value of problem Om jrj jLmax; because the optimal
solution to the latter is a feasible solution to the
former. The preemptive open shop problem is modeled
e�ciently by Cho and Sahni [20]. This model is stated
here as explained by Pinedo [19].

First, all due dates dj are regarded as deadlines
�dj and then, a linear programming model is used to
realize whether or not we can �nd a feasible schedule
in which each job is completed on time. Assume that
a1 < a2 < � � � < a�+1 is the ordered assortment of the
diverse release times rj and deadlines �dj . Therefore, �
intervals [ak; ak+1] exist. Let �k = ak+1 � ak be the
length of interval k, Jj denote the operations of job j,
and xijk represent a decision variable showing the time
that the operation of job j performed by machine i is
processed in interval k. Now, consider the following
linear model:

max
�X
k=1

mX
i=1

nX
j=1

xijk; (3)

s.t.:
mX
i=1

xijk � �k j = 1; 2; :::; n k = 1; 2; :::; �; (4)

nX
j=1

xijk � �k i = 1; 2; :::;m k = 1; 2; :::; �; (5)

�X
k=1

xijk = po o 2 (Ii \ Jj); (6)

xijk � 0 if rj � ak and �dj � ak+1; (7)

xijk = 0 if rj � ak+1 and �dj � ak: (8)

If a feasible solution exists to the LP problem,
then there should be a schedule in which all jobs are
completed before or at their deadlines. Otherwise, if
the LP problem does not have any feasible solution,
then each �dj can be replaced by �dj+L, where L is a free
parameter. It is worth noting that the smallest value of
L for which there is a feasible solution is the minimum
value of Lmax that can be obtained by the original
due dates. The solution to the preemptive problem
cannot be achieved by LP. However, a solution is not
required for the calculation of the new lower bound and
obtaining Lmax is su�cient.

Example 3.3. See Appendix B.
The gap between LB1 and LB2 may be much

greater than one. Therefore, a procedure based on
Newton method is developed to �nd the new lower
bound more quickly. The pseudo code of this procedure
is explained in Algorithm 1.

4. Three stochastic search methods

4.1. Encoding and decoding
Representation of the schedule is the depiction of a
relative priority rule determining the job or activity
that is selected next during the scheduling process [21].
Solution encoding in the stage shop problem should
determine the sequence of operations for each job at
each stage and machine. Furthermore, a random key
representation is utilized to encode the solution. To
extract the solution by the proposed solution encoding,
the Largest Position Value (LPV) rule is employed. To
better clarify the encoding scheme and the decoding
technique (LPV rule), we designed an example of the
stage shop problem with 2 jobs, 5 machines, and
10 operations. The detailed information about the
instance is illustrated in Figure 1, in which the stages
are identi�ed by thick lines and the dummy operations
are not shown. In addition, the data for the problem
are shown in the cells with bold and colored text and
the solution data are shown in the other cells. Figures 2
and 3 show the order of operations obtained by the
LPV rule for each job at each stage and machine (based
on the encoded solution in Figure 1), respectively.

Figure 1. Solution encoding of the stage shop problem.
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Algorithm 1. The procedure for �nding the new lower bouns.

Figure 2. Alternative process plans for (a) job 1 and (b) job 2.

For instance, Figure 2(a) shows that at the �rst
stage of job 1, operation 1 is processed before operation
2 because the random key of operation 1 is greater than
that of operation 2 (1.45 versus 0.78). Therefore, 1! 2
is selected as the preferred process plan for job 1 at the
�rst stage. Moreover, since operation 8 has a greater
random key than operation 1 (1.64 versus 1.45), it will
precede operation 1 in processing on machine 3 (see
Figure 3).

4.2. The Harmony Search (HS) algorithm
HS is a metaheuristic algorithm which imitates the
music improvisation process to develop a strong op-
timization strategy [22,23]. In the music improvisation
process, musicians improvise the pitches on the instru-
ments to �nd a perfect state of harmony. In the HS

Figure 3. Permutation representation on machines.

algorithm, each solution is called a \harmony," which
is represented by a D-dimensional real vector. The
general steps of the HS algorithm are as follows:

� Initialize the problem and HS parameters:
The aim of this step is to specify the parameters of
the HS algorithm, including the Harmony Memory
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Size (HMS), Harmony Memory Considering Rate
(HMCR), Pitch Adjusting Rate (PAR), and the
Number of Improvisations (NI).

� Initialize the Harmony Memory (HM): In this
step, the initial HM is generated using a uniform
distribution as Eq. (9):

xid = xmin
d + rand (0; 1)� �xmax

d � xmin
d
�

d = 1; :::; D; i = 1; :::; HMS: (9)

� Improvise a new harmony: Three main rules
are used to improvise a new harmony vector x0 =
(x01; x02; : : : ; x0D) in the HS algorithm, including
memory consideration, pitch adjustment, and ran-
dom selection.

For each d 2 f1; :::; Dg, if rand(0; 1) < HMCR
(memory consideration), the new harmony vector
is x0d = xid where i = rand (1; 2; : : : ;HMS);
otherwise, if rand (0; 1) < PAR (pitch adjustment),
the new harmony vector is x0d = x0d + bw �
(rand (0; 2)� 1) where bw is an arbitrary distance
bandwidth which is often selected as bwd = 0:01 ��
xmax
d � xmin

d
�
. Otherwise (with random selection),

the new harmony vector is x0d = xmin
d +rand (0; 1)��

xmax
d � xmin

d
�
.

� Update HM: If the �tness of the generated
harmony vector is better than that of the worst
harmony, then the worst harmony in the HM
should be replaced by the generated harmony x0 =
(x01; x02; : : : ; x0D).

� Check the stopping criterion: The maximum NI is
the criterion to stop the HS algorithm [24{26].

The pseudo code of the HS algorithm is de-
scribed in Algorithm 2.

Algorithm 2. Pseudo code for harmony search algorithm.

