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Abstract. Linear generators are electric machines which generate electrical energy from
linear movement. Since these machines can lift gear wheel or power train, they are
nowadays widely used. Considering the fact that the working areas of these machines di�er
with speed and power characteristics, this study deals with the design and optimization
of tubular linear generator for free piston practices. The design considered response
surface optimization through variables that were acquired by sizing via the interface. The
correlation between the determined design variables and the magnitude of the generator
output was examined. In addition, the obtained amounts were used for objective functions
of increasing e�ciency, decreasing overall volume, and improving general performance and
the optimum values were found by using Multi-Objective Genetic Algorithm (MOGA).
Initial and optimum design data were compared by ANSYS Maxwell 2D. With overall
performance improvement, 22.78% decrease in total mass and 11.7% decrease in cost were
observed. In addition, a prototype for the linear generator was created in line with the
initial geometry data and applied by the crank slider mechanism.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Considering the vast usage area of linear generators,
e.g., free piston applications, wave energy, stirling sys-
tem, shock absorbers, vibrators, compressors, mobile
chargers, vibration energy harvesting devices, mobile
lighting appliances, and space applications, the stud-
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ies on these generators have experienced increasing
development day by day. Since linear machines are
generated from rotating machines, their working prin-
ciples are not di�erent. However, they are di�erent
in terms of geometric structures, design equality, and
methods. As it is well known, electric machine design-
ers should consider designing by taking demands such
as e�ciency, total weight or local weight, cost, power
density, etc. into account. In order to meet these
goals, designers generally use optimization methods,
e.g., pattern search, sequential nonlinear programming,
Genetic Algorithm (GA), Response Surface Methodol-
ogy (RSM), Monte Carlo simulation, etc., in package
programs. ANSYS Maxwell is an instance that uses Fi-
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nite Element Method (FEM) the validity and reliability
of which have been proven in the literature. Dalcali and
Akbaba [1] examined the e�ect of parametric variation
of pole arc o�set distance on the performance of a
permanent-magnet synchronous generator. Bouloukza
et al. [2] performed optimization by using Monte Carlo
method. They showed that there was a good agreement
between the ANSYS Maxwell 2D calculations and the
analytically calculated values of the optimum design
of slotted Halbach Permanent-Magnet Synchronous
Motor (PMSM). Qinghua et al. [3] performed the
optimization of PMSM by using RSM and developed
the prototype of the motor. They showed that the
numerical results obtained through this optimization
method and the application results matched. Ab-
baszadeh et al. [4] performed the optimization of cavity
gap and slide in order to decrease the cogging torque
with the help of RSM in brushless DC (BLDC) electric
motor. In the cogging torque of the optimized motor, a
signi�cant decrease was seen in the simulation results
by FEM. Jolly et al. [5] described their work on the
design optimization of PMSMs using RSM and GAs.
Ghasemi [6] used RSM to reduce the stroke force
of surface magnet synchronous motor. The results
showed that the optimum values of RSM were more
e�cient than those of the GA and particle swarm
optimization in cogging torque reduction. Yu et al. [7]
examined the e�ects of stator and rotor sizing variables
of embedded PMSM on cogging torque by RSM.
They made initial and optimum motor comparisons.
Bremner [8] examined the e�ects of the basic geomet-
rical proportions of embedded PMSM on the machine
performance by RSM. Jabbar et al. [9] changed the
rotor dimensions of embedded synchronous motor and
performed optimization by using RSM and GA. Ab-
baszadeh et al. [10] examined the e�ects of the basic
geometrical proportions of surface-insert permanent-
magnet synchronous machine on machine performance
by RSM. Arehpanahi and Kashe� [11] used magneto
static FEM analysis and RSM to reduce cogging torque
in interior PMSM. Arslan et al. [12] performed the
optimization of a torus-type axial 
ux machine by using
RSM. They observed that the general performance of
the machine was maximized and the cogging torque
and weight continued to decrease. Saha et al. [13]
stated that e�ciency improvement could be e�ectively
achieved by designing the optimization of line-start
permanent-magnet motor rotor structure using the
RSM. Ahn et al. [14] proposed the approach as an
e�cient way to improve the performance of optimally
designed permanent magnetic actuator and to reduce
the number of experiments. The optimum design
of the dual-permanent-magnet-excited machine was
investigated by Jian et al. using RSM [15]. Hasanien
et al. [16] performed optimization by using RSM and
GA to improve the weight and thrust of transverse


