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Abstract. In this study, a new class of shape functions, namely spherical Hankel shape
functions, is derived and applied to reformulate the deection, free vibration, and buckling
of Mindlin plates based on Finite Element Method (FEM). In doing so, the addition
of polynomial terms to the functional expansion, in which only spherical Hankel Radial
Basis Functions (RBFs) are used, leads to obtaining spherical Hankel shape functions.
Accordingly, the application of polynomial and spherical Bessel function �elds together
results in achieving greater robustness and e�ectiveness. Spherical Hankel shape functions
bene�t from some useful properties including in�nite piecewise continuity, partition of
unity, and Kronecker delta property. In the end, the accuracy of the proposed formulation
is investigated through several numerical examples for which the same degrees of freedom
are selected in both of the presented formulation and the classical FEM. Finally, it can
be concluded that the application of spherical Hankel shape functions ensures achieving
higher accuracy than the Lagrangian FEM.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Plate structures are one of the most important struc-
tures in engineering and used in many industries like
civil engineering, shipbuilding, and aerospace engi-
neering. Such structures including bridge buildings,
stadiums, and hydropower stations are among the
applications of plates in civil engineering. Therefore,
the prevalent use of plates has led engineers to analyze
them for design purposes.
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Until now, few analytical methods have been
proposed for solving engineering issues, especially the
analysis of plates [1]. These methods provide high
accuracy, yet they cannot be implemented in many
problems as their geometric and loading conditions
are so limited. Besides, analytical solutions may
be inaccessible and unfeasible for a large number
of problems. The aforementioned limitations have
encouraged engineers to use numerical methods and
computers for solving various problems. Therefore,
researchers have tried to use numerical methods such as
Finite Element Method (FEM) [2], Boundary Element
Method (BEM) [3], meshless and meshfree methods [4{
6], Petrov-Galerkin method [7], and other methods
reported in the literature for analysis purposes. Since
the application of computers and numerical methods
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is inevitable nowadays, researchers constantly seek to
enhance and boost these methods. To this end, one
way may be the use of Radial Basis Functions (RBFs)
in numerical methods.

In general, RBFs are applied to estimate mul-
tivariable functions by linear combinations of terms
depending on a univariate function, which is named
RBF [8]. RBFs are categorized into two major classes,
namely oscillatory and non-oscillatory. For example,
real and complex Fourier RBF [9{11] and J-Bessel
RBF [12] are oscillatory kinds, while the Gaussian func-
tions [13], thin-plate splines [14,15], compact supported
functions [16{18], multiquadrics [19], and inverse mul-
tiquadrics [20] are the non-oscillatory ones.

The Fourier-Bessel series and J-Bessel functions
are among the applications of Bessel functions as the
basis functions in classical mathematics, and J-Bessel
and complex Fourier RBFs were previously suggested
by Hamzehei Javaran et al. [9{12]. It is worthwhile to
note that the J-Bessel RBF just contains the properties
of the �rst kind of Bessel function. Nonetheless, the
�rst kind of Bessel function usually cannot represent
the entire features of a physical phenomenon. Hence, to
have both characteristics of the �rst and second kinds
of Bessel function, one way may be the use of Hankel
function as it includes the �rst and second kinds of
Bessel function, simultaneously.

The present study attempts to put forward new
shape functions that contain the advantages of both
RBFs and spherical Bessel functions. Accordingly, an
oscillatory RBF based on spherical Hankel functions is
applied to derive new spherical Hankel shape functions.
The Hankel function is created by combining the
�rst and second kinds of Bessel functions in complex
space [21{23]. The application of spherical Hankel
shape functions results in pro�ting from the advantages
of complex number space in functional space, which
leads to a reduction in both algebraic manipulations
and formulations. The proposed shape functions can
simply satisfy spherical Bessel function �elds and poly-
nomial function �elds. Due to their properties, achiev-
ing higher accuracy along with lower degrees of freedom
is accessible. It should be noted that the application of
lower degrees of freedom results in decreasing the com-
putational cost. After that, these shape functions are
employed to reformulate the deection, free vibration,
and buckling of the Mindlin plates. In the end, �ve
numerical examples are solved and compared with the
analytical solutions as well as classical FEM. It can be
seen that the results of the proposed shape functions
are in better agreement with analytical solutions than
the outcomes of the classic �nite element.

2. Spherical Hankel shape functions

As a preface to expressing the solution �eld and

geometry approximation, the spherical Hankel shape
functions are discussed concisely in this section. The
RBFs, which have been introduced up to now based
on Bessel functions, only bene�t from the �rst kind
of Bessel function (J-Bessel), e.g., J-Bessel RBFs [12].
The solution to Bessel's equation is the most prominent
application of both the �rst and second kinds of
Bessel functions, which proves that using them together
may ensure greater robustness. The aforementioned
discussion brings this matter to mind that whether it
is possible to suggest RBFs that bene�t from both
of the �rst and second kinds of Bessel functions.
Consequently, based on the idea of combining spherical
Hankel in the imaginary space, their enrichment for a
three-node element in the natural coordinate system
is explained, which is used for producing a nine-node
element in a two-dimensional space.

2.1. Enrichment of spherical Hankel RBF
The enrichment of spherical Hankel RBFs is demon-
strated for a three-node element in � direction of the
natural coordinate. Moreover, this process is expanded
for a nine-node element in two dimensions, which is
used throughout this paper. In order to enrich a
three-node element, polynomial terms are added to
the functional expansion that only uses RBFs for the
approximation.

wh(x) =
nX
i=1

Ri(r)ai

+
mX
k=1

Pk(x)bk =
�!
R
T

(r)�!a +
�!
P
T

(x)
�!
b ; (1)

where n and m represent the number of nodes and
basis polynomial terms, respectively. Herein,

�!
R
T

(r),�!
P
T

(x), �!a T , and
�!
b
T

can be assumed as follows:

�!
R
T

(r) =
�
R1(r) R2(r) � � � Rn(r)

�
;

�!
P
T

(x) =
�
P1(x) P2(x) � � � Pm(x)

�
;

�!a T =
�
a1 a2 � � � an

�
;

�!
b
T

=
�
b1 b2 � � � bm

�
: (2)

Satisfying Eq. (1) on the nodes leads to obtaining the
following equation:
�!̂
w = RQ

�!a + Pm
�!
b ; (3)

where:

RQ =

264R1(r1) : : : Rn(r1)
...