4.3. The �re
y (FF) algorithm
The FF algorithm is a novel algorithm inspired by the
social behavior of �re
ies. This algorithm is based on
the 
ashing characteristics of �re
ies and introduced
by Yang [27]. Attracting other �re
ies is the main role
of the 
ash of a �re
y.

Three main rules of the FF algorithm are ex-
plained as follows:

1. All �re
ies are unisex: The 
ashing behavior is
usually used to send signals to the opposite sex.
However, any �re
y can attract the other �re
ies
in this algorithm.

2. The brightness of a �re
y determines its attractive-
ness. The less bright �re
y will be attracted by the
brighter one as the apparent brightness of a �re
y
is proportional to its distance from the other �re
y.
If both have the same brightness, they will move
randomly.

3. The brightness of a �re
y is equivalent to the
value of the objective function. In minimization
problems, the brightness of a �re
y is reversely
proportional to the value of the objective function.
On the other hand, in a maximization problem, the
brightness of a �re
y is directly proportional to the
value of the objective function. Important issues
about the FF algorithm are given as follows:
� Initialization: The initial positions of agents in

the search space are determined randomly as:

x0
id = xmin

d + rand (0; 1)� �xmax
d � xmin

d
�
;

i = 1; :::; N ; d = 1; :::; D; (10)

where x0
id is the d0th dimension of �re
y i in its

initial position.
� Attractiveness: In order to generalize the

main form of the attractiveness function �(r),
any monotonically decreasing functions such as
Eq. (11) can be considered:

� (r) = �0 exp (�
rm) ; m � 1; (11)

where r is the distance between two �re
ies.
Also, �0 and 
 are the initial attractiveness of
a �re
y and the absorption coe�cient, respec-
tively.

� Distance between �re
ies: The distance
between any two �re
ies i and j (at positions
xi and xj) can be calculated as follows:

rij = xi � xj =

vuut DX
d=1

(xid � xjd)2;

i 6= j; i = 1; :::; N ; j = 1; :::; N: (12)
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Algorithm 3. Pseudo code for �re
y algorithm.

� Movement of �re
y: The movement of �re
y
i, attracted to the brighter �re
y j, can be
calculated as:

xi=xi+� (r) (xj � xi) + � (rand (0; 1)� 0:5) ;

i 6= j; i = 1; :::; N ; j = 1; :::; N: (13)

The second term of the equation shows how a
�re
y moves toward the other �re
ies and the third
term represents the random movement of a �re
y. The
coe�cient � 2 [0; 1] is a random parameter determined
by the problem of interest, while rand is a random
number obtained by a uniform distribution in the
space [0,1] [28{30].

The main steps of the FF algorithm are similar
to those of the Particle Swarm Optimization (PSO).
The pseudo-code of FF can be summarized as given in
Algorithm 3.

4.4. Water Wave Optimization (WWO)
algorithm

WWO is an innovative meta-heuristic algorithm in-
spired by the shallow water wave theory to solve global
optimization problems [31]. In WWO algorithm, each
solution can be considered as a \wave" with a height
h and a length �. Furthermore, the search space is
similar to the seabed area and the solution �tness can
be calculated according to the seabed depth (i.e., the
shorter the distance to the still water level, the higher
the �tness value). In order to solve a maximization
problem with objective function f , this algorithm
�rstly initializes a set of waves (h = hmax, � =
0:5). Afterwards, three operators, namely propagation,

refraction, and breaking, are used during the problem-
solving process.

� Propagation: In this operator, in each generation,
wave X propagates only one time to generate a new
wave X 0 by changing the dimension of the original
wave X as:
X 0 (d) = X (d) + rand (�1; 1) :�:L (d) ; (14)

where rand (�1; 1) is a random number generated
uniformly in the range of [�1; 1] and L(d) is consid-
ered as the length of the dth dimension in the search
area (1 � d � n). If the new determined position is
not feasible, its position will be changed to a random
value in the range of [�1; 1].

After the propagation and generating the new
wave X 0, its �tness will be calculated and compared
with the original wave X. If the �tness of the
o�spring wave X 0 is higher than that of the original
wave X, i.e., f(X 0) > f(X), wave X 0 will be the
substitute for wave X and its height is reset to hmax;
otherwise, the original wave X will be maintained
while its height will be reduced to one.

As seen in Figure 4, the waves in deep water
have wavelengths longer than the ones in the shallow
water. However, the waves in shallow water have
longer heights than the ones in the deep water.
Moving of a wave from the deep water (with low
�tness value) toward the shallow water (with high
�tness value) will decrease its wavelength. WWO
algorithm mimics such phenomena to determine the
wavelength of each wave X after each generation as:

� = �:��(f(x)�fmin+")=(fmax�fmin+"); (15)
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Algorithm 4. Pseudo code for Water Wave Optimization (WWO).

Figure 4. Illustration of the various wave shapes in deep
and shallow water.

where the maximum and minimum �tness values
in the current population are represented by fmax
and fmin, respectively. Also, � denotes the length
reduction coe�cient of the wave and " is a small
positive constant to prevent zero-division-error.

� Breaking: This operator is used to conduct a local
search around the current best wave. If the �tness
value of a new wave X is higher than that of the
current best wave, it will be broken into a set of
solitary waves through breaking operator. In detail,
this operator �rst selects k dimensions randomly
(where k is a random number chosen between 1 and
an algorithm parameter kmax) and then, generates a
solitary waveX 0 by shifting from its original position
at each selected dimension d as:

X 0d = Xd + norm (0; 1) :�L (d) ; (16)

where � is the breaking coe�cient. Experimen-
tally, it is recommended by Zheng [31] to set k
to min(12; n=2) in which n is the dimension of the
problem. If there is not any wave among solitary
waves whose �tness value is higher than that of wave
X, we maintain wave X.

� Refraction: The refraction operator moves only
the motionless waves (whose heights diminish to
zero) to new positions. The position after the
refraction can be calculated by Eq. (17). That is, a
new wave X 0 is generated according to the position
of both the original wave X and the best wave Xbest
at each dimension d.