ux linear motor. Pourmoosa and Mirsalim [17] pre-
sented a low-speed single-sided linear induction motor
design. They performed optimization by using RSM
to decrease motor weight and increase thrust. They
found that simulation and application data matched
to a great extent. In our previous studies on linear
generator, Arslan et al. [18] constructed a linear gen-
erator model through ANSYS Maxwell with analytical
equations designed in MATLAB GUIDE. They carried
out surface magnet tubular linear generator design and
optimization. In line with the objective functions they
determined, they used pattern research algorithm and
obtained optimum sizing. Arslan et al. [19] examined
magnetic 
ux density of the change in stator and rotor
parts of the linear generator. Arslan and Oy [20]
performed inset magnet tubular linear generator design
and optimization. They used GA and Sequential
Nonlinear Programming to reduce the cogging force.
Wang et al. [21] performed optimization of tubular
linear motor by means of decomposition-based multi-
objective di�erential evolution particle swarm. Using
Multi-Objective Genetic Algorithm (MOGA) alone can
stretch to the area near an optimal Pareto front; how-
ever, it requires more computing time than the multi-
objective optimization approach does. Parallelization
causes a considerable decrease in computing time at
each 
owchart stage [22]. In this study, the software
ANSYS Maxwell 2D was used in the calculations for
the design of the tubular linear generator. The e�ects
of sizing variables of the tubular linear generator on
output variables were examined by means of correlation
analysis. In addition, ANSYS Workbench RSM and
MOGA were used to obtain optimum sizing in line
with the objective functions determined. The initial
design and the design obtained by optimization were
compared using FEM.

2. Analysis of the correlation between the
variable parameters of the generator and
e�ciency, power out, weight, cost, and
cogging torque

Regression is an approach to modeling the relationship
between two or more variables functionally. The value
of the variable y is estimated for the values of the inde-
pendent variable x. Correlation is used to see whether
there is relationship between two numerical variables,
and if there is, to see the direction and size of this
relationship. The mathematical model of the tubular
linear generator (Figure 1) is written in MATLAB GUI.
Analytical sizing data are given in Table 1.

It is vital to identify the parameters that will
have direct e�ect on the performance of the generator
in the optimization process, since incorrectly chosen
design variable(s) has an undesirable in
uence on the
success of optimization. In addition, the determined
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Figure 1. (a) 2D and (b) 3D representation of geometrical sizing of tubular linear generator.

Table 1. Generator input design parameters.

Parameter Value Unit Parameter Value Unit

Power 600 VA Slot pitch 0.01833 m

Frequency 50 Hz Lm 0.005 m

Stroke 0.0275 M G 0.002 m

Rated speed 2.75 m/s Tm 0.0198 m

Shear stress 2 N/cm2 Tw 0.009166 m

Current density 3 A/mm2 Hw 0.04473 m

Induced voltage 55 V De 0.160 m

Alfa (Tm/Top) 0.72 | Slot �ll factor 0.6 |

Beta (Bw/Tos) 0.5 | A coil winding number 76 |

Slot/Pole 6/4 | Approximate cost of copper 30 Tl

Winding factor 0.866 | Approximate cost of magnet 250 Tl

Lowest common multiplier 12 | Approximate cost of steel 10 Tl
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input variables should not be associated with each
other, since this will lead to calculating the correlation
between output parameters and input parameters. It
is important to �nd out the correlation between input
variables and output parameters and to �nd out to
what extent an input variable explains the output pa-
rameter. In line with this objective, optimization pro-
cess will be more successful with suitably de�ned input
parameters. In addition, a brief look at the literature
in this area reveals that, generally, designers of electric
machines choose the parameters which have a �rst-
degree in
uence on the geometry of motor/generator.
However, variables are generally considered to be inner
diameter, outer diameter, and pole pitch ratio. In
this study, primary length and primary inner diameter
widths are regarded as stable. Primary variables
are considered to be air gap width (g), thickness
of magnet (Lm), slot-pitch ratio (Beta), pole-pitch
ratio (Alfa), and primary yoke 
ux density (Byp). In
order to �nd out the correlation between these design
variables and design output parameters, Maxwell 2D
rz linear generator model was developed by ANSYS
Workbench. Geometric variables and dimension sizes
were de�ned by design features. Control conditions
were identi�ed in Maxwell 2D rz. Input and output
parameters (stroke, e�ciency, power out, cost, volume,
iron loss, etc.) were determined in the Maxwell 2D
design research section. Parameter correlation analysis
module was added. Research points were formed by the
speci�ed limits of input variables. Correlation analysis
method was determined. Design samples were solved
by the program until the speci�ed calculation criterion
was reached (Figure 4).