...
R1(rn) : : : Rn(rn)

375
n�n

;
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Pm =

264P1(x1) : : : Pm(x1)
...

...
P1(xn) : : : Pm(xn)

375
n�m

; (4)

Eq. (3) consists of n + m unknowns, whereas only
n equations exist. Accordingly, additional conditions
must be applied in order to balance the number of
knowns and unknowns. The exclusivity of the solution
is assured if the following constraints exist [24]:

nX
i=1

Pk(xi)ai = 0; PT
m
�!a = 0: (5)

Thus, the �nal set of equations is given in the following
form:�

RQ Pm
PT
m 0

� ��!a�!
b

�
=
��!̂
w
0

�
: (6)

Following some algebraic manipulations, the results
below are obtained for the unknown vectors �!a and�!
b ,

�!a = Sa
�!̂
w ;

�!
b = Sb

�!̂
w ; (7)

in which,

Sa = R�1
Q �R�1

Q PmSb;

Sb = [PT
mR�1

Q Pm]�1PT
mR�1

Q : (8)

By replacing c and d into Eq. (1), �!wh(x) becomes:

�!wh(x) = [RT (r)Sa + PT (x)Sb]
�!̂
w : (9)

In Eq. (9), the expression of [RT (r)Sa + PT (x)Sb]
relates the functional �eld to the nodal values. In
other words, [RT (r)Sa + PT (x)Sb] is de�ning shape
functions. Hence, the matrix of shape functions is
o�ered as follows:

�(x) = RT (r)Sa + PT (x)Sb: (10)

As mentioned in the previous discussions, the de-
manded RBF can be accessible as in the following form:

R(r)=(er)en+1h(1)en (er) e>0; en = 0; 1; 2; : : : ; (11)

where n and e are the shape parameters of Hankel RBF,
and h(1)en (er) =

q
�

2(er)H
(1)en+ 1

2
(er) indicates the spherical

Hankel function of the �rst kind.
The �rst order of spherical Hankel function,

h(1)en (er) = jen(er) + iyen(er), has singularity at its
imaginary part, which is the second kind of spherical
Bessel function of order n. Therefore, (er)en+1 is
employed to eliminate this singularity. Thus, the
limiting values of the RBF may be calculated as follows:

' = lim
r!0

(er)en+1;

h(1)en (er) = 0 +
(�1)en+1 � 2en �p�

�(�en+ 1
2 )

i; (12)

where � denotes the well-known gamma function. Af-
ter applying some algebraic manipulations for a three-
node element in � direction of the natural coordinate
system, the desired vectors and matrices are calculated
as in the following forms:

R(r) =

24R1 (r)
R2 (r)
R3 (r)

35
=

264(e j� � �1j)en+1h(1)
n (e j� � �1j)

(e j� � �2j)en+1h(1)
n (e j� � �2j)

(e j� � �3j)en+1h(1)
n (e j� � �3j)

375 ; (13)

�!
P(�) =

�
1
�

�
; (14)

RQ =

24R1 (r1) R2 (r1) R3 (r1)
R1 (r2) R2 (r2) R3 (r2)
R1 (r3) R2 (r3) R3 (r3)

35
=

2664 ' (e j�1 � �2j)en+1h(1)en (e j�1 � �2j)
'

Sym:

(e j�1 � �3j)en+1h(1)en (e j�1 � �3j)
(e j�2 � �3j)en+1h(1)en (e j�2 � �3j)

'

377775 ; (15)

Pm =

24P1(�1) P2(�1)
P1(�2) P2(�2)
P1(�3) P2(�3)

35 =

241 �1
1 �2
1 �3

35 ; (16)

Sc =
c
2

24 1 �2 1
4 �2

sym: 1

35 ; (17)

Sd =
1
2

�
�c 2(1� �c) �c
�1 0 1

�
: (18)

It should be noted that in Eq. (15), it is one of
the properties of RBFs to make the coe�cient matrix
symmetric. In other words, Ri (rj) = Rj (ri). In
Eqs. (17) and (18), c and �c are complex constants,
which are de�ned below:

c =
1

(2e)en+1h(1)en (2e)�4(e)en+1h(1)en (e) + 3'
; (19)
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�c = 2c
h
(�e)en+1h(1)en (e) + '

i
; (20)

where ' = limr!0R(r), which is already bound by
eliminating singularity (Eq. (12)), leads to having no
singularity in R(r). To sum up, the shape functions
for a three-node element in � direction of the natural
coordinate system are stated as follows:

�(�)
�
�1(�) �2(�) �3(�)

�
; (21)

�1(�) =
1
2

(�� + �c+ h(�)); (22)

�2(�) = (1� �c)� h(�); (23)

�3(�) =
1
2

(� + �c+ h(�)); (24)

in which:

h(�) =c(e)en+1
�
(j� + 1j)en+1h(1)en (ej� + 1j)� 2(j�j)en+1

h(1)en (ej�j) + (j� � 1j)en+1h(1)en (ej� � 1j)
�
: (25)

A one-dimensional element with three nodes is shown
in Figure 1. Moreover, Figures 2, 3, and 4 demonstrate
the real part of spherical Hankel shape functions for a
three-node element with various shape parameters (e
and en). It should be noted that the imaginary part is
ine�ective in the calculations. This issue is described
to a greater extent in the following sections.

