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KEYWORDS Abstract. In this study, a SCARA Prismatic-Revolute-Revolute-type (PRR) robot
SCARA robot: manipulator is designed and implemented. Firstly, the SCARA robot is designed in
Real-time cont’rol' accordance with the mechanical calculations. Then, forward and inverse kinematic
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Revolute (PRR);

Servo motor.

equations of the robot are derived by using D-H parameters and analytical methods. The
software is developed according to the obtained Cartesian velocities from joint velocities
and joint velocities from Cartesian velocities. The trajectory planning is designed using
the calculated kinematic equations, and the simulation is performed in MATLAB VRML
environment. A stepping motor is used for the prismatic joint of the robot, and servo
motors are used for revolute joints. While most of the SCARA robot studies focus on
the Revolute-Revolute-Prismatic -type (RRP) servo control strategy, this work focuses on
PRR-type and both stepper and servo control structures. The objects in the desired points
of the workspace are picked and placed to another desired point synchronously with the
simulation. Therefore, the performance of the robot is examined experimentally.

(© 2020 Sharif University of Technology. All rights reserved.

1. Introduction can operate without the need for large areas. For
this reason, the processes such as packaging, sorting,
alignment, planar welding, and assembly in the pro-
P ; ) 5 duction lines are usually performed with SCARA-type
ductlon‘ l}nes has galneq great 1mportance. in terms of manipulators. The first SCARA robot was developed
cgmpetltlveness. For this reason, compar}les often use in 1978 by Professor Hiroshi Makino at Yamanashi
different types of robots, such as Cartesian, SCARA, University in Japan [3]. Afterwards, many types

et.c., in indu:‘strigl applicrfxtions. Cartesian systems are of SCARA robots have emerged to be used in the
widely used in hlgh—densfcy warehouses and, generally, machine, automotive, and robot industries.
have b.oth shuttle and aisle robots that generate thfé In literature studies, kinematic and dynamic
Cartesian structure [1,2]. SCARA (Selective Compli- modeling, simulation analysis, different control meth-
ance Assembly R(?bOt Arm) mampulalmtors t.a,ke up less ods, and trajectory planning have been studied both
space than Cartesian systems, are easier to install, and theoretically and experimentally. Different decentral-
ized and centralized (model-based) controllers have
*  Corresponding author. Tel.: +90 2642956912; been tested with experimental studies of an industrial
Faz: +90 2642956424 SCARA robot.
e ek bt (00 AS  rosult, e porformance of docentralzed
msogaslan@sakarya. edu.tr (M. Soyaslan); controllers was found to be sufficiently accurate for a
eldogan @sakarya.edu.tr (O. Eldogan) large number of industrial applications [4]. Accurate
results of experimental studies depend on well-made
doi: 10.24200/sci.2018.51214.2065 mathematical modeling. In SCARA robots, which

Nowadays, the objective of production at high speeds
with low costs and low error rates in industrial pro-
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are generally used in industrial applications, it is
very important to make both dynamic and kinematic
calculations accurately in order to make the system
work properly. While Das and Dulger [5] developed a
complete mathematical model with actuator dynamics
and motion equations derived by using the Lagrangian
mechanics, Alshamasin et al. [6] investigated kinematic
modeling and simulation of a SCARA robot by using
solid dynamics by means of Matlab/Simulink. Unlike
other studies, Urrea and Kern [7] implemented a
simulation of a 53-Degree-Of-Freedom (DOF) SCARA
manipulator using Matlab/Simulink software. Their
study has no physical application, although it bears
similarity with the work we have done. This study
enjoys some advantages over these types of works,
which include only modeling and simulation. Kaleli
et al. [8] and Korayem et al. [9] designed a program
for simulating and animating the robot kinematics
and dynamics in LabView software. Similar to these
works, there are various robot control, simulation, and
calculation program studies in the literature [10-20].
While some of them are just based on the analysis and
simulation of one type of robot arms, some give results
for robots in different types.

SCARA robots with RRP (Revolute-Revolute-
Prismatic) or PRR (Prismatic-Revolute-Revolute)
joint configurations are easy to provide linear move-
ment in vertical directions. RRP and PRR types
have some advantages and disadvantages. RRP-type
SCARA manipulators are very common in light-duty
applications that require precision and speed, which is
difficult to achieve by human beings [21]. While the
prismatic joint motor is only lifting the objects in RRP
type, it is lifting the whole robot structure with the
objects in PRR type. Therefore, the prismatic joint
motor of PRR type has higher torque than that of
RRP type. Therefore, the PRR-type SCARA robot
configuration is preferred in applications, where lifting

heavy weights is a challenge. Since the base is fixed
on one point, powerful torque motors for lifting heavy
loads linearly can be used easily.