X 0d = norm
�
Xbest;d +Xd

2
;
Xbest;d �Xd

2

�
; (17)

where norm(�; �) denotes a normal random number
with a mean of � and a standard deviation of �.
After each refraction operation, the wave height of
X 0 is reinitialized to hmax and its wavelength can be
calculated by:

�0 = �
f (X)
f (X 0) : (18)

As in [31], the pseudo-code of the WWO algorithm
is described by Algorithm 4.

5. Computational Results

All the experiments of this research were implemented
in Visual C++ 2010 and performed on a laptop with
2.5 GHz CPU (Core i5-3210M).
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5.1. The problem instances
The problem instances (which are called ATA01-50)
used in this paper are exactly the 50 instances of Nasiri
and Kianfar [8]. These problems are based on the
well-known Taillard's benchmarks (which are available
on his website [32]) for the job shop scheduling [33]
and all processing times and their respective machines
are the same. The only data generated by Nasiri and
Kianfar [8] are the structures of the stages, which are
available in Supplementary Material, Appendix C. To
know more about the way of building the structure,
please refer to Nasiri and Kianfar [8].

5.2. Lower bounds for the stage shop problem
instances

The only parameter to be set is step, which is set to 30.
Table 1 displays the new lower bound for the stage shop
problem instances. The results show that the lower
bounds are improved in 26 out of 50 problems. It seems
that the improvements are more signi�cant when the
problem sizes are square (number of jobs and number
of machines are the same).

5.3. Setting parameters
The values of parameters have a signi�cant e�ect on the
e�ciency of the algorithm. If they are not correctly set,
getting the appropriate results will become challenging.
Therefore, in this section, to improve the behavior of
the suggested algorithms, the values for the parameters
of each algorithm are tuned using Taguchi design
method. Taguchi method is one of best approaches to
the calibration of input parameters for meta-heuristic
solution methods (see [11,34]). This method exploits
orthogonal arrays to manage and adjust experiences in
the presence of a group of decision variables or factors.
The aim of this method is to minimize the e�ect of
noise and to obtain the optimal level of signal factors.
To get more information about Taguchi method, the
interested readers can refer to [35].

As already mentioned, there are three parameters
in the HS algorithm, including HMS, HMCR, and PAR.
The FF algorithm has four parameters, including �0,
n � Pop, 
, and �. In addition, the WWO algorithm
has �ve parameters, including n � Pop, hmax, �, �,
and kmax. The considered levels for the parameters of

Table 1. The new lower bound for ATA problem instances.

Problem Size LB1 LB2 Problem Size LB1 LB2

ATA01 15 � 15 977 1048 ATA26 20 � 20 1207 1363
ATA02 15 � 15 942 1097 ATA27 20 � 20 1331 1331
ATA03 15 � 15 921 1030 ATA28 20 � 20 1269 1269
ATA04 15 � 15 911 1035 ATA29 20 � 20 1267 1363
ATA05 15 � 15 940 949 ATA30 20 � 20 1212 1246
ATA06 15 � 15 1030 1074 ATA31 30 � 15 1764 1764
ATA07 15 � 15 951 1032 ATA32 30 � 15 1774 1774
ATA08 15 � 15 963 1096 ATA33 30 � 15 1729 1729
ATA09 15 � 15 982 1054 ATA34 30 � 15 1828 1828
ATA10 15 � 15 933 1065 ATA35 30 � 15 1729 1731
ATA11 20 � 15 1139 1164 ATA36 30 � 15 1777 1777
ATA12 20 � 15 1251 1251 ATA37 30 � 15 1771 1771
ATA13 20 � 15 1178 1178 ATA38 30 � 15 1673 1673
ATA14 20 � 15 1130 1132 ATA39 30 � 15 1641 1654
ATA15 20 � 15 1148 1148 ATA40 30 � 15 1602 1602
ATA16 20 � 15 1181 1181 ATA41 30 � 20 1830 1830
ATA17 20 � 15 1257 1287 ATA42 30 � 20 1761 1761
ATA18 20 � 15 1153 1246 ATA43 30 � 20 1694 1694
ATA19 20 � 15 1202 1202 ATA44 30 � 20 1787 1787
ATA20 20 � 15 1216 1216 ATA45 30 � 20 1731 1738
ATA21 20 � 20 1217 1322 ATA46 30 � 20 1856 1856
ATA22 20 � 20 1240 1371 ATA47 30 � 20 1690 1690
ATA23 20 � 20 1185 1236 ATA48 30 � 20 1744 1818
ATA24 20 � 20 1271 1402 ATA49 30 � 20 1758 1758
ATA25 20 � 20 1256 1385 ATA50 30 � 20 1674 1674
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Table 2. Tuned values for the parameters of the proposed algorithms.

Harmony search HMS HMCR PAR
30 0.3 0.95

Fire
y n-Pop � � �
50 0.9 0.1 5

Water wave optimization n-Pop � kmax hmax B
150 1.026 12 6 Linearly decreases from 0.25 to 0.0002

each algorithm (based on similar researches as well as
trial and error method) and their analysis are shown in
Supplementary Data, Appendix C. The tuned values of
the parameters for each algorithm are shown in Table 2.

5.4. Comparison of the algorithms
In this section, the performance of the developed
metaheuristic algorithms, namely HS, FF, and WWO,
is evaluated in comparison. Each of the 50 problem
instances mentioned in Subsection 5.1 is solved 30 times
by each algorithm. To make a fair judgment, the
same termination criterion (105 function evaluations)
is used for all the three algorithms. For each run of
a problem instance, the quality of the metaheuristic
methods is evaluated by comparing their best �tness
values with the lower bound using the Relative Gap
(RG) measure. The RG is calculated by RG =
(OFVMeta � LB2) = (LB2), where OFVMeta and LB2
are the objective function value of the best solution
obtained by the metaheuristic algorithm and the lower
bound obtained by the presented approach, respec-
tively.