To expand the shape functions for two-
dimensional elements, one-dimensional shape functions
in the other direction of natural coordinates � are
de�ned the same as � direction:

Figure 1. One-dimensional element with three nodes.

Figure 2. Spherical Hankel shape functions for a
three-node element when en = 1 and e = 1.

Figure 3. Spherical Hankel shape functions for a
three-node element when en = 7 and e = 4.

Figure 4. Spherical Hankel shape functions for a
three-node element when en = 5 and e = 6.

Figure 5. A two-dimensional element with nine nodes.

 (�) =
�
 1(�)  2(�)  3(�)

�
: (26)

By multiplying shape functions in � and � directions,
shape functions for an element in two dimensions with
nine nodes could be produced. Figure 5 shows how to
construct a 2D nine-node element.

2.2. Derivatives of spherical Hankel shape
functions

Derivatives of spherical Hankel shape functions for a
three-node element can be obtained as follows:
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�1(�) = 1
2 (�� + �c+ h(�)); �2(�) = (1� �c)� h(�);

�3(�) = 1
2 (� + �c+ h(�)); �01(�) = 1

2 (�1 + h0(�));
�02(�) = �h0(�) �03(�) = 1

2 (1 + h0(�))
�001(�) = h00(�)

2 �002(�) = �h00(�);
�003(�) = h00(�)

2 �0001 (�) = h000(�)
2

�0002 (�) = �h000(�) �0003 (�) = h000(�)
2 � � � :

(27)

According to the properties of spherical Hankel func-
tions, there is a recurrence relation between their
derivatives, which can be expressed as follows:�

d
xdx

�p h
xen+1h(1)en (x)

i
= xen�p+1h(1)en�p(x): (28)

For example, by substituting Eq. (28) into Eq. (25),
the �rst three derivatives of h(�) can be obtained by
the following equation:

h (�) = ceen+1
�
(1 + �)en+1h(1)en (e(1 + �))

�2j�jen+1h(1)en (e j�j) + (1� �)en+1h(1)en
(e(1� �))

�
;

h0 (�) = ceen+2
�
(1 + �)en+1h(1)en�1 (e(1 + �))

�2 (H(�)�H(��)) j�jen+1h(1)en�1 (e j�j)

�(1� �)en+1h(1)en�1 (e(1� �))
�
;

h00(�) = c
�
e~n+3

�
(1 + �)~n+1h(1)

~n�2(e(1 + �))

�2(H(�) +H(��))j � �j~n+1h(1)
~n�2(ej�j)

+(1� �)~n+1h(1)
~n�2(e(1� �))

�
+e~n+2

�
(1 + �)~nh(1)

~n�1(e(1 + �))

�2(H(�) +H(��))j�j~nh(1)
~n�1(ej�j)

+(1� �)~nh(1)
~n�1(e(1� �))

��
;

h000(�) = c
�
een+4

�
(1 + �)en+1h(1)en�3(e(1 + �))

�2(H(�)�H(��))j�jen+1h(1)en�3(ej�j)

�(1� �)en+1h(1)en�3(e(1� �))
�

+3"en+3
�
(1 + �)enh(1)en�2(e(1 + �))

�2(H(�)�H(��))j�jenh(1)en�2(ej�j)

�(1� �)enh(1)en�2(e(1� �))
��
; (29)

in which H represents the well-known Heaviside step
function.

2.3. Properties of spherical Hankel shape
functions

Some properties of spherical Hankel shape functions
can be summarized as follows:

i. Kronecker delta property, �m(�n) = �mn(1 + 0i),
where i =

p�1 and �mn is the Kronecker delta
symbol;

ii. Partition of unity,
3P
1

�j(�) = 1 + 0i;

iii. In�nite piecewise continuity: being in the form of
Bessel functions, they can be derived in�nitely;

iv. The linear independence property, which is easily
derived from Kronecker delta property according
to applied mathematics.

3. Formulation of Mindlin plates based on
spherical Hankel shape functions

This theory considers shear deformations; thus, deec-
tion and rotations are independent. Thus, the sti�ness
matrix consists of bending and shear terms. The
Mindlin element equation is given as follows (for more
details, see [25]):

(Kb + Ks)
�!
d = �!r ; (30)

where
�!
d and �!r indicate the displacement and equiva-

lent nodal load vectors. Moreover, �!r can be obtained
as follows:

�!r =
Z



�!
f Nd
; (31)

in which N and
�!
f are the shape function matrix and

the load vector, respectively. It should be noted that

 is liable to change according to the nature of the
load (for more details, see [25]). Besides, bending and
shear sti�ness matrices can be calculated through the
following equations:

Kb =
Z Z

A
BbCBb

T dA; (32)

Ks = kGh
Z Z

A
BsBs

T dA; (33)
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C =
E

1� �2

241 � 0
� 1 0
0 0 1��

2

35 ; (34)

where k is shear correction factor, G shear modulus,
h the thickness of the plate, � Poisson's ratio, and E
Young's modulus.

Now, the main challenge is the selection of shape
functions. Is it possible to use the spherical Hankel
shape functions in Eqs. (30){(32)? To do so, the
matrices N, Bb, and Bs from Eqs. (31){(33) for a nine-
node element using Hankel shape functions are given in
the following forms:

N =

24R1 R2 � � � R9 0 0
0 0 � � � 0 R1 R2
0 0 � � � 0 0 0

� � � 0 0 0 � � � 0
� � � R9 0 0 � � � 0
� � � 0 R1 R2 � � � R9

35
3�27

: (35)

Bb =

266664
0 @R1

@x 0 � � � 0 @R9
@x 0

0 0 @R1
@y � � � 0 0 @R9

@y

0 @R1
@y

@R1
@x � � � 0 @R9

@y
@R9
@x

377775
3�27

;
(36)

Bs=

2664
@R1
@x R1 0 � � � @R9

@x R9 0

@R1
@y 0 R1 � � � @R9

@y 0 R9

3775
2�27

;
(37)

where R denotes Hankel shape functions. For example,
R1 = �1 (�) �  1 (�), R2 = �2 (�) �  1 (�), R3 =
�3 (�) �  1 (�), R4 = �1 (�) �  2 (�), and so on (for
more details, see Figure 5).