The correlation between input and output pa-
rameters is expressed in matrix form with variables
which can be positive or negative, ranging between +1
and �1. The relationship is inverse with a negative
value (i.e., as the input variable increases, output
decreases with respect to the unit coe�cient). On the
other hand, positive values indicate direct relationship
(i.e., as the input variable increases, output increases

Table 2. Input variables and margins.

Input
variable

Initial
design
value

Search
points

(Min-Max)
Unit

Alfa 0.7 0.6{0.8 |
Beta 0.5 0.4{0.6 |
Lm 0.005 0.004{0.006 m
g 0.002 0.0015{0.0022 m

Byp 1.8 0.6{0.8 T

with respect to the unit coe�cient). The primary
variables: g, Lm, Beta, Alfa, Byp themselves and
their correlation are expressed with corner elements,
taking the value of +1. The correlations between
other variables can have positive or negative values
categorized as follows [23]:

0{0.19, no correlation;

0.2{0.39, weak correlation;

0.4{0.69, moderate correlation;

0.7{0.89, strong (high) correlation;

0.9{1, very strong correlation.

Coe�cient of determination, which is expressed as
R2, identi�es how the total change in the dependent
variable can be explained by the independent variable.
R2 di�ers between 0{1. Values close to 1 show that
a great part of the change in dependent variables is
determined by independent variables [23].

According to the input design variables in Table 2,
the correlations between analysis process e�ciency,
power out, approximate cost, and total volume are
presented in Figure 3. In the analysis performed for
stroke, the maximum, peak-to-peak, and root values
of cogging force are de�ned as output variables. The
correlations between input variables and stroke change
are given in Figure 2.

Figure 2. Correlation matrix between input variables and cogging force.
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Figure 3. Correlation matrix between input variables and e�ciency, power out, volume, cost, and mass.

As can be seen in Figure 2, while there is a
moderate negative correlation between stroke and Alfa
as well as g, the correlation between stroke and Beta is
weak positive.

As observed in Figure 3, there is a very strong
correlation between mass, cost, and volume. On
the other hand, the correlations between Beta and
mass, and volume and cost are strong negative. In
addition, there is a high positive correlation between
Beta and e�ciency; moderate correlation between Alfa
and e�ciency; strong negative correlation between g
and power out; moderate correlation between Lm
and power out and cost; and very weak correlation
between Byp and mass, volume, and cost. While
a moderate, strong, or very strong correlation with
generator performance parameter is required by a
variable to participate in optimization, there is no
correlation between the speci�ed design variables and
generator performance.

3. Optimization of stroke and objective
functions by RSM

Designers demand minimum cost when they want
maximum e�ciency and when they want maximum
performance, they demand minimum weight. Math-
ematical modeling has great bene�ts when the oppor-
tunity to perform experimental work on the subject is
limited or reaching results requires too many iterations.
RSM, which is an application area of mathematical
modeling, is one of the methods with partial factorial
experimental or numerical application and it is a
very important statistical method for the analysis of
correlations between di�erent results obtained with
di�erent factors.