In this study, a PRR-type (Prismatic-Revolute-
Revolute) SCARA robot manipulator is designed. In
addition, a gripper is placed on the last joint so that
the objects can be picked and placed at the desired
locations. In the first section, the usage areas of
SCARA robots and the studies in the literature are
mentioned. In Section 2, the forward kinematics of the
robot is obtained by using the Denavit-Hartenberg (D-
H) method [22]. Then, the inverse kinematic equations
and Jacobian matrix are obtained by using analytical
methods. In Section 3, the experimental setup of
the robot is explained. In Section 4, the control and
simulation software are described. In the conclusion
section, the results and discussion are presented.

2. Robot kinematics

2.1. Forward kinematics

Robot forward kinematics deals with the relationship
among the positions, velocities, and accelerations of
robot joints [23]. A robot consists of links that are
attached to each other by prismatic or rotary joints.
Coordinate systems are placed to each joint to find the
transformation matrices that set the relation between
two neighboring joints. The transformation matrix
between the two joints is shown like *~}7". The relation
between the base frame and the tool frame is defined by
the serial joint transformation matrices. This relation
is called forward kinematics and shown in Eq. (1):

NT =913 NI (1)
The projected SCARA robot and the axes on

the joints are shown in Figure 1. While d3 is the
length of the vertical joint, I; and Iy are the horizontal

Figure 1. Joint axes and implemented SCARA robot.
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Table 1. D — H parameters.

7 a;1° ai_1 " 0; ° d; ¢
1 0 0 0 ds

2 0 0 01

3 0 I 02

4 0 lo 0 0

?a;—1: Angle between z;_1 and z; around x;_1;
bg,_1 : Distance between axes z;_1 and z; throughout x;_1;
€0; : Angle between x;_1 and x; around z;;

d4d, : Distance between axes z;_1 and z; throughout z;.

lengths of the other two joints. The length of d3 is
calculated considering the height of the gripper. The
transformation matrices are obtained as in Eq. (2) by
the D-H method:

100 0 a —s1 0 4
01 0 O S c 0 0

O _ 1|1 1

1= 0 0 1 dg|”’ 2T'= 0 0 1 0|’
0 0 0 1 0 0 0 1
Cy —S8o 0 12

2 |52 C2 0 0

T=10 0 1 o0 @)
0 0 0 1

The abbreviations ¢ and s represent the terms “cosine”
and “sine”. The D— H parameters are given in Table 1.

The forward kinematic matrix is obtained through
Eq. (3) by the product of the transformation matrices.

ciz —s12 0 el +ciely

o 812 ci2 0 sili 4 s12ly

=10 0 1 4 | ®)
0 0 0 1

2.2. Inverse kinematics

Inverse kinematics is the process of finding the values
of joint variables according to the given position and
orientation data of the end effector. In other words,
for the movement of the end effector to the desired
position, we need to find the rotation and linear motion
values of joints by means of inverse kinematics. Any
found mathematical expression may not be a physical
solution. There may also be more than one solution
for the end effector to go to the desired position.
In other words, the robot manipulator can reach the
desired positions with different solutions. In this study,
the inverse kinematics solution is obtained by the
analytical method. The third column of the forward
kinematic matrix is shown in Eq. (4), and it gives the
x, ¥, and z position coordinates of the robot.

Mechanical Engineering 27 (2020) 330-340

8111 + 61212 Pl

_ _ 8111 + 812l2 _ P2
O=P= s =|p| (4)

1 1

Egs. (5)—(7) can be easily understood from Eq. (4):

Py = cily + ey, (5)
Py = 51l + s12la, (6)
Py =ds. (7)

2.2.1. Calculation of 81 angle
Eqs. (5) and (6) are rearranged as follows:

(c1212)* = (P — e1lh)?, (8)

(51202)% = (Py — 5111)%. (9)
Eqs. (8) and (9) are summed up together as follows:

5 =P} —Pj+1} — 2l (Picy + Pysy). (10)

Eq. (11) is obtained when b is used instead of (Pic; +
PQSl)Z

I5=P} - P} +1; —2l4b;. (11)

Figure 2 shows the #; derivation illustration. Due to
the existence of by, v; also can be derived by analytical
methods as in Eq. (13). The variables in Figure 2 are
calculated as follows:

by = (Picy + Pasy), (12)
v = (=Ps1 + Paey), (13)
r? =] + b3, (14)
r? = P} + Pj, (15)

v = +\/P2+ P2~ 2, (16)

| (vs,b1)

(P2,P1)

Figure 2. Derivation illustration of ;.
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01 = o1 — 2, (17)
Y1 = Atan 2(1]17 b1)7 (18)
Y2 :Atan2(P2,P1)‘ (19)

The inverse kinematics of the first rotational joint is
obtained through Eq. (20) when Eqgs. (18) and (19)
are substituted into Eq. (17). Because of two different
values of v; from Eq. (16), there are also two different
values of 8;. This shows that there are two solutions.