4. Free vibration formulation of Mindlin plates
based on spherical Hankel shape functions

Based on Hamilton's principle, the motion equation
of Mindlin plate is obtained below (for more details,
see [26]):

M�U + KU = 0; (38)

where U and �U are displacements and accelerations,
and M and K represent the mass and sti�ness matrices
(Eqs. (32){(37)), respectively. The mass matrix is
expressed as follows:

M =
Z
A

�NT

24 h 0 0
0 h3

12 0
0 0 h3

12

35NdA; (39)

where � is the mass density. By implementing the
eigenvalue problem, the following equation is obtained:

(K� !2M)
�!
X = 0; (40)

in which ! is natural frequency, and
�!
X is the mode

shape vector.

5. Buckling formulation of Mindlin plates
based on spherical Hankel shape functions

In this section, the buckling of Mindlin plates is
formulated based on spherical Hankel as the shape
functions. The stability problem contains the solution
of the following equation (for more details, see [26]):

[K� �KG]ai = 0; i = 1; 2; : : : ; r; (41)

where � denotes a constant that increases in-plane
loads in order that the buckling happens, and ai
represents buckling mode shapes. In addition, KG im-
plies the geometric sti�ness matrix, for which spherical
Hankel is used for interpolation as follows:

KG = KGb + KGs; (42)

where KGb and KGs are the bending and shear geo-
metric matrices, respectively, which can be expressed
as follows:

KGb =
+1Z
�1

+1Z
�1

Gb
T �̂T0 Gbh det(J)d�d�; (43)

KGs =
+1Z
�1

+1Z
�1

Gs1
T �̂0Gs1 det(J)d�d�

+
+1Z
�1

+1Z
�1

Gs2
T �̂0Gs2

h3

12
det(J)d�d�; (44)

in which J is the well-known Jacobian matrix, and
�̂T0 stands for the initial stress �eld, which can be
considered as follows:

�̂T0 =

24�0
x �0

xy

�0
xy �0

y

35 : (45)

Furthermore, for the particular node i, Gb, Gs1, and
Gs2 can be expressed as follows:

Gb =

24@Ri@x 0 0

@Ri
@y 0 0

35 ; (46)

Gs1 =

240 @Ri
@x 0

0 @Ri
@y 0

35 ; (47)

Gs2 =

240 0 @Ri
@x

0 0 @Ri
@y

35 : (48)
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6. Numerical examples

In this part, to demonstrate the validity and robustness
of the aforesaid formulations, �ve various numerical
examples are provided. The o�ered formulation results
are compared with available results in the litera-
ture and classical �nite element using Q9 elements.
Throughout numerical examples, errors (percentage
relative errors) are calculated as follows:

Error =
����!num � !exact

!exact

����� 100: (49)

Besides, the following parameters are considered:
Young's modulus E = 10920, Poisson's ratio � = 0:3,
and material density � = 1.

6.1. Example 1: A square Mindlin plate in
bending

In the �rst numerical example, a square plate iscon-
sidered with thickness t and side a under uniform
distributed load (P = 1 ) with simple and clamped
boundary conditions. The non-dimensional deforma-
tion is taken as �w = w D

Pa4 in which D = Et3
12(1��2) and

w is deection [26].
In this example, it should be noted that the com-

putational cost is reduced by selecting coarse meshes.
Besides, the results of the proposed formulation are
compared with the classical �nite element as well as
analytical ones. Through this example, it is understood
that, with low degrees of freedom in the proposed
formulation, very better accuracy is reachable than the
classical �nite element. For instance, in Table 1, when
a=t = 10 and 1 � 1 meshes are selected, the error in

Figure 6. Convergence trend for the fully clamped case.

the presented formulation is 6:7905e� 0:6%, while it is
2.2457% in the classical FEM.

Tables 1 and 2 show the non-dimensional de-
formation for SSSS and CCCC boundary conditions,
respectively, and di�erent length-to-thickness ratios.

In this example, the fully clamped case is solved
with various meshes to show the convergence trend for
Hankel shape functions (Figure 6). As the �gure shows,
considering more elements leads to better accuracy.

6.2. Example 2: Free vibration of square plate
Free vibration of a square plate with side a and thick-
ness t is considered as the second numerical example.
In this case, various boundary conditions and length-
to-thickness ratios are investigated. The dimensionless
frequency is considered �! = !a

p �
G , where G is the

shear modulus [27].
In the case of CCCC, the shear correction factor

is considered as � = 0:8601, whereas in the cases of
SCSC and SSSS, this factor is taken as � = 0:822 and
� = 5=6, respectively (for more details, see [26]). This

Table 1. Dimensionless deformation of square plate under uniform distributed load (P = 1) with simple boundary
conditions (SSSS).

a=t Mesh Present
formulation

Error (%) Classical FEM Error (%) Analytical [26]

10
1�1 0.0042 6.7905E-06 0.0041 2.2457

0.00427
2�2 0.0042 4.7143E-06 0.0044 3.8181

10000
1�1 0.0040 1.1502E-05 0.0039 3.7869

0.00406
2�2 0.0040 1.0323E-06 0.0042 3.9101

Table 2. Dimensionless deformation of square plate under uniform distributed load (P = 1) with clamped boundary
conditions (CCCC).

a=t Mesh Present
formulation

Error (%) Classical FEM Error (%) Analytical [26]

10000
2�2 0.00126 0.0002 0.00156 24.0079

0.00126
3�3 0.00126 2.35E-05 0.00128 2.2514
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example was also investigated by Liew et al. [27] using
energy method. To compare the results of the present
formulation with analytical ones and classic FEM, the
results are shown in tables, and errors are calculated
based on these analytical solutions. A 4 � 4 mesh is

employed for both of the presented formulation and
classical FEM.