The computational results are summarized in
Table 3, in which \UB" indicates the Upper Bounds
derived using a pure solver (CPLEX in GAMS soft-
ware) in 3600s. Also, \Best," \Mav," \ARG," and
\CPUav (s)" represent the best makespan, the average
makespan, the average of the RGs, and the average of
CPU times achieved by each algorithm over 30 runs
for each problem, respectively. As seen in Table 3, in
HS, FF, and WWO algorithms, Mav is lower than the
upper bound obtained by solving the MIP model using
a pure solver in 34, 35, and 21 out of 50 instances,
respectively. It should be noted that the best upper
bound found for each problem (over all experiments)
is distinguished by bold letters. Table 3 shows that all
of the bold numbers are related to the metaheuristic
algorithms.

In addition, the sensitivity analysis of CPUav
based on the change in problem size for three meta-
heuristic algorithms is illustrated in Figure 5. As
far as the CPU time is concerned, the FF algorithm
outperforms WWO in all the problems. FF also shows
better performance than HS in all the problems except
for those with the largest sizes.

Figure 6 presents a graph depicting the conver-

Figure 5. Average CPU time versus the size of problem
instance.

Figure 6. The convergence curves of algorithms for
problem ATA25.

gence behavior of FF, HS, and WWO algorithms for
problem ATA25. As it can be seen, FF and WWO
have faster convergence rates than HS.

A statistical procedure is applied to compar-
ing the performance of the developed algorithms in
terms of the above-de�ned RG measure. We employ
two statistical approaches, namely single-problem and
multiple-problem analyses.

5.4.1. Single-problem analysis
In the single-problem analysis, the proposed algo-
rithms are compared with each other over each prob-
lem instance independently using the parametric/non-
parametric statistical tests [36]. In order to carry out
a parametric test, it is required to check three condi-
tions, namely independence, normality, heteroscedas-
ticity [37]. In the current research, the independence
condition is satis�ed for the results of each algorithm as
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Table 3. Summary of the results of the experiments in 105 evaluations.

Problem UB HS FF WWO

Best Mav ARG CPUav(s) Best Mav ARG CPUav(s) Best Mav ARG CPUav(s)

ATA01 1191 1112a 1153.0b 0.100 6.3 1114a 1163.1b 0.110 5.7 1192 1219.3 0.163 6.5

ATA02 1171 1160a 1194.7 0.089 6.3 1154a 1210.1 0.103 5.6 1218 1264.7 0.153 6.4

ATA03 1150 1137a 1176.7 0.142 6.4 1140a 1186.2 0.152 5.7 1181 1232.6 0.197 6.3

ATA04 1101 1060a 1098.0b 0.061 6.3 1078a 1113.7 0.076 5.6 1108 1168.7 0.129 6.4

ATA05 1089 1081a 1129.4 0.190 6.3 1090a 1142.7 0.204 5.6 1132 1192.1 0.256 6.7

ATA06 1197 1168a 1210.9 0.127 6.2 1184a 1215.4 0.132 5.5 1215 1265.8 0.179 6.8

ATA07 1141 1109a 1150.6 0.115 6.3 1127a 1166.5 0.130 5.7 1167 1227.2 0.189 6.9

ATA08 1169 1089a 1133.7b 0.034 6.4 1114a 1151.8b 0.051 5.3 1153a 1211.0 0.105 6.8

ATA09 1195 1168 1206.4 0.145 6.4 1183a 1213.8 0.152 5.3 1200 1268.3 0.203 6.9

ATA10 1140 1123a 1150.7 0.080 7.1 1131a 1167.0 0.096 5.3 1157 1213.3 0.139 6.9

ATA11 1357 1300a 1352.6b 0.162 10.8 1302a 1329.9b 0.142 9.1 1345 1399.6 0.202 11.1

ATA12 1337 1361 1396.4 0.116 11.9 1325a 1370.6 0.096 9.0 1395 1457.5 0.165 11.2

ATA13 1368 1332a 1367.8b 0.161 12.2 1286a 1331.7b 0.130 9.2 1365a 1414.4 0.201 11.3

ATA14 1298 1273a 1309.1 0.156 12.0 1240a 1290.5b 0.140 9.0 1322 1374.2 0.214 11.2

ATA15 1322 1309a 1353.9 0.179 12.5 1276a 1338.1 0.166 9.3 1326 1394.0 0.214 11.8

ATA16 1324 1341 1381.7 0.170 10.9 1300a 1366.5 0.157 8.8 1376 1452.2 0.230 12.5

ATA17 1434 1429a 1462.8 0.137 10.8 1398a 1440.6 0.119 9.1 1453 1525.8 0.186 12.5

ATA18 1429 1408a 1433.3 0.150 10.8 1366a 1413.6b 0.135 9.0 1428a 1485. 7 0.192 12.7

ATA19 1317 1328 1363.4 0.134 11.0 1304a 1348.9 0.122 9.1 1342 1415.1 0.177 12.6

ATA20 1322 1343 1372.0 0.128 10.8 1294a 1346.1 0.107 9.1 1358 1415.7 0.164 12.6

ATA21 1739 1438a 1488.0b 0.126 19.4 1394 1477.8b 0.118 16.1 1480a 1557.4b 0.178 21.3

ATA22 1621 1486a 1533.6b 0.119 19.4 1462a 1506.1b 0.099 16.3 1503a 1580.5b 0.153 21.2

ATA23 1483 1376a 1404.2b 0.136 19.0 1330a 1376.8b 0.114 16.2 1396a 1478.1b 0.196 21.4

ATA24 1805 1467a 1528.3b 0.090 19.4 1451a 1512.6b 0.079 16.0 1544a 1617.0b 0.153 21.2

ATA25 1515 1437a 1483.5b 0.071 19.0 1411a 1457.4b 0.052 16.2 1513a 1564.0 0.129 21.5