91 :Atan2(:|:vl,bl)—AtanZ(Pg,Pl). (20)

2.2.2. Calculation of 6 angle

Method 1:

When Egs. (5) and (6) are multiplied by P, and P,
respectively, Egs. (21) and (22) are obtained as follows:

P [01212 =P - Clh]v (21)
P2 [81212 = PQ — 8111]. (22)

Eq. (23) is obtained after subtracting Eq. (22) from
Eq. (21) and, accordingly, some arrangements are
made.

lg[clgpg - 512P1] = —l1 [PQCl — P181]. (23)
When v, is written instead of Pyc; — Py sy, we get:

-l
c12P2 — 812 P = 112 - (24)

Method 2:
Egs. (21) and (22) are summed up together as follows:

lg[clgpg + 512P1] =PP -1 [PQCl + Plsl]. (25)

Eq. (26) is obtained when by is used instead of (¢12Ps +
512P1).

bg = 012P2 + 812P1. (26)
by is rearranged as follows:

PI+ P} 41313

by = (Prey + Ppsy) = (27)
2l
After placing b; value in Eq. (25), we get:
P+ P} —17+13
c1aPy + s12P = — 212 (28)

2

Eq. (29) is obtained with some arrangements in
Eq. (28).

_PP+PP-E+E

b
2 2,

(29)

L
2 (v, by)
2

01+02 (PZ/PJ)
Figure 3. Derivation illustration of (61 + 02).
The final form of Eq. (28) is as follows:
{1b:
012P1 + 512P2 = % (30)
2

When Egs. (24) and (30) are solved mathematically
together on the same graph, Figure 3 is obtained.
Figure (3) can be solved as follows:

81 —|—92=Atan?(—vl,bz)—AtanZ(Pz,Pl). (31)
When 6, value from Eq. (20) is placed in Eq. (31),
Eq. (32) is obtained.

0y = Atan2(—vy,by) — Atan2(vy, by). (32)
2.3. Multiple solution
Two different values of v; observed in Eq. (16) show
two-solution ways. These solution ways are discussed

in this section. Figure 4 shows the two solutions of
object orientation.

- Left side solution:
o8 = 24 tan 2(—vy, by), (33)

1
o) = Atan2(Py, Py) — geg”. (34)

Figure 4. Two solutions of object orientation.
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- Right side solution:

o8%) = 24 tan 2(vy, by), (35)
1
0% = —Atan2(Py, Py) — 5952). (36)
2.8.1. Ezamination of the solution’s existence
vy value from Eq. (16) can be written as follows:
vy = E4/72 = b2, (37)
V1 =4 (T—bl)(T+b1). (38)

To ensure solution existence, the condition of (r —b; >
0) must be provided as in Eq. (38).

Reachable maximum and minimum lengths of
arms are shown in Figure 5.

If the analysis is carried out according to Figure 5,
then:

Tmax = 1 + {2, (39)

(40)

Tmin = ll - l2~

The existence of solutions is available under the above
conditions.

Figure 5. Maximum and minimum points achievable by
the arms.

T

Stepper Motor Drive
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The Jacobian matrix in robotics is used for
many calculation methods such as smooth trajectory
planning and execution, singularity determination,
derivation of dynamic equations of motion, and torque
calculations. The linear and angular velocities at
the SCARA robot can be found in terms of joint
velocities. The linear velocity can be defined in terms
of the position of the end effector. After conducting
the intermediate operations, the Jacobian matrices are
obtained through Egs. (41) and (42):

—11 sin (91— 12 sin(91+92) —12 sin(91+92) 0
Jo(0)=| I; cos 01+15 cos(014+62) I cos(614+62) O
1

b

0 0 (41)
J(0) = [8 8 8] (42)
[1 1 oJ

3. Experimental setup

A rigid linear mechanism is preferred for the installa-
tion of the SCARA manipulator. This linear mecha-
nism allows the robot arm to move up and down. The
reason why this mechanism is preferred includes the
ease of control provided by the stepper motor, precise
feed steps, and handling load capacity. The effective
range of motion of the mechanism on the horizontal
axis is 275 mm. The accuracy is 0.05 mm by the applied
quality ball screw. The horizontal movement speed in
the loaded condition is 100 mm/s, and the maximum
horizontal lift load is 10 kg. TB 6600 motor driver and
Arduino Uno control card are used for stepper motor
control, which provides linear motion. In addition, the
servo motor used in the gripper is also controlled by
the Arduino control card. Figure 6 shows the linear
mechanism used in the system and the stepper motor
control connection scheme [24] used in the horizontal
axis motion.