Tables 3 and 4 show the �rst eight natural fre-
quency parameters for Mindlin plate with completely
simple and clamped boundary conditions, respectively.

Table 3. Dimensionless natural frequencies �! of simply supported square plate.

t=a Mode no Present
formulation

Error (%) Classical FEM Error (%) Analytical [28]

0.1

1 0.9228 0.7678 0.9311 0.1283 0.930
2 2.1880 1.3953 2.2444 1.1487 2.219
3 2.1880 1.3953 2.2444 1.1487 2.219
4 3.3535 1.5388 3.4513 1.3328 3.406
5 4.1716 0.5450 4.3781 5.5230 4.149
6 4.1716 0.5450 4.3781 5.5230 4.149
7 5.2051 0.0155 5.4404 4.5038 5.206
8 5.2051 0.0155 5.4404 4.5038 5.206

0.01

1 0.0954 0.8494 0.0963 0.0837 0.0963
2 0.2368 1.5642 0.2435 1.2130 0.2406
3 0.2368 1.5642 0.2435 1.2130 0.2406
4 0.3781 1.7119 0.3904 1.5058 0.3847
5 0.4833 0.5486 0.5111 6.3271 0.4807
6 0.4833 0.5486 0.5111 6.3271 0.4807
7 0.6244 0.0232 0.6577 5.3142 0.6246
8 0.6244 0.0232 0.6577 5.3142 0.6246

Table 4. Dimensionless natural frequencies �! of fully clamped square plate.

t=a Mode no Present
formulation

Error (%) Classical FEM Error (%) Liew et al. [27]

0.1

1 1.5562 0.1231 1.5959 2.4258 1.5582
2 2.9644 1.7799 3.1018 2.7725 3.0182
3 2.9644 1.7799 3.1018 2.7725 3.0182
4 4.1558 0.3646 4.3512 4.3201 4.1711
5 5.0728 0.9554 5.4152 5.7288 5.1218
6 5.1237 0.6908 5.4706 6.0323 5.1594
7 6.0826 1.0780 6.4453 7.1044 6.0178
8 6.0826 1.0780 6.4453 7.1044 6.0178

0.01

1 0.1707 2.0248 0.1760 0.9860 0.1743
2 0.3464 3.1246 0.3668 2.5949 0.3576
3 0.3464 3.1246 0.3668 2.5949 0.3576
4 0.5097 2.7195 0.5411 3.2683 0.524
5 0.6496 0.4882 0.7111 10.0004 0.6465
6 0.6529 0.3787 0.7147 9.8782 0.6505
7 0.8061 0.5779 0.8720 8.7966 0.8015
8 0.8061 0.5779 0.8720 8.7966 0.8015



M. Mohammadi Nia et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2209{2229 2217

Figure 7. Error comparison for the fully clamped square
plate with t=a = 0:1.

As is seen in the tables, the present formulation is
in quite better agreement with the analytical results,
compared with the classical �nite element. Moreover,
Table 5 presents the �rst six natural frequencies in
the case of SCSC. The �rst six natural frequency
parameters were obtained in [28], and the results of
the proposed formulation are compared with them. For
clarity, Figure 7 shows the percentage of relative errors

for a fully clamped square plate with t=a = 0:1. In
addition, Figure 8 depicts the �rst nine mode shapes
of the simply supported square plate.

6.3. Example 3: Free vibration of skew plate
The third numerical example consists of a skew plate
characterized by various skew angles and thicknesses.
Results, which are obtained from the present formula-
tion, are compared with the classical �nite element and
analytical solution ones. The geometry parameters for
this example are shown in Figure 9. To compare the
results, the natural frequency parameter is taken as
follows [29]:

� =
!b2

�2

r
�t
D
:

In this example, skew angles � = 15�, � = 30�,
and � = 45� with fully clamped and simply supported
boundary conditions are considered. Moreover, all
cases are solved by 6�6 meshes. Tables 6{11 represent
the results of simple and clamped boundary conditions

Figure 8. The �rst nine mode shapes of the simply supported square plate.
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Table 5. Dimensionless natural frequencies �! of SCSC square case.

t=a Mode no Present
formulation

Error (%) Classical FEM Error (%) Analytical [28]

0.1

1 1.2833 1.4303 1.2869 1.1570 1.302

2 2.3664 1.3174 2.3873 0.4429 2.398

3 2.8679 0.6955 2.9230 1.2138 2.888

4 3.7812 1.8372 3.8385 0.3494 3.852

5 4.2399 0.0704 4.4204 4.3301 4.237

6 4.9795 0.8816 5.2988 7.3506 4.936

0.01

1 0.1402 0.6014 0.1409 0.1066 0.1411

2 0.2654 0.5240 0.2695 1.0367 0.2668

3 0.3351 0.7441 0.3464 2.5943 0.3377

4 0.4572 0.7664 0.4709 2.1973 0.4608

5 0.4968 0.2043 0.5258 5.6215 0.4979

6 0.6294 0.2432 0.6992 11.3565 0.6279

Figure 9. Geometry parameter for a skew plate.

with di�erent skew angles. The application of spherical
Hankel shape functions leads to better results than
classic FEM, which is clearly shown in Tables 6{11.
As results show, the frequency parameter increases by
increasing the skew angle for all cases. To facilitate a
greater understanding of the matter, Figure 10 depicts
the �rst 4 mode shapes of fully clamped boundary
conditions with � = 15� and t = 0:1. Generally,
by decreasing the skew angle, the accuracy increases.
However, at high skew angles, results are also accept-
able.