ATA26 1539 1435a 1483.1b 0.088 19.1 1420a 1465.4b 0.075 16.3 1495a 1569.4 0.151 21.5

ATA27 1692 1512a 1533.7b 0.152 18.3 1456a 1509.8b 0.134 16.4 1575a 1623.7b 0.220 21.2

ATA28 1584 1417a 1446.0b 0.139 19.4 1382a 1423.3b 0.122 16.1 1447a 1517.7b 0.196 21.3

ATA29 1721 1495a 1536.4b 0.127 19.5 1449a 1500.0b 0.100 16.5 1544a 1597.6b 0.172 21.5

ATA30 1507 1397a 1432.2b 0.149 18.9 1352a 1397.5b 0.122 16.2 1421a 1506.8b 0.209 21.1

ATA31 1916 1897a 1913.1b 0.085 23.3 1823a 1862.4b 0.056 20.1 1902a 1982.5 0.124 25.7

ATA32 2037 1907a 1940.3b 0.094 23.3 1843a 1887.8b 0.064 20.0 1949a 2017.1b 0.137 25.9

ATA33 1984 1939a 1964.3b 0.136 22.7 1836a 1901.0b 0.099 19.9 1986 2038.7 0.179 25.3

ATA34 1992 1937a 1984.8b 0.086 23.1 1870a 1923.8b 0.052 20.1 1964a 2056.8 0.125 25.3

ATA35 2026 1886a 1914.7b 0.106 23.2 1827a 1862.8b 0.076 19.7 1884a 1988.1b 0.149 25.4

ATA36 1966 1914a 1949.6b 0.097 23.3 1859a 1894.5b 0.066 19.9 1961a 2042.3 0.149 25.7

ATA37 1933 1888a 1927.4b 0.088 21.7 1831a 1880.3b 0.062 20.3 1924a 1999.6 0.129 25.7

ATA38 1767 1796 1824.0 0.090 21.7 1752a 1782.7 0.066 19.8 1832 1894.6 0.132 25.2

ATA39 2054 1844a 1881.5b 0.138 21.0 1779a 1818.3b 0.099 19.4 1939a 1988.2b 0.202 24.3

ATA40 1923 1842a 1883.3b 0.176 20.4 1760a 1833.0b 0.144 19.6 1909a 1991.3 0.243 23.9

ATA41 2318 2017a 2048.4b 0.119 37.2 1910a 1993.9b 0.090 36.8 2053a 2150.2b 0.175 46.0

ATA42 2147 1913a 1953.6b 0.109 37.9 1835a 1894.3b 0.076 36.0 1938 2033.9b 0.155 44.7

ATA43 2143 1872a 1906.1b 0.125 37.5 1811a 1846.9b 0.090 36.4 1900a 1993.2b 0.177 45.0

ATA44 2184 1958a 2006.3b 0.123 37.4 1897a 1950.3b 0.091 36.4 2055a 2128.8b 0.191 44.8

ATA45 2280 1981a 2027.6b 0.167 37.7 1911a 1963.2b 0.130 36.5 2039a 2108.4b 0.213 44.7

ATA46 2416 1932a 1972.4b 0.063 37.3 1863a 1914.4b 0.031 37.1 2006a 2076.1b 0.119 43.7

ATA47 2249 1908a 1948.8b 0.153 37.1 1835a 1888.8b 0.118 39.1 1929a 2044.9b 0.210 45.0

ATA48 2260 1943a 1978.5b 0.088 37.6 1884a 1923.4b 0.058 42.4 1999a 2083.0b 0.146 44.5

ATA49 2103 1893a 1941.6b 0.104 37.7 1848a 1892.3b 0.076 42.8 1971a 2045.9b 0.164 44.9

ATA50 2272 1965a 2000.5b 0.195 37.1 1906a 1952.0b 0.166 42.4 1985a 2068.2b 0.236 45.7

Average 1584.7 0.122 19.3 1556.0 0.105 17.9 1658.8 0.175 22.01
a The best makespan found by the algorithm is better than the upper bound obtained by solving the MIP model.
b The average makespan of 30 runs of the algorithm is better than the upper bound obtained by solving the MIP model.
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Table 4. Comparison of Harmony Search (HS) and �re
y (FF): p-values obtained by Wilcoxon test/paired t-test,
di�erence between Average Relative Gap (ARG) and the result of statistical analysis in the single-problem analysis.

Problem ATA01� ATA02 ATA03 ATA04 ATA05 ATA06 ATA07 ATA08 ATA09 ATA10

p-value 0.171 0.009 0.072 0.011 0.061 0.346 0.019 0.009 0.182 .000
Di�erence of ARG {0.010 {0.014 {0.009 {0.015 {0.014 {0.004 {0.015 {0.016 {0.007 {0.015
Result ND HoF ND HoF ND ND HoF HoF ND HoF

Problem ATA11 ATA12� ATA13 ATA14� ATA15 ATA16 ATA17 ATA18� ATA19� ATA20�

p-value 0.000 0.000 0.000 0.005 0.001 0.037 0.000 0.004 0.02 0.001
Di�erence of ARG 0.020 0.021 0.031 0.016 0.014 0.013 0.017 0.016 0.012 0.021
Result FoH FoH FoH FoH FoH FoH FoH FoH FoH FoH

Problem ATA21 ATA22 ATA23� ATA24� ATA25 ATA26 ATA27� ATA28� ATA29� ATA30

p-value 0.112 0.000 0.000 0.026 0.007 0.013 0.000 0.001 0.000 0.000
Di�erence of ARG 0.008 0.020 0.022 0.011 0.019 0.013 0.018 0.018 0.027 0.028
Result ND FoH FoH FoH FoH FoH FoH FoH FoH FoH

Problem ATA31� ATA32 ATA33� ATA34 ATA35 ATA36 ATA37� ATA38� ATA39 ATA40�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG 0.029 0.030 0.037 0.033 0.030 0.031 0.027 0.025 0.038 0.031
Result FoH FoH FoH FoH FoH FoH FoH FoH FoH FoH