RSM uses statistical and experimental methods
together. It is a group of serial processing applied to

optimizing the dependent variable among independent
variables. This method assesses independent variables
as parameters and dependent variables as responses or
output. Tendency to maximum increase or decrease
in order to reach the minimum or maximum level
(maximum point desired) is the primary approach. The
e�ects of independent variables on the response can be
observed by decreasing the number of required exper-
iments for optimization with RSM. While using RSM,
it is important to choose the independent variables
which are believed to in
uence the dependent variables
the most for getting correct results. The choice of
variables can be made through a mathematical model
or correlation analysis. Primary data given in the
literature (pole pitch ratio, slot pitch, etc.) and the
ranges in which the variables can be measured are
found. Model equations used in RSM can be �rst-
or second-degree ones. In the electric machine studies
conducted with RSM, second-degree model equations
are preferred. Eq. (1) gives RSM design variables
function and error:
y = f (x1; x2; x3; x4; x5; � � � ; xn) + "; (1)

where y is the response of the system and xn represents
the independent variables. Here, y can be e�ciency,
power out, stroke, etc. Design variables are Lm, g,
alfabeta, Byp, and error ("). The di�erence between
the observed and expected values of y is given as the
error:
y = f(x) + ": (2)

Response surface models are expressed as second-
degree polynomials, which include variables and their
interactions.

y=�0+
nX
i=1

�iXi+
nX
i=1

�iiX2
i +

nX
i=1

nX
j=1

�ijXiXj+"0;
(3)
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where �0 is a �xed model; �i, �ii, and �ij are variable
coe�cients; and xi and xj are the coded independent
variables. When a second-degree response surface
model suitable for the variables is developed, the
levels of x1; x2; � � � ; xn, which optimize the estimated
response variable, should be determined. This point,
which optimizes the response variable (if any), is
found by taking the partial derivatives according to
the variables x1; x2; � � � ; xn and taking them equal
to zero. The design generally used to reach the
optimum point is central integrated or Box-Behnken
experimental design. Both are second-degree models
with second-degree terms, that is, a correlation beyond
the linear approach between independent variables and
the output values can be expressed. Figures 2 and
3 represent the relationship between ANSYS Work-
bench and correlation, RSM, and optimization of the
parameters. In addition, design explorer establishes
design points through input design variables de�ned in
ANSYS Maxwell 2D rz and given in Table 2. ANSYS
Maxwell 2D rz tool is added in ANSYS Workbench. By
means of this tool, the primary sizes of the generator,
limiting conditions, and analysis parameters are de-
�ned. Then, the parameter correlation tool is added to
Workbench and correlation matrices between input and
output variables are obtained. RSM tool is added and
the solution is realized. Here, MOGA is chosen as the
optimization method. The data obtained give the best
result separately for each objective function (Table 3).

Table 3. Objectives of design.

Design Parameter Objective
Type Target

Design 1 � Maximize {
X1 = 1

Pout = 600 Seek target 600X2 = 0
X3 = 0

Design 2 1
V Maximize {

X1 = 0
Pout = 600 Seek target 600X2 = 1

X3 = 0

Design 3 1
C Maximize {

X1 = 0
Pout = 600 Seek target 600X2 = 1

X3 = 0

Design 4 �
V:J Maximize {

X1 = 1
Pout = 600 Seek target 600X2 = 1

X3 = 1

The best results for each design (Table 4) are analyzed
again in ANSYS Maxwell 2D rz. The obtained FEM
results and the analytical data are compared in Table 5.
Figure 4 gives ANSYS Workbench and Maxwell 2D as
well as the analysis and optimization process.

It is possible to use the MOGA option for both
response surface optimization and direct optimization.
In this study, it was used with response surface opti-
mization. With MOGA, we can generate a new sample
set or use an already existing set to provide an approach
more re�ned than the screening method. It can deal
with multiple goals and can be used for all types of
input parameters. A fast and non-dominated sorting
method, which is an order of magnitude faster than
the conventional Pareto ranking methods, is Pareto
ranking scheme. Lagrange multipliers and penalty
functions are not required in this method, since con-
straint handling makes use of the same non-dominance
principle with the same objectives. This makes it
possible to rank feasible solutions higher than infeasible
ones. In a separate sample set, the �rst Pareto front
solutions are archived distinctly from the evolving sam-
ple set, ensuring that the Pareto front patterns already
available from earlier iterations get minimal disruption.
By changing the maximum allowable Pareto percentage
property, the selection pressure (and, consequently,
the elitism of the process) can be controlled to avoid
premature convergence [24]. Figure 5 gives Multi-
Objective Genetic Algorithm (MOGA) 
ow diagram.