6.4. Example 4: Trapezoidal plate
For the fourth numerical example, a trapezoidal plate
with fully clamped and simply supported boundary
conditions is investigated. Figure 11 demonstrates the
geometry parameters of trapezoid. Tables 12{19 show

Figure 10. The �rst 4 mode shapes of the fully clamped
skew plate (� = 15 and t = 0:1).

the �rst six frequency parameters that are taken as [30]:

� =
!a2

�2

r
�t
D
:

For all cases, 6 � 6 meshes are employed. As
expected, the frequency parameter for the clamped
plate is considerably higher than that for the simply
supported one. Thus, it can be concluded that by
increasing restrictions in boundary conditions, the fre-
quency parameter increases. In fact, the clamped plate
is rigider than the simply supported one, which results
in having a higher frequency parameter. Numerical
results show that increasing the thickness-to-side ratio
leads to a reduction in errors. Figure 12 shows the �rst
nine mode shapes for clamped boundary conditions and
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Table 6. Frequency parameters of skew plate with simply supported boundary conditions (� = 15�).

Thickness Mode no. Present
formulation

Error (%) Classical FEM Error (%) Liew et al. [29]

0.1

1 1.5105 1.423 1.5181 1.936 1.4893

2 2.7795 1.126 2.812 2.305 2.7486

3 4.3695 0.644 4.4222 0.555 4.3978

4 4.6529 0.257 4.7519 2.389 4.641

5 5.6329 0.379 5.7195 1.152 5.6544

6 6.817 0.087 6.9888 2.611 6.811

7 7.8949 0.459 8.1415 3.597 7.8588

8 8.5893 0.841 8.7928 1.508 8.6622

0.2

1 1.3953 0.628 1.4001 0.976 1.3866

2 2.4478 0.355 2.4682 1.194 2.4391

3 3.6913 0.395 3.7249 0.512 3.7059

4 3.8845 0.004 3.9454 1.573 3.8843

5 4.5969 0.259 4.6483 0.854 4.6089

6 5.4125 0.162 5.5124 2.012 5.4037

7 6.1315 0.536 6.2698 2.803 6.0988

8 6.5975 0.314 6.7118 1.413 6.6183

Table 7. Frequency parameters of skew plate with simply supported boundary conditions (� = 30�).

Thickness Mode no. Present
formulation

Error (%) Classical FEM Error (%) Liew et al. [29]

0.1

1 1.858 4.282 1.8835 5.713 1.7817

2 3.2353 3.992 3.3281 6.975 3.1111

3 5.0198 1.2 5.2358 5.554 4.9603

4 5.2789 1.222 5.4058 1.153 5.3442

5 6.7841 0.636 7.0343 3.029 6.8275

6 7.0174 0.27 7.3831 4.927 7.0364

7 9.1685 0.574 9.7341 5.56 9.2214

8 9.169 0.745 9.7501 5.545 9.2378

0.2

1 1.6746 2.181 1.6862 2.884 1.6389

2 2.7758 1.805 2.8178 3.343 2.7266

3 4.1333 0.426 4.2336 2.861 4.1158

4 4.3616 0.64 4.4231 0.761 4.3897

5 5.3941 0.361 5.5036 1.66 5.4137

6 5.5529 0.039 5.7176 2.925 5.5551

7 6.9814 0.125 7.2298 3.687 6.9727

8 6.9902 0.096 7.2374 3.636 6.9835
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Table 8. Frequency parameters of skew plate with simply supported boundary conditions (� = 45�).

Thickness Mode no. Present
formulation

Error (%) Classical FEM Error (%) Liew et al. [29]

0.1

1 2.6409 5.421 2.7026 7.885 2.5051

2 4.2309 6.054 4.4423 11.353 3.9894

3 6.0681 2.644 6.4897 9.775 5.9118

4 7.3551 1.533 7.6695 2.676 7.4696

5 8.1633 0.339 8.7927 7.345 8.1911

6 9.1317 1.201 9.7537 5.528 9.2427

7 10.2458 1.321 11.2101 7.966 10.383

8 11.6758 0.836 12.881 9.4 11.7742

0.2

1 2.3045 2.887 2.3302 4.037 2.2398

2 3.4996 2.963 3.584 5.446 3.3989

3 4.8423 1.126 5.0146 4.725 4.7884

4 5.7921 0.809 5.9295 1.545 5.8393

5 6.3058 0.2 6.5514 3.687 6.3184

6 6.9389 0.572 7.1762 2.828 6.9788

7 7.672 0.309 8.0467 4.559 7.6958

8 8.5553 0.252 9.0113 5.596 8.5338

Table 9. Frequency parameters of skew plate with fully clamped boundary conditions (� = 15�).

Thickness Mode no. Present
formulation

Error (%) Classical FEM Error (%) Liew et al. [29]

0.1

1 2.6588 0.466 2.6757 0.167 2.6712

2 3.9316 0.625 3.9751 0.474 3.9563

3 5.9275 0.205 6.0404 1.695 5.9397

4 6.0381 0.596 6.1166 0.697 6.0743

5 7.1734 0.518 7.2733 0.869 7.2107

6 8.2744 0.636 8.453 2.808 8.2221

7 9.352 1.02 9.5765 3.446 9.2575

8 10.4947 0.348 10.7125 2.431 10.4583

0.2

1 2.2161 0.258 2.2283 0.29 2.2218

2 3.1594 0.409 3.1898 0.549 3.1724

3 4.5056 0.338 4.5523 0.694 4.5209

4 4.5215 0.169 4.5942 1.435 4.5292

5 5.2833 0.282 5.3431 0.847 5.2982

6 6.0092 0.404 6.1177 2.217 5.985

7 6.661 0.719 6.7941 2.732 6.6134

8 7.2374 0.05 7.3542 1.664 7.2338
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Table 10. Frequency parameters of skew plate with fully clamped boundary conditions (� = 30�).