Two servo motors of Dynamixel AX12A [25] were
used for rotary joints of the system. With many feed
back functions, these servo motors have programmable

EN+
DIR-
DIR+
PUL-
PUL+

DC:9~42V

Figure 6. Linear mechanism and stepper motor connection diagram.
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Figure 8. Experimental setup.

integrated infrastructure, a ready-made network con-
nection system, reducers, ready-made joints, and easy
mounting inserts. Motors have a constant torque
rate of 1.5 Nm and a speed rate of 59 rpm. The
gripping of the motor is accomplished with a small
servo motor and the gripper mechanism. The control
of Dynamixel servo motors in revolute joints is done
with an OpenCM9.04-C control card with an ARM
Cortex-M3 32-bit processor and OpenCM485 EXP
expansion module. Figure 7 shows the control card,
servo motor, and pin connections, and Figure 8 shows
the experimental setup.

4. Control and simulation

Due to the different types of motors used in the
SCARA system, the control was done with Arduino
and OpenCM9.04 control cards. All kinematic and
other calculations used in robot motion were performed
with the MATLAB program. The control cards are
communicated through MATLAB software and, ac-
cording to the values entered in the simulation screen,
the robot moves at desired speeds. The objects in
the working space were taken from their places and
moved to the desired coordinates. Figure 9 shows the
flow chart of the process until the SCARA manipulator
at the home position picks the object from a certain
coordinate and places it to the desired coordinate.
Figure 10 shows the robot’s main control panel and
kinematic calculation interface. Kinematic calculations

and automatic and manual control operations are
performed via this interface.

The trajectory planning is the planning of the
movement of the robot according to the desired trajec-
tory, velocity, acceleration, and time from the present
position to the desired position of the end effector. It is
desired for the robot to be able to move smoothly and
vibrationless without exceeding the limits of the actua-
tor and without crashing any object in the workspace.
In the linear trajectory method, even if all robot joints
with n degrees of freedom follow a linear trajectory,
the end effector does not pass linearly between the two
points. By adding parabolic parts to the beginning
and end of the trajectory, the continuity of position
and velocity is ensured. In addition, a smooth velocity
by using a constant acceleration motion at a parabolic
trajectory is also ensured. The linear trajectory plans
added with parabolic parts for the rotary and linear
joints of the robot are shown in Figure 11. The graphs
show the displacement, speed, and acceleration values
of each joint based on time.

The robot is automatically simulated in the MAT-
LAB VRML [26] environment while simultaneously
reaching the desired point through the automatic
control panel. Thus, experimental studies can be
monitored through the computer software interface.
Figure 12 shows the automatic control panel and 3D
simulation screen.

5. Conclusion

An academic study was carried out with an imple-
mented experimental setup of the Prismatic-Revolute-
Revolute-type (PRR) SCARA manipulator. A robot
arm was produced that picked the product from any
coordinate on the workspace and placed it to the
desired coordinate. Numerous pages of codes were
written in the MATLAB environment to perform the
required calculations and control operations of the
system. Forward and inverse kinematic calculations
were solved. In addition, the results of the robot’s
trajectory plans were obtained for all joints. The
MATLAB program communicated with the control
cards OpenCM9.04 and Arduino, and the robot was
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Figure 9. Algorithm of the control system .
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Figure 10. (a) Main control panel. (b) Kinematic calculations interface.

moved synchronously by the simulation software. Step-
per motor in the prismatic joint and servo motors in
other joints were used. Although different types of
motors made it difficult to control the system, very
successful results were achieved. In future studies, the

motor powers can be increased to produce a commercial
and industrial robot arm. Such a robot like this
can be easily used in mass production lines in the
industry, where picking and placing operations are
done.
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Nomenclature

D-H

Denavit-Hartenberg

DOF Degree Of Freedom

PRR Prismatic-Revolute-Revolute

RRP Revolute-Revolute-Prismatic

SCARA Selective Compliance Assembly Robot
Arm

VRML Virtual Reality Modelling Language

Nm Newton metre

rpm Revolutions per minute

mm Millimetre

mm/s Millimetre/second

N Number of degrees of freedom

i Transformation matrix between two
joints

c Cosine

S Sine

ds Length of the vertical joint

Iy, 1 Horizontal lengths of joints

1 Joint number

o1 Angle between z; 1 and z; around x; 1

ai_1 Distance between axes z;,_; and z;
throughout x;_;

0; Angle between x;_; and x; around z;

d; Distance between axes x;,_1 and z;
throughout z;

P, P,, P; Position coordinates of the robot

v1, b1, by Auxiliary values for coordinates
solutions

Tmax Lh+1s

Tmin =1

Atan2 Arc tangent of the specified x and y
coordinates

J»(6) Jacobian matrix for linear velocity

Jw(6) Jacobian matrix for angular velocity

01, P2 Auxiliary values for analytical solutions
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