The initial population is employed to operate
the MOGA algorithm. When MOGA is operated,
it produces a new population through cross-over and
mutation. Following the �rst iteration, each population
is operated after having reached the number of samples
speci�ed by the number of samples per iteration prop-
erty. MOGA proceeds to generate a new population.
In the new population, design points are updated
and optimization is validated for convergence. When
either the maximum allowable Pareto percentage or
the convergence stability percentage has been reached,
convergence of MOGA takes place. The process
continues to the next step if the convergence of MOGA
does not take place. Optimization is validated for
ful�llment of stopping criteria if it does not converge.
In case of meeting the criterion of maximum number
of iterations, the process stops without having reached
convergence. However, if the stopping criteria are not
met, in order to create a new population, MOGA
is regenerated. MOGA generates a new population
through stopping criteria. Until the convergence of
optimization or ful�llment of the stopping criteria,
validation is repeated in sequence. The optimization
concludes if either of these cases occurs [23]. According
to the graph in Figure 6, increase in Alfa and Beta
increases e�ciency and power out. An increase in Lm
increases both power out and cost. Increase in Beta will
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Figure 4. Response Surface Methodology (RSM) and optimization analysis process of tubular linear generator for an
objective function with ANSYS Workbench.

Table 4. Comparison of analytical and numerical optimization results.

Input variable
Initial design Design 1 Design 2 Design 3 Design 4

Analytical FEM FEM FEM FEM

Lm 0.005 0.00403 0.005524 0.0041038 0.005275

Beta 0.5 0.501 0.59486 0.59403 0.59913

Alfa 0.7 0.79033 0.63315 0.68248 0.68333

G 0.002 0.002058 0.0015203 0.0015147 0.0017788

Byp 1.8 1.815 2.1121 2.0857 2.1652

Table 5. Response Surface Methodology (RSM) optimization results.

Output parameters
Initial design Design 1 Design 2 Design 3 Design 4

Analytical FEM FEM FEM FEM

Moving weight (kg) 2.38 2.51 2.37 2.55 2.39

Total weight (kg) 19.09 19.6 14.64 15.05 14.74

Approximate cost (TL) 405.6 406.1 348.9 331.25 357.82

Power out (VA) 579.7 589.9 589 582 601

E�ciency 0.856 0.88 0.82 0.85 0.841

decrease weight, cost, and volume. Finally, an increase
in Alfa also increases cost.

Analyses showed signi�cant e�ects of the correla-
tion between Beta and Alfa on e�ciency, weight, and
cost. Thus, it is important to determine the Beta and

Alfa rates correctly for tubular and 
at linear machines.
For initial parameters, it is suitable to choose Alfa
between 0.68 and 0.73 and Beta between 0.45 and 0.55.
The change in magnet thickness with Alfa in
uences
e�ciency and cost signi�cantly. Magnet thickness
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Figure 5. Multi-Objective Genetic Algorithm (MOGA) 
ow diagram.

Figure 6. Local sensitivity changes of the basic variables
in terms of output parameters.

di�ers with the magnetic equivalent circuit. While
the thickness of the magnet decreases demagnetization
risk, it also causes the core material to reach magnetic
saturation. During the process of optimization by
RMS, while bene�t is derived from a feature, another
feature is withdrawn. The conducted analyses showed
that the change between magnet thickness and Beta
was in the form of IF function (Figure 7). There
is local minimum and maximum in the IF function.
The optimum point of Beta can be taken as 0.5.

While the magnet thickness and change of Beta do
not in
uence e�ciency, signi�cantly, they a�ect total
generator weight and cost.

Figure 2 gives input variables and limits. Objec-
tive functions given in Eqs. (4) and (5) are de�ned sepa-
rately. These objective functions are given as Design 1
e�ciency maximum, Design 2 volume minimum, De-
sign 3 cost minimum, and Design 4 general performance
boost (E�ciency=(Volume�Current density)), as given
in Table 3. For MOGA optimization, the power out for
each objective function is 600 VA:

A.F1 =
�X1

V X2 :JX3
and Pout = 600; (4)

A.F2 =
�X1

MX2 :JX3
and Pout = 600; (5)

A.F3 =
�X1

CX2 :JX3
and Pout = 600; (6)

where A.F1, A.F2, and A.F3 are objective functions; �
is e�ciency; V is volume; M is weight; C is cost; J is
current density; and Pout is output power in the design
decided by the desired values of X1, X2, and X3. Here,
in order to simplify the formula, the values of X1, X2,
and X3 are equalized to 0 or 1. The simpli�ed versions
of objective functions given in Eqs. (4), (5), and (6) for
the values of 0 and 1 for X1, X2, and X3 and the target
are given in Table 3. Here, two objectives are de�ned
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Figure 7. The in
uence of Lm-alfa-beta change on
e�ciency.

for each design in MOGA to maximize power out and
functions for all targets.

