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Abstract. This paper studies the problem of Simultaneous Sparse Approximation (SSA).
This problem arises in many applications that work with multiple signals maintaining
some degree of dependency, e.g., radar and sensor networks. We introduce a new method
towards joint recovery of several independent sparse signals with the same support. We
provide an analytical discussion of the convergence of our method, called Simultaneous
Iterative Method (SIM). In this study, we compared our method with other group-sparse
reconstruction techniques, namely Simultaneous Orthogonal Matching Pursuit (SOMP)
and Block Iterative Method with Adaptive Thresholding (BIMAT), through numerical
experiments. The simulation results demonstrated that SIM outperformed these algorithms
in terms of the metrics Signal to Noise Ratio (SNR) and Success Rate (SR). Moreover,
SIM is considerably less complicated than BIMAT, which makes it feasible for practical
applications such as implementation in MIMO radar systems.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Sparse signal processing has recently been exploited in
various �elds of communication, because sparse signals
can be approximated by only a few nonzero coe�cients
and, hence, sub-Nyquist sampling and Compressed
Sensing (CS) [1-4]. The general CS problem is for-
mulated as follows:

minimize kxk0
subject to ky �Axk2 � "; (1)

where x is the main sparse signal, y is the measurement
vector, A is the sensing matrix, and kvk2 � " with
v representing the additive noise vector. Two main
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models are considered in CS for reconstruction of
sparse signals. Models with one measurement vector
are referred to as Single Measurement Vector (SMV)
models, while the other models with at least two
measurement vectors are called Multiple Measurement
Vector (MMV) models.

The problem investigated in MMV models, known
as SSA, aims to jointly recover sparse representation
of the measurement vectors. The SSA applications
may be encountered in various �elds such as sensor
networks [5,6], Electroencephalography and Magne-
toencephalography (EEG and MEG) [7], source local-
ization [8], and distributed MIMO radar systems [9].

Mohammadi et al. [10] investigates the theory of
MMV models. Some algorithms have been developed
by extending the general SMV model into the MMV
model to solve the SSA problems. Orthogonal Match-
ing Pursuit (OMP) [11] as a greedy algorithm is one of
the very �rst algorithms used for sparse recovery. At
each iteration of this algorithm, the best local improve-
ment to the current approximations is found in hope of
obtaining a good overall solution. The extension of the
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OMP algorithm to the MMV paradigm, simultaneous
OMP (SOMP), has been presented in [12-14].

The Iterative Method with Adaptive Threshold-
ing (IMAT) algorithm was originally proposed for
sparse signal reconstruction from missing samples [15-
21]. The Block Iterative Method with Adaptive
Thresholding (BIMAT) [22] as an extension of IMAT
is employed for block sparse recovery for distributed
MIMO radar systems.

In this paper, we propose SIM for simultaneous
reconstruction of jointly sparse signals from their miss-
ing samples.

1.1. Paper overview
The rest of this paper is structured as follows. In
Section 2, we �rst provide the description of SSA
model. Then the proposed method is introduced and
its convergence is analyzed. Numerical experiments of
our method in comparison with the SOMP algorithm
are presented in Section 3. SIM is then demonstrated as
a simple decoding algorithm for MIMO radar systems,
and its performance is compared with BIMAT by
means of simulation. Finally, the paper is concluded
in Section 4.

1.2. Notations
Scalar variables, vectors, and matrices are denoted
by italic lower-case, boldface lower-case, and boldface
upper-case, respectively. The elements of a vector
are denoted by subscripts, i.e., xi is the i-th element
of the vector x. jxj calculates the absolute value of
each entry of the vector x. The pseudoinverse of
matrix A is represented by Ay. Finally, the output
of the thresholding operator TH(x; thr) is de�ned as a
diagonal matrix whose diagonal entries are determined
as follows:

TH(x; thr)ii =

(
1; jxij � thr
0; jxij < thr

(2)

2. The proposed method

2.1. Problem statement
In this section, we provide the formulation of SSA
problems. Assume that x1;x2; :::;xL are L equal-
length signals that share the same sparsity support in a
speci�c transform domain. It is assumed that the non-
zero coe�cients of the original sparse signals have a
Gaussian distribution [23]. These signals are randomly
sampled in another domain by independent sampling
masks s1; s2; :::; sL. These masks are binary and each
element of them is generated independently based on
a Bernoulli distribution, i.e., sin � Bernoulli(p), 1 �
i � L, and 0 � p � 1 is the sampling probability. The
randomly sampled signals y1;y2; :::;yL are derived as
follows:

yin = sin � xin: (3)

The problem is to simultaneously reconstruct the
original sparse signals from their randomly sampled
versions by employing the additional information that
the signals share a common support in a speci�c
transform domain.