Thickness Mode no. Present
formulation

Error (%) Classical FEM Error (%) Liew et al. [29]

0.1

1 3.1817 0.488 3.2037 0.201 3.1973

2 4.4981 0.665 4.5542 0.573 4.5282

3 6.4558 0.263 6.5882 1.783 6.4728

4 7.2251 0.568 7.3252 0.809 7.2664

5 8.5482 0.27 8.6881 1.362 8.5714

6 8.7001 0.662 8.9092 3.081 8.6429

7 10.9597 1.464 11.2495 4.147 10.8016

8 11.071 1.85 11.3741 4.638 10.8699

0.2

1 2.5823 0.244 2.5973 0.335 2.5886

2 3.5278 0.433 3.5654 0.625 3.5432

3 4.8265 0.221 4.9086 1.477 4.8372

4 5.2184 0.299 5.2741 0.766 5.234

5 6.096 0.125 6.1761 1.188 6.1036

6 6.2255 0.396 6.3499 2.403 6.2009

7 7.5553 0.965 7.7193 3.156 7.4831

8 7.643 1.207 7.8183 3.527 7.5519

Table 11. Frequency parameters of the skew plate with fully clamped boundary conditions (� = 45�).

Thickness Mode no. Present
formulation

Error (%) Classical FEM Error (%) Liew et al. [29]

0.1

1 4.4218 0.599 4.4607 0.276 4.4484

2 5.8102 0.869 5.9071 0.783 5.8612

3 7.816 0.442 8.0251 2.222 7.8507

4 9.7049 0 9.9273 2.291 9.7049

5 10.3707 0.022 10.6303 2.526 10.3684

6 11.375 0.437 11.6411 2.787 11.3255

7 12.621 1.573 13.0527 5.048 12.4255

8 14.0466 2.771 14.5349 6.344 13.6679

0.2

1 3.3958 0.255 3.4185 0.412 3.4045

2 4.3408 0.535 4.3982 0.78 4.3642

3 5.61 0.334 5.7272 1.748 5.6288

4 6.6673 0.114 6.7683 1.399 6.6749

5 7.0803 0.207 7.2321 2.356 7.0657

6 7.6736 0.249 7.8091 2.019 7.6546

7 8.4295 1.113 8.6623 3.905 8.3367

8 9.2019 1.752 9.454 4.539 9.0435
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Figure 11. Trapezoid's geometry parameters.

c=a = 4=5, b=a = 1, and t=a = 0:2. According to the
results, the present formulation is much more e�cient
than the classical FEM.

6.5. Example 5: Buckling of rectangular plate
The last numerical example consists of a square plate
(a = 1) with di�erent boundary conditions and load-
ings. The mesh here is considered coarse (2 � 2) to
show that with lower degrees of freedom, high accuracy
is reachable using spherical Hankel shape functions.
In order to compare results with those available in
the literature, buckling factor is de�ned as k = Fcr

�2D
in which Fcr is the critical force [31]. Figure 13
lists the geometry parameters, loadings, and boundary
conditions for this example.

Table 20 lists the buckling factors for the square
plate obtained through the present formulation, clas-
sical �nite element, and analytical one. It can be
observed that the results of the spherical Hankel
shape functions provide excellent agreement with those
obtained by analytical solutions, compared to the
Lagrange shape functions. For example, in the case
of SCSC (h=a = 0:05), the percentage of error in
the proposed method is almost zero, while it is 1.67%
in the classic Lagrange shape functions. In addition,
Figure 14 illustrates the �rst 4 buckling modes in the
case of SSSF and t=a = 0:05.

To compare CPU time of the present formulation
and Lagrangian FEM, the consumed time for the
case t=a = 0:001 with di�erent boundary conditions
is shown in Figure 15. According to this �gure,
it is obvious that the application of Hankel shape
functions results in greater time consumption. It is
worthwhile to note that Hankel shape functions contain
polynomial terms and functional expansion; therefore,
it is reasonable to assume that Hankel shape functions
are computationally a bit more expensive than the
classic FEM. Nonetheless, the accuracy and robustness
provided by Hankel shape functions encourage their
use.

According to the literature, shape parameters are
constants used in RBFs to increase the accuracy [8{24].
It can be said that any speci�c problem requires the

Table 12. Frequency parameters of trapezoidal plate with simply supported boundary conditions (c=a = 3=5 and b=a = 1).

t=a Mode
sequence

Present
formulation

Error (%) Classical FEM Error (%) Analytical [30]

0.1

1 3.9620 5.7585 3.9963 6.6740 3.7463

2 8.0375 2.3469 8.1880 4.2638 7.8532

3 9.8812 1.2137 10.0958 3.4117 9.7628

4 13.9380 0.0548 14.4793 3.8266 13.9457

5 14.1527 0.9576 14.4915 3.3742 14.0185

6 17.6804 0.7921 18.3975 3.2314 17.8216

0.2

1 3.5058 6.6036 3.5347 7.4818 3.2887

2 6.6093 2.9470 6.74077 4.9949 6.4201

3 7.8737 1.1652 8.04974 3.4259 7.7831

4 10.5365 0.1815 10.9468 4.0828 10.5174

5 10.6840 0.7431 10.9625 3.3695 10.6052

6 12.8179 1.1328 13.3497 2.9689 12.9648
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Table 13. Frequency parameters of trapezoidal plate with SSSS boundary conditions (c=a = 3=5 and b=a = 2).