Since the amount of the desired nominal value
does not in
uence the optimization result in MOGA
optimization method, the best proposed sizing data
among the proposed 4 nominal values are given in
Table 4.

Table 5 shows how much increase or decrease
the obtained data show in terms of weight, cost, and
e�ciency in comparison with the initial design data.
Here, while Design 1 shows 2.6% increase in the total

Figure 8. The distribution of the magnetic 
ux density
on the length of the generator in ANSYS Maxwell 2D rz.

mass and no signi�cant di�erence in cost, it provides
2.8% increase in e�ciency. In addition to 23.3%
decrease in the total mass and 13.9% decrease in cost,
Design 2 shows 3.5% decrease in e�ciency. With 21.1%
decrease in the total mass and 18.3% decrease in cost,
Design 3 makes no signi�cant di�erence in e�ciency.
Finally, Design 4 leads to 22.7% decrease in the total
mass and 11.78% decrease in cost. According to the
analytical and numerical calculation results given in
Table 5 for RMS optimization, the highest e�ciency is
seen in Design 1.

Results are given in Table 4, showing a good
agreement between the FEM calculations and the
analytically calculated values for the optimum design.
The most suitable situation is seen with Design 4, in
which there is a signi�cant decrease in mass and cost
and very little change in e�ciency. In line with the
design data given in Table 1, calculations of linear
generator were made in the interface [19]. However,
when the size of the magnet obtained from MOGA
results was considered, it was di�cult to produce
magnets, speci�cally. Thus, generator geometry was
established based on the initial design geometry data.

The distribution of the magnetic 
ux density on
the length of the generator in ANSYS Maxwell 2D
rz can be seen in Figure 8. The images of crank
slider mechanism are given in Figure 9(a), (b), and (c).
M43-24G geometry and magnetic rotor piece with iron
sheet for the prototype are given in Figure 9(d) and
(e). The prototype machine can be seen in Figure 10,
which is fabricated based on the initial design. In
Figure 10, the generator is driven by the crank slider
mechanism (Figures 9(b) and 10(b)) proper to a 4-pole
asynchronous motor.

The results of the numerical analysis were com-
pared with the testing prototype (unloaded) for 20 Hz
driving frequency (Figure 11). Here, speed was calcu-
lated according to the crank sizes given. It was found
that the results of the numerical analysis by ANSYS
Maxwell and those of the application were in parallel
to a great extent. In the experimental study, nominal
working speed and frequency values were not reached
due to mechanic vibration.
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Figure 9. (a) Slider-crank mechanism dimensions: r: radius of crank, l: length of connecting rod, and �: rank angle. (b)
Crank slider mechanism view in application. (c) Measurement of length of connecting rod. (d) Parts of the generator. (e)
Generator view of the prototype.

Figure 10. (a) Cranck slider mechanism. (b) Tubular linear permanent-magnet generator test rig.

Figure 11. (a) Speed crank angle change. (b) The voltage induced in open-circuit phase winding.
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4. Conclusion

Nowadays, studies on free-piston motor-generator sys-
tems as range increasing units for electrical or hybrid
vehicles have become very important. In free-piston
motor-generator systems, it is vital to increase the
e�ciency of the electric energy produced in return
for the fuel consumed. Thus, new approaches and
methods for making the generator/motor design in
these systems compact, light, and highly e�cient are
very important. In addition, since decreasing moving
weight will increase mechanical frequency, it has a
direct in
uence on generator performance.