2.2. Algorithm
One can �nd the SIM algorithm in Algorithm 1. Let
n;m and k denote the lengths of the original signal,
the length of the observed vectors, and the sparsity
number, respectively. Moreover, let xji represent the
reconstruction of the j-th signal after i-th iteration.

It should be noted that the measurement matri-
ces, i.e., [A1;A2; :::;AL] can be calculated by mul-
tiplying the transformation matrix, which maps the
signals to their sparsity domain, and diagonal matrices
whose diagonal entries are equal to the elements of
s1; s2; :::; sL.

This algorithm gradually extracts the sparse com-
ponents of the signals by thresholding the estimated
signals iteratively. Each iteration involves two di�erent
steps of thresholding and projection. The thresholding
step provides an approximation of the common support
of the signals by hard-thresholding the summation of
the absolute values of the approximated signals. The
projection step projects each of the estimated signals
onto the convex set de�ned by the support vector
approximated in the previous step.

In this algorithm, � is the relaxation parameter
and controls the convergence speed. The threshold
value is decreased exponentially by �e��(k�1), where
k is the iteration number. The performance of the
algorithm is not much a�ected if the choice of the

Algorithm 1. The pseudo-code of the proposed method:
Simultaneous Iterative Method (SIM).
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parameters �, �, and � is not optimum; however,
these parameters are optimized empirically to achieve
a faster convergence.

The algorithm is stopped when the maximum
number of iterations is reached or the relative error
between two consequent iterations is less than a thresh-
old, i.e., kXk �Xk�1k2 � ", where Xk and Xk�1 are
the estimated signals in k-th and (k � 1)-th iterations,
respectively.

2.3. Analytical discussion
In [24], it is proved that under su�cient condition, the
Iterative Method with Adaptive Thresholding (IMAT)
converges to the sparsest solution to the random sample
SMV problem. Now, we show that the probability of
�nding the support of signals with the SIM is more than
that with the IMAT. Before proving this statement, we
note the following points.

We assume that the original signals are sparse
in the time domain, and each non-zero coe�cient
has a Gaussian distribution. Additionally, the signals
are randomly sampled and polluted by additive white
Gaussian noise in the frequency domain. Since the
signals are estimated by line 16 of Algorithm 1 in each
iteration, each coe�cient of the estimated signals has
a Gaussian distribution.

The distribution of the absolute value of a random
variable with Gaussian distribution N(0; �2) is half-
normal with the following probability density (PDF)
and cumulative distribution (CDF):

PY (y;�) =
p

2p
�2 � � exp

�
� y2

2� �2

�
y � 0; (4)

QY (y;�) = erf
�

yp
�2 � 2

�
: (5)

In the thresholding step of each iteration of our
algorithm, the absolute values of the coe�cients are
calculated. Hence, these variables have half-normal
distribution. We de�ne the variable z as the absolute
value of the estimation of a non-zero coe�cient of a
signal and assume that it has variance �2

1 and mean �1.
Similarly, we de�ne the variable w associated with a
zero coe�cient of a signal and assume that its variance
and mean are �2

0 and �0, respectively. We also assume
�1 > �0 since the variance of the additive noise is small.
Due to the fact that the means of L signals is calculated
for the SIM, the variables zL and wL can be de�ned
as the mean of the variables mentioned above. The
variance and the mean of zL and wL are �2

1
L , �1,�

2
0
L and

�0, as a result of the independency of signals.
We prove the superiority of SIM over IMAT

through Lemmas 1 and 2. As a general idea of these
lemmas, according to the law of large numbers, the
coe�cients of the signal in the SIM get closer to their
mean when L, the number of signals, goes toward

in�nity. In fact, the none-zero coe�cients tend to �1
and the zero coe�cients tend to �0. Therefore, it would
be easier to �nd the non-zero coe�cients of the original
signals.