Problem ATA41� ATA42 ATA43 ATA44� ATA45 ATA46 ATA47 ATA48 ATA49 ATA50

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG 0.030 0.034 0.035 0.031 0.037 0.031 0.036 0.030 0.028 0.029
Result FoH FoH FoH FoH FoH FoH FoH FoH FoH FoH

Note: ND: There is no statistical di�erence between algorithms; FoH: Fire
y outperforms harmony search;
HOF: harmony search outperforms �re
y.
�: At least one of the conditions of parametric tests is not satis�ed; therefore, Wilcoxon signed-ranks test is used.

they are obtained by independent runs with randomly
generated initial populations. A Kolmogorov-Smirnov
test is used to carry out the normality analysis at the
signi�cance level of � = 0:05. It is well-known that
p-values greater than the level of signi�cance � mean
the ful�llment of the normality condition. The p-values
obtained by the Kolmogorov-Smirnov test are included
in Supplementary Data, Appendix C. Based on the
results, the normality condition is satis�ed in most
of the cases. More precisely, in HS, FF, and WWO
algorithms, the normal distribution is accepted in 48,
47, and 45 out of 50 cases, respectively. We use the
Levene's test to determine whether homoscedasticity
condition is veri�ed or not. The results of the Levene's
test are given in Supplementary Data, Appendix C.

If all the required conditions utilizing the para-
metric tests are simultaneously met in a statistical
hypothesis test, a paired t-test can be used (as in this
paper) for the pairwise comparison of the algorithms
with respect to the RG measure. Otherwise, if any of
the three conditions is not met, a non-parametric test is
more reliable than the parametric test [37]. In this case,
the Wilcoxon signed-rank test as a non-parametric
test is utilized. In fact, these tests (Wilcoxon or
paired t-test) are conducted to check whether there

is a signi�cant di�erence between the two algorithms
under comparison in terms of the RG measure in each
problem instance (Ho : �alg1RG = �alg2RG).

Tables 4{6 represent the p-values obtained by
Wilcoxon test/paired t-test, Average RG (ARG) dif-
ference between the two algorithms under comparison,
and the results of the single-problem analysis. If the
p-value is less than 0.05, the null hypothesis is rejected
at the level of signi�cance � = 0:05. Therefore, we
can express that the two algorithms are statistically
di�erent from each other based on the comparison met-
ric of RG for the considered problem instance. Thus,
every algorithm which has a lower ARG outperforms
the other one in that problem instance.

The results of Tables 3{6 allow us to make the
following conclusions:

� As far as the RG is concerned, the HS algorithm
has a better performance than the FF algorithm in
�ve out of the �rst 10 problem instances, while as
the size of problem instances grows, FF outperforms
HS in all the next 40 problem instances except for
ATA21;

� Both FF and HS algorithms have statistically con-
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Table 5. Comparison of Harmony Search (HS) and Water Wave Optimization (WWO): p-values obtained by Wilcoxon
test/paired t-test, di�erence between Average Relative Gap (ARG) and the result of statistical analysis in the
single-problem analysis.

Problem ATA01 ATA02 ATA03� ATA04 ATA05� ATA06 ATA07 ATA08 ATA09 ATA10
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.063 {0.064 {0.054 {0.068 {0.066 {0.051 {0.074 {0.070 {0.059 {0.059
Result HoW HoW HoW HoW HoW HoW HoW HoW HoW HoW
Problem ATA11� ATA12� ATA13� ATA14� ATA15 ATA16� ATA17� ATA18� ATA19� ATA20�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.040 {0.049 {0.040 {0.057 {0.035 {0.060 {0.049 {0.042 {0.043 {0.036
Result HoW HoW HoW HoW HoW HoW HoW HoW HoW HoW
Problem ATA21� ATA22 ATA23� ATA24� ATA25 ATA26� ATA27� ATA28� ATA29 ATA30�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.052 {0.034 {0.060 {0.063 {0.058 {0.063 {0.068 {0.057 {0.045 {0.060
Result HoW HoW HoW HoW HoW HoW HoW HoW HoW HoW
Problem ATA31� ATA32� ATA33� ATA34� ATA35� ATA36� ATA37� ATA38� ATA39� ATA40�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 .0000 0.000 0.000 0.000
Di�erence of ARG {0.039 {0.043 {0.043 {0.039 {0.042 {0.052 {0.041 {0.042 {0.065 {0.067
Result HoW HoW HoW HoW HoW HoW HoW HoW HoW HoW
Problem ATA41� ATA42� ATA43� ATA44� ATA45� ATA46� ATA47� ATA48� ATA49 ATA50�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.056 {0.046 {0.051 {0.069 {0.046 {0.056 {0.057 {0.058 {0.059 {0.040
Result HoW HoW HoW HoW HoW HoW HoW HoW HoW HoW

Note: HoW: Harmony search outperforms water wave optimization algorithm.
�: At least one of the conditions of parametric tests is not satis�ed; therefore, Wilcoxon signed-ranks test is used.

Table 6. Comparison of �re
y (FF) and Water Wave Optimization (WWO): p-values obtained by Wilcoxon test/paired
t-test, di�erence between Average Relative Gap (ARG) and the result of statistical analysis in the single-problem analysis.