In this study, sizing optimization was performed
for free piston practices through Response Surface
Methodology (RSM) by the analytical results of the
tubular linear generator model. We tried to reach
the constraint values by making continuous iterations
in line with sizing equations and objective functions.
These functions were aimed at increasing e�ciency and
decreasing cost, volume, and total mass. Objective
functions determined through RSM were applied to the
Multi-Objective Genetic Algorithm (MOGA) analysis.
In addition, it was found that Design 4, which included
general performance, did not cause signi�cant change
in moving weight and led to decreases by 1.75% in
e�ciency, 22.7% in mass, and 11.78% in cost. It was
shown that RSM and the optimization method, which
comprised MOGA, were successfully implemented.

References

1. Dalcali, A. and Akbaba, M. \Optimum pole arc
o�set in permanent magnet synchronous generators
for obtaining lowest voltage harmonics", Scientia Iran-
ica, Transaction D, Computer Science & Engineering,
Electrical, 24(6), pp. 3223{3230 (2017).

2. Ibtissam, B., Mourad, M., Medoued, A., et al. \Multi-
objective optimization design and performance eval-
uation of slotted Halbach PMSM using Monte Carlo
method", Scientia Iranica, D, Computer Science &
Engineering, Electrical, 25(3), pp. 1533{1544 (2018).

3. Qinghua, L.I.U., Jabbar, M.A., and Khambadkone,
A.M. \Response surface methodology based design op-
timisation of interior permanent magnet synchronous
motors for wide-speed operation", In Power Elec-
tronics, Machines and Drives, Second International
Conference on, 2, Edinburgh, UK, pp. 546{551 (2004).

4. Abbaszadeh, K., Alam, F.R., and Saied, S.A. \Cogging
torque optimization in surface-mounted permanent-
magnet motors by using design of experiment", Energy
Conversion and Management, 52(10), pp. 3075{3082
(2011).

5. Jolly, L., Jabbar, M.A., and Qinghua, L. \Design
optimization of permanent magnet motors using re-
sponse surface methodology and genetic algorithms",
IEEE Transactions on Magnetics, 41(10), pp. 3928{
3930(2005).

6. Ghasemi, A. \Cogging torque reduction and opti-
mization in surface-mounted permanent magnet motor
using magnet segmentation method", Electric Power
Components and Systems, 42(12), pp. 1239{1248
(2014).

7. Yu, J.S., Cho, H.W., Choi, J.Y., et al. \Optimum
design of stator and rotor shape for cogging torque
reduction in interior permanent magnet synchronous
motors", Journal of Power Electronics, 13(4), pp. 546{
551 (2013).

8. Bremner, R.D. \Rapid optimization of interior perma-
nent magnet (IPM) machines using the response sur-
face method and dimensionless parameters", Graduate
Theses, Iowa State University, USA (2010).

9. Jabbar, M.A., Jolly, L., and Qinghua, L. \Design
optimisation of permanent magnet motors using re-
sponse surface analysis", In Digests 3rd International
Conference on Electrical & Computer Engineering,
Dhaka, Bangladesh, pp. 28{30 (2004).

10. Abbaszadeh, K., Alam, F.R., and Teshnehlab, M.
\Slot opening optimization of surface mounted per-
manent magnet motor for cogging torque reduction",
Energy Conversion and Management, 55, pp. 108{115
(2012).

11. Arehpanahi, M. and Kashe�, H. \Cogging torque
reduction of Interior Permanent Magnet Synchronous
Motor (IPMSM)", Scientia Iranica, D, Computer Sci-
ence & Engineering, Electrical, 25(3), pp. 1471{1477
(2018).

12. Arslan, S., Kurt, E., Akizu, O., et al. \Design opti-
mization study of a torus type axial 
ux machine",
Journal of Energy Systems, 2(2), pp. 43{56 (2018).

13. Saha, S., Choi, G.D., and Cho, Y.H. \Optimal rotor
shape design of LSPM with e�ciency and power factor
improvement using response surface methodology",
IEEE Transactions on Magnetics, 51(11), pp. 1{4
(2015).

14. Ahn, H.M., Chung, T.K., Oh, Y.H., et al. \Optimal
design of permanent magnetic actuator for permanent
magnet reduction and dynamic characteristic improve-
ment using response surface methodology", Journal of
Electrical Engineering and Technology, 10(3), pp. 935{
943 (2015).

15. Jian, L., Shi, Y., Wei, J., et al. \Design optimization
and analysis of a dual-permanent-magnet-excited ma-
chine using response surface methodology", Energies,
8(9), pp. 10127{10140 (2015).