Lemma 1. If the number of signals L satis�es the
following inequality:

L � �2
0

("� �0)
�

1� erf
�

"p
�2

0�2

�� > 0; (6)

then P (w � ") � P (wL � ") ; 8" � 2 � �0, where
P is the probability sign. w and wL are the variables
representing the estimated zero coe�cients of a signal
in each iteration of IMAT and SIM, respectively.

Proof. As a result of " � 2��0 and positivity of wL,
one can easily show the following equality:

P (wL � ") = P (jwL � �0 j � "� �0) : (7)

According to the Chebyshev's theorem, we have:

P (jwL � �0j � "� �0) �
�2

0
L

"� �0
: (8)

If we de�ne Qw (") as the CDF of P (w), we get:

P (w � ") = 1�Qw (") = 1� erf

 
"p

�2
0 � 2

!
: (9)

Since 1 � erf
�

"p
�2

0�2

�
� 0 and ("� �0) � 0, the

lemma is proved for the number of signals speci�ed by
Relation (6).

Lemma 2. If the number of signals L satis�es the
following inequality:

L � �2
1

(�1 � ")
�

erf
�

"p
�2

1�2

�� > 0; (10)

then P (z � ") � P (zL � ") ; 8 �1 � " � 2 � �0,
where P is the probability sign and the estimated non-
zero coe�cients of a signal in each iteration of IMAT
and SIM are denoted by z and zL, respectively.

Proof. It is not too di�cult to derive the following
inequality:

P (zL � ") � 1� P (jzL � �1j � �1 � ") : (11)

According to the Chebyshev's theorem, we have:

P (jzL � �1j � �1 � ") �
�2

1
L

�1 � " )
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P (zL � ") � 1�
�2

1
L

�1 � " : (12)

If we de�ne Qz (") as the CDF of P (z), then we get:

P (z � ") = 1�Qz (") = 1� erf

 
"p

�2
1 � 2

!
: (13)

Since erf
�

"p
�2

1�2

�
� 0 and (�1 � ") � 0 for �1 �

" � 2 � �0, one can easily prove the lemma for the L
indicated in Relation (10).

Theorem 1. If the number of signals L satis�es the
following inequality:

8 �1 � " � 2� �0;

L � max
�

�2
1

(�1 � ")
�

erf
�

"p
�2

1�2

�� ;
�2

0

("� �0)
�

1� erf
�

"p
�2

0�2

���; (14)

then 8 �1 � " � 2� �0, and the probability of �nding
the support with SIM is higher than that with IMAT.

Proof. According to Lemma 1, if L satis�es Relation
(6), the probability of mistaking a zero coe�cient for
a support in SIM is less than that in IMAT. According
to Lemma 2, if L satis�es Relation (10), the probability
of �nding a none-zero coe�cient in SIM is higher than
that in IMAT.

Therefore, if L satis�es Relation (14), it is more
probable to �nd the support with the SIM than with
the IMAT.

One can �nd the minimum value of L which
satis�es Relation (14) as shown in Table 1. This table
shows that the minimum number of signals L that
guarantees superiority of SIM over IMAT is very low;
hence, there is no need to have a large number of signals
to bene�t from SIM.

Table 1. Minimum number of signals that satis�es
Theorem 1.

Input SNR (dB) 10 20 50

�0 0.25 0.079 0.0025
�1 0.5 0.5 0.5
�2

0 0.1 0.01 10�5

�2
1 0.18 0.09 0.08
" 0.5 0.2 0.011

Minimum Value of L 4 2 5

3. Simulation Results

In each trial of our simulation, we generate L number
of K-sparse signals. We choose K components out of
N = 256 randomly, and set them to a random number
in the interval [�1; 1]. Then, the noisy signals are
random-sampled by a sampling rate of M=N . By the
law of algebra, the number of samples needed to specify
the sparsity pro�le of the signals is at least twice the
sparsity number, hence K �M=(2�N). We optimize
the parameters of the algorithm in each trial.

Table 2 compares the average reconstruction SNR
(dB) of three algorithms, namely IMAT, SIM and
SOMP, for di�erent density numbers and input SNRs.
As observed in Table 2, the simultaneous reconstruc-
tion methods outperform IMAT, especially for higher
sparsity numbers.

In the case of not knowing the density rate, SIM
yields the best results both in low and high density
rates as well as in noisier channels. In noiseless
channels, the signal can be perfectly reconstructed by
SIM when the sparsity number is small.

In the case of knowing the density rate, SOMP
and SIM exhibit similar performances in all the cases.
However, based on the results in Table 3, SIM outper-
forms SOMP in terms of the complexity measured by
the run-time.