Problem ATA01� ATA02 ATA03� ATA04 ATA05� ATA06 ATA07 ATA08 ATA09 ATA10�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.054 {0.050 {0.045 {0.053 {0.052 {0.047 {0.059 {0.054 {0.052 {0.044
Result FoW FoW FoW FoW FoW FoW FoW FoW FoW FoW

Problem ATA11 ATA12 ATA13� ATA14 ATA15 ATA16 ATA17� ATA18 ATA19 ATA20�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.060 {0.069 {0.070 {0.074 {0.049 {0.073 {0.066 {0.058 {0.055 {0.057
Result FoW FoW FoW FoW FoW FoW FoW FoW FoW FoW

Problem ATA21 ATA22 ATA23 ATA24 ATA25 ATA26� ATA27 ATA28� ATA29 ATA30

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.060 {0.054 {0.082 {0.074 {0.077 {0.076 {0.086 {0.074 {0.072 {0.088
Result FoW FoW FoW FoW FoW FoW FoW FoW FoW FoW

Problem ATA31� ATA32� ATA33 ATA34� ATA35 ATA36� ATA37� ATA38� ATA39� ATA40

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.068 {0.073 {0.080 {0.073 {0.072 {0.083 {0.067 {0.067 {0.103 {0.099
Result FoW FoW FoW FoW FoW FoW FoW FoW FoW FoW

Problem ATA41 ATA42� ATA43 ATA44� ATA45 ATA46� ATA47� ATA48� ATA49 ATA50�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Di�erence of ARG {0.085 {0.079 {0.086 {0.100 {0.084 {0.087 {0.092 {0.088 {0.087 {0.069
Result FoW FoW FoW FoW FoW FoW FoW FoW FoW FoW
Note: FoW: Fire
y outperforms water wave optimization algorithm.
�: At least one of the conditions of parametric tests is not satis�ed; therefore, Wilcoxon signed-ranks test is used.
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Table 7. p-values obtained by the normality test of Kolmogorov-Smirnov in multiple-problem analysis.

Algorithm Harmony search Fire
y Water wave optimization
p-value 0.200 0.200 0.200

Table 8. p-values obtained by the Levene's heteroscedasticity test in the multiple-problem analysis (based on means).

Algorithm Harmony search
vs. �re
y

Harmony search vs.
water wave optimization

Fire
y vs. water
wave optimization

p-value 0.797 0.933 0.858

Table 9. Result of the paired t-test in the multiple-problem analysis.

Paired di�erences
95% con�dence interval of

the di�erence
Algorithms Mean SD SEM Lower Upper t Df p-value Result
HS vs. FF 0.01749 0.01675 0.00237 0.01273 0.02225 7.384 49 0.000 FoH

HS vs. WWO {0.05305 0.01067 0.00151 {0.05609 {0.05002 {35.174 49 0.000 HoW
FF vs WWO {0.07054 0.01527 0.00216 {0.07488 {0.06620 {32.672 49 0.000 FoW

Note: SD: Standard Deviation, SEM: Standard Error Mean, DF: Degree of Freedom; FoH: Fire
y outperforms
harmony search; HoW: Harmony search outperforms water wave optimization algorithm; FoW: Fire
y outperforms
water wave optimization algorithm.

siderable superiority to the WWO algorithm in all
problem instances;

� FF algorithm has the best performance among
the proposed metaheuristic algorithms in solving
the stage shop problem, especially for large-sized
problem instances.

5.4.2. Multiple-problem analysis
The conclusions reached in the previous subsection can
be tested by the multiple-problem analysis by which
the behavior of the algorithms is analyzed considering
all problem instances simultaneously [36]. In fact, the
multiple-problem analysis is used to check whether
there is a global di�erence between the algorithms
over all 50 problem instances or not. To perform the
multiple-problem analysis, the ARG obtained for each
problem instance is used.

In order to perform the multiple-problem analysis,
three required conditions for the parametric tests must
be checked at �rst. Tables 7 and 8 represent the p-
values achieved by the normality and heteroscedasticity
tests in the multiple-problem analysis, respectively. As
Tables 7 and 8 show, the required conditions for the
parametric tests are simultaneously met in all cases.
Therefore, a paired t-test is conducted to perform
pairwise comparisons among the metaheuristics for all
the problem instances.

The results of the conducted paired t-tests are
reported in Table 9. Given that the p-value for all
statistical hypothesis tests is less than the con�dence
level (� = 0:05), we can claim that the pairwise

performances of the algorithms are statistically dif-
ferent. Hence, each algorithm with the lower ARG
outperforms the other one in all problem instances.
According to Table 3 (ARG) and Table 9 (p-value),
we can observe that the FF algorithm outperforms
the competitor algorithms and the WWO algorithm
has the worst performance in solving the stage shop
scheduling problem, which is consistent with the con-
clusion of the previous subsection. It should be noted
that all the statistical tests are conducted at the level of
signi�cance /= 0:05 by the SPSS 21 software package.

Moreover, the plots of 95% con�dence interval for
makespan mean are depicted in Figure 7 to validate the
obtained results.

Figure 7. Means and interval plots for the makespan over
all problem instances.
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6. Conclusion

To evaluate the performance of approximation algo-
rithms for large-size problems, it is not possible to �nd
the optimal solution using the integer programming
models. Therefore, a good lower bound can be a
strong basis for these circumstances. In this paper,
a new lower bound for the stage shop problem was
proposed using the open shop problem with maximum
lateness criterion. The computational results showed
remarkable improvements in lower bounds for the
problem instances. Three metaheuristic algorithms,
namely Harmony Search (HS), �re
y (FF), and Water
Wave Optimization (WWO), were applied to the stage
shop scheduling problem. Furthermore, the Relative
Gap (RG) between the best �tness values obtained
by metaheuristic algorithms and the corresponding
new lower bound was taken into account to evaluate
the performance of the developed metaheuristic algo-
rithms. Then, we compared the e�ectiveness of the
algorithms using a relatively new statistical approach,
which was conducted in two ways, namely single-
problem and multiple-problem analyses. Experimental
results indicated that the FF algorithm outperformed
the competitor algorithms in both single-problem and
multiple-problem analyses. As a future direction, the
proposed lower bound can be used in a branch and
bound framework to �nd the optimal solution to the
stage shop. In addition, considering other challenges
(e.g., preemption, blocking, 
exible environment, and
sequence dependent setup times) in the stage shop
scheduling problem is recommended. Furthermore, the
uncertainty in processing time or machine breakdown
can be regarded as research suggestions.