16. Hasanien, H.M., Abd-Rabou, A.S., and Sakr, S.M.
\Design optimization of transverse 
ux linear motor
for weight reduction and performance improvement
using response surface methodology and genetic al-
gorithms", IEEE Transactions on Energy Conversion,
25(3), pp. 598{605 (2010).



3064 S. Arslan et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3053{3065

17. Pourmoosa, A.A. and Mirsalim, M. \Design optimiza-
tion, prototyping, and performance evaluation of a low-
speed linear induction motor with toroidal winding",
IEEE Transactions on Energy Conversion, 30(4), pp.
1546{1555 (2015).

18. Arslan, S., G�urdal, O., and Akkaya Oy, S. \The
design, dimensioning and optimization of a 1 Kva
tubular linear alternator", International Journal of
Development Research, 6(12), pp. 10550{10559 (2016).

19. Arslan S., G�urdal O., and S.A. Oy \The determination
of e�ects of primary and secondary geometry of tubular
linear generator", IOSR Journal of Electrical and
Electronics Engineering (IOSR-JEEE), 12(1), pp. 6{
11 (2017).

20. Arslan, S., and OY, S.A. \Design and optimization
of tube type interior permanent magnets generator for
free piston applications", TEM Journal, 6(2), pp. 214{
221 (2017).

21. Wang, G., Chen, J., Cai, T., et al. \Decomposition-
based multi-objective di�erential evolution particle
swarm optimization for the design of a tubular perma-
nent magnet linear synchronous motor", Engineering
Optimization, 45(9), pp. 1107{1127 (2013).

22. Amdouni, I., El Amraoui, L., Gillon, F., et al.
\Multiobjective approach developed for optimizing the
dynamic behavior of incremental linear actuators",
COMPEL: The International Journal for Computation
and Mathematics in Electrical and Electronic Engi-
neering, 33(3), pp. 953{964 (2014).

23. Alpar, R. \Uygulamal� _Istatistik ve Ge�cerlilik-
G�uvenirlik", Detay yay�nc�l�k, pp. 1{668, Ankara,
Turkey (2014).

24. http://www.webcitation.org/query?url=https%3A%
2F%2Ftr.scribd.com%2Fdocument%2F370055766%2
FAnsys-Maxwell-18-Online-Help&date=2018-07-09

Appendix

The application of the cosine theorem according to the
triangle in the moving system in Figure 9(a) is:

l2 = x2 + r2 � 2xr cos�; (A.1)

x2 � 2xr cos� = l2 � r2; (A.2)

x2�2xr cos�+r2 cos2 �= l2�r2+r2 cos2 �; (A.3)

(x� r cos�)2 = l2 � r2(1� cos2 �); (A.4)

where:

sin2 � = 1� cos2 �: (A.5)

By taking the square root of two sides of the equality:

x� r cos� =
p
l2 � r2 sin2 �; (A.6)

x = r cos�+
p
l2 � r2 sin2 �: (A.7)

l is length and r a crank radius, which is constant.

The crank angle (�) varies between (0�{360�) and x is
the only variable that a�ects the piston position. At
� = 0�, the piston is in the top point and position size
is l+ r. At � = 180�, the piston is in the bottom point
and position size is l � r. Piston speed is a derivative
of displacement:

v =
dx
dt
: (A.8)

Angular velocity is:

! =
d�
dt
; (A.9)

v =
dx
d�
� d�
dt
; (A.10)

v =
dx
d�
!: (A.11)

If the position of Eq. (A.7) is derived according to the
alpha:

dx
d�

=� r sin�+
1
2
�
l2 � r2 sin2 �

��1=2 d
d��

l2 � r2 sin2 �
�
; (A.12)

dx
d�

=� r sin�+
1

2
p
l2 � r2 sin2 ��

0� r22 sin� cos�
�
; (A.13)

dx
d�

= �r sin�+
r2 sin� cos�p
l2 � r2 sin2 �

: (A.14)

According to Eqs. (A.11) and (A.14), the speed can be
calculated as follows:

v =

"
�r sin�� r2 sin� cos�p

l2 � r2 sin2 �

#
x!: (A.15)
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