The success rates of IMAT, SIM, and SOMP
algorithms for di�erent density rates are depicted in
Figure 1. A reconstruction is considered to be success-
ful if the output SNR is more than 20dB. As seen in
this �gure, all curves experience a sudden knee-like fall
as the density rate increases. This fall is considered
as the boundary between successful and unsuccessful
reconstruction. The simulation results reveal that for
the SIM, success rate falls around 20% density rate,
while the knee-like fall happens in 18% and 12% density
rates for IMAT and SOMP, respectively. This indicates
that SIM can successfully reconstruct the signals with
high sparsity numbers in comparison with SOMP and
IMAT algorithms.

Figure 1. Success rate versus density rate (input SNR =
20 dB, sampling rate = 25%, L = 8, and the sparsity
number is unknown).
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Table 2. Reconstruction SNRs (dB) of three di�erent algorithms for di�erent density rates (K (%)) in the presence of
noise (SNR0 = input SNR, sampling rate = 25%, L = 8).

K is Unknown K is Known
SNR0 (dB) 10 20 100 10 20 100

K (%) 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20

IMAT 19.7 0.5 -1.3 31.4 0.7 -1.8 94.3 0.9 -2.1 19.9 2.1 1.3 31.4 2.2 -0.5 94.6 1.4 -1.9
SIM 23.2 16.1 1.8 31.1 25.4 4.6 106 105.8 14.5 23.3 17.2 3.7 31.3 26.4 5.9 111.3 106.8 16.6

SOMP 14.9 12.9 1.2 23.1 23.1 2.1 114.1 107.3 22.5 23 16.8 0.4 32.9 26.8 4.7 113.9 107.4 21.4

Table 3. Run-times (sec) of di�erent algorithms for
di�erent density rates (K (%)) in the presence of noise
(input SNR = 100 dB, sampling rate = 25%, L = 8, and
K is known).

K (%) 4 12 20

SIM 0.017 0.027 0.027
SOMP 0.031 0.081 0.138

Figure 2. Reconstruction SNR versus number of signals
(input SNR = 20 dB, sampling rate = 25%, density rate
K = 20%, and the sparsity number is unknown).

Figure 2 shows the e�ect of the number of signals
on the performance of SOMP and SIM. As observed
in this �gure, by increasing the number of signals, we
get better results. Additionally, the SIM algorithm can
reconstruct the signals better than the SOMP when the
number of signals is small.

The reconstruction SNR for di�erent sampling
rates is depicted in Figure 3. According to this �gure,
the SNR values can be improved by increasing the
sampling rate. Although the SOMP algorithm has
better results for a small interval in the high sampling
rates, SIM outperforms SOMP in most cases.

Figure 3. Reconstruction SNR versus sampling rate
(input SNR = 20 dB, density rate K = 60%, L = 8, and
the sparsity number is unknown).

Table 4 lists the SNRs of two reconstruction meth-
ods. Simulation results demonstrate the superiority of
SIM over BIMAT in terms of the output SNR and
the complexity. Therefore, SIM can be used instead
of BIMAT in many applications such as distributed
MIMO radar systems.

4. Conclusion

In this paper a novel method, namely SIM, was
introduced for SSA problems. The proposed algorithm
was an iterative method for the MMV models and its
idea was that the summation of sparse vectors, sharing
the same support, in the thresholding step of each iter-
ation could enhance the probability of reconstruction.
Indeed, the theoretical analysis with simulation results
proved that SIM outperformed IMAT with respect to
the SNR metric. We compared the proposed method
with SOMP as a well-known algorithm in the MMV
models. We concluded from the conducted numerical
experiments that SIM was preferable in terms of SNR

Table 4. Reconstruction SNRs (dB) of di�erent algorithms for di�erent density rates (K (%)) in the presence of noise
(input SNR = 5 dB, sampling rate = 20% , L = 10).

K (%) 2.5 5 7.5 10 12.5 15

SIM 14.1 11.6 8.8 6.7 4.9 3.3
BIMAT 13.3 9.8 7.5 6.0 4.1 3.4

Improvement ratio (%) +6 +18 +17 +12 +19 -2
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or SR, especially in noisier channels with low sampling
rates and high density rates. Finally, it was observed
that SIM was superior to BIMAT when complexity and
e�ciency were important factors.
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