Supplementary data

The Supplementary data are available at:
http://scientiairanica.sharif.edu/ju�le?ar s�le=111821
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Appendix A

The previous lower bound
Here, we give the simple lower bound for the makespan
of the stage shop problem, which was presented by
Nasiri and Kianfar [8]. First, let us de�ne some
parameters.

a; b Indices for operations
Jj Set of operations of job j
Ii Set of operations that should be

processed on machine i
Hjk Set of operations of stage k of job j
Pa Processing time of operation a

Now, it is needed to de�ne heads (r) and tails
(q). In the stage shop problem, ra parameters for all
operations of a stage (a 2 Hjk) are equal and the same
is true for qa. The parameters can be de�ned as follows:

ra =
k�1X
t=1

X
b2Hjt

pb; (A.1)

qa =
sjX

t=k+1

X
b2Hjt

pb: (A.2)

These de�nitions are consistent with the conven-
tional de�nitions of heads and tails in job shop and
open shop.

LB1 = max

(
max

i2f1;:::;mg

(
min
a2Ii ra +

X
a2Ii

pa + min
a2Ii qa

)
;

max
j2f1;:::;ng

�X
a2Jj

pa
�)

: (A.3)

The operations of job j(Jj) cannot be performed
concurrently. Hence, the makespan would be greater
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than or equal to the sum of the processing times of
the operations in Jj even though there is no idle time
between them. On the other hand, the operations that
should be processed on machine i(Ii) cannot be per-
formed in parallel, either. In addition, the �rst of these
operations cannot be started before min

a2Ii ra. Then, at

least the sum of the processing times (
P
a2Ii

pa) should

be passed before the last operation of Ii is completed.
Finally, makespan would be at least by min

a2Ii qa greater

than the completion of the last operation.

Appendix B

Examples

Example 3.1. In the stage shop problem of Fig-
ure B.1, we want to form an open shop.

Suppose that we want to derive OpenShop1 from
the mentioned stage shop problem. As can be seen in
Figure B.1, machine 1 is used at stage 1 of every three
jobs and therefore, K1 = f(1; 1) ; (2; 1) ; (3; 1)g. Other
machines required in forming are machines 3 and 5 that
are related to operations of the stage 1 of each job. In
OpenShop1, the machines 1, 3, and 5 are renumbered
to 1, 2, and 3, respectively. Indeed, OpenShop1 in-
cludes three jobs, three machines, and �ve operations.
The data of OpenShop1 is shown in Table B.1. For

Figure B.1. An instance of the stage shop problem.

Table B.2. Calculations for obtaining the lower bound.

Machines
1 2 3 4 5 6

min
a2Ii

ra 0 3 0 3 0 3P
a2Ii

pa 8 11 10 7 15 7

min
a2Ii

qa 12 2 0 0 0 0

Total 20 16 10 10 15 10

better illustration, we also describe the formation of
OpenShop2, which is di�erent from OpenShop1 in
some way, as the operations of OpenShop2 are from
stages with di�erent indices. Three operations in l2
are from stage 2 of job 1, stage 2 of job 2, and stage 3
of job 3. Therefore, K2 = f(1; 2) ; (2; 2) ; (3; 3)g.
Example 3.2. Consider the stage shop problem in
Figure B.1, including 3 jobs and 6 machines.

The stages of each job are identi�ed with di�erent
colors, e.g., job 3 comprises four stages and job 2
includes three stages. The previous lower bound can
be calculated using Eq. (A.3). Therefore, we have
LB1 = 20 (the calculations are shown in Figure B.1
and Table B.2).

Solving OpenShop1 with complete enumeration
of feasible solutions results in Lmax = 1, which is
equivalent to the lower bound LB2 = 20 + 1 = 21.
The optimal solution is represented in Figure B.2.

Example 3.3. Consider the problem OpenShop1 (in
Example 3.1) with preemption, namely a problem with
three jobs and three machines (O3 jrj ; prmpjLmax).

In this problem, there are two intervals that can
be speci�ed with a1 = r1 = r2 = r3 = 0, a2 = d1 =
d2 = 5, and a3 = d3 = 8. The lengths of the intervals
are �1 = 5 and �2 = 3, respectively. Therefore, there
would be 18 (3 � 3 � 2) decision variables xijk. Now,

Table B.1. Open shop problem for machine 1 (OpenShop1).

Machines
Jobs 1 2 3 rj qj dj = LB1 � qj

Processing time
1 1 2 | 0 15 5
2 5 | | 0 15 5
3 2 | 6 0 12 8

Figure B.2. The solution to the open shop problem for machine 1.
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the variables with the value of zero should be speci�ed
for each i: Xi11 = 0 because r1 � a2; xi24 = 0 because
d2 � a4; xi32 = 0 because r3 � a3; and xi31 = 0
because r3 � a2.

In addition, machine 3 is not required by job 1
and job 2. Also, machine 2 is not required by job 2 and
job 3. Thus, for k = 1; 2: x31k = 0, x22k = 0, x32k = 0,
and x23k = 0.

The �rst set of constraints of the LP includes six
constraints. The �rst constraint of this set (for j = 1,
k = 1) is:

x111 + x211 + x311 � 5:

The second set of constraints of the LP has six
constraints. The �rst constraint of this set (for i = 1,
k = 1) is:

x111 + x121 + x131 � 5:

The third set of constraints of the LP has nine con-
straints. The �rst constraint of this set (for i = 1,
j = 1) is:

x111 + x112 = 1:

The linear programming model obtained in this
phase has no feasible solution. Therefore, each of due
dates dj is replaced by dj + 1. Consequently, we have
a1 = 0, a2 = 6, and a3 = 9. The lengths of the new
intervals are equal to �1 = 6 and �2 = 3, respectively.
In addition, the variables that should take the value
of zero do not change. Solving the new problem leads

to a feasible solution. As a result, the minimum Lmax
in the preemptive (like the non-preemptive) problem
is equal to one and the new lower bound is equal to
LB2 = 20 + 1 = 21.
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