t=a Mode
sequence

Present
formulation

Error (%) Classical FEM Error (%) Analytical [30]

0.1

1 2.6896 2.1548 2.7145 3.0997 2.6329

2 3.9739 2.2139 4.0364 3.8218 3.8879

3 5.6679 1.2144 5.8527 4.5146 5.5999

4 7.9330 0.1756 8.2864 4.6384 7.9191

5 8.0812 0.5570 8.3905 3.2492 8.1265

6 10.1363 0.5482 10.4312 2.3456 10.1922

0.2

1 2.4640 2.6625 2.4901 3.7501 2.4001

2 3.5300 3.2731 3.5965 5.2189 3.4182

3 4.8410 1.8720 5.0289 5.8266 4.7521

4 6.4640 0.2301 6.8173 5.2219 6.479

5 6.6235 0.6363 6.8984 3.4872 6.666

6 8.0412 0.6433 8.3097 2.6747 8.0933

Table 14. Frequency parameters of trapezoidal plate with SSSS boundary conditions (c=a = 4=5 and b=a = 1).

t=a Mode
sequence

Present
formulation

Error (%) Classical FEM Error (%) Analytical [30]

0.1

1 3.3819 4.0440 3.4077 4.8388 3.2505

2 7.4434 1.0915 7.5979 3.1901 7.3631

3 8.3277 0.4857 8.5116 2.7050 8.2875

4 12.1057 1.4459 12.4034 3.9408 11.9332

5 13.4090 1.5408 13.9861 2.6965 13.6189

6 15.3369 1.7642 16.0086 2.5382 15.6124

0.2

1 3.0614 6.2428 3.0819 6.9538 2.8816

2 6.2177 2.2965 6.3307 4.1552 6.0782

3 6.8482 1.3427 6.9786 3.2722 6.7575

4 9.4320 2.4635 9.6287 4.6001 9.2053

5 10.2807 0.7813 10.6560 2.8405 10.3617

6 11.4956 1.1207 11.9186 2.5180 11.6259

most suitable shape parameter by its own nature, pro-
vided that high accuracy is demanded. In the last part
of the paper, some shape parameters, used in numerical
examples, are summarized in Table 21. It is worthwhile
to note that the shape parameters are inseparable from
RBFs. By means of illustration, conical, multiquadric,

inverse multiquadric, Gaussian, and J-Bessel functions
[12] have only one shape parameter, whilst complex
Fourier [11] and Hankel RBFs [21{23] have two of them.
For the Hankel shape functions, en and e are the shape
parameters that belong to the set of whole numbers
and positive real numbers, respectively.
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Table 15. Frequency parameters of trapezoidal plate with SSSS boundary conditions (c=a = 4=5 and b=a = 2).

t=a Mode
sequence

Present
formulation

Error (%) Classical FEM Error (%) Analytical [30]

0.1

1 2.2543 1.4600 2.2714 2.2316 2.2219

2 3.3603 1.9477 3.4129 3.5436 3.2961

3 5.0579 0.4055 5.2373 3.9678 5.0375

4 7.1438 1.1642 7.3181 1.2468 7.228

5 7.3580 0.7001 7.8156 5.4759 7.4099

6 8.4117 0.6521 8.6284 1.9068 8.467

0.2

1 2.1019 2.6788 2.1165 3.3942 2.0471

2 3.0485 4.0068 3.0927 5.5135 2.9311

3 4.4185 2.0761 4.5610 5.3674 4.3287

4 5.9987 0.5631 6.1271 1.5651 6.0327

5 6.1511 0.4026 6.4906 5.9435 6.1265

6 6.9139 0.1986 7.0691 2.4479 6.9002

Table 16. Frequency parameters of trapezoidal plate with CCCC boundary conditions (c=a = 3=5 and b=a = 1).

t=a Mode
sequence

Present
formulation

Error (%) Classical FEM Error (%) Analytical [30]

0.1

1 6.6142 0.3623 6.6431 0.07243 6.6383

2 11.0119 0.4054 11.0974 0.3677 11.0568

3 13.2786 0.4091 13.3932 0.4503 13.3332

4 17.3058 0.1997 17.5354 1.5287 17.2714

5 17.5712 0.3726 17.7254 0.5016 17.637

6 21.5327 0.1964 21.8193 1.5302 21.4905

0.2

1 5.1827 0.2471 5.1981 0.0495 5.1956

2 8.0816 0.2679 8.1239 0.2532 8.1034

3 9.3634 0.266 9.4155 0.2887 9.3884

4 11.8942 0.1439 12 1.0339 11.8772

5 11.9785 0.2388 12.047 0.3314 12.0072

6 14.1851 0.1434 14.3102 1.0270 14.1648

7. Conclusion

In this research, a new class of shape functions called
spherical Hankel shape function was introduced. These
shape functions were applied to reformulate deection,

free vibration, and buckling of Mindlin plates theory
based on Finite Element Method (FEM). These new
shape functions include the advantages of both radial
basis functions and spherical Bessel functions, which in
turn result in greater robustness and strength for the
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Table 17. Frequency parameters of trapezoidal plate with CCCC boundary conditions (c=a = 3=5 and b=a = 2).

t=a Mode
sequence

Present
formulation

Error (%) Classical FEM Error (%) Analytical [30]

0.1

1 4.9327 1.0924 4.9936 0.1295 4.9872

2 6.3178 1.1644 6.4134 0.3315 6.3923

3 7.9211 1.1809 8.1020 1.0758 8.0158

4 10.1535 0.2925 10.532 3.4242 10.1833

5 11.0411 1.7098 11.2981 0.5782 11.2332

6 13.1888 2.1034 13.5084 4.5777 12.9171

0.2

1 4.0129 0.43929 4.0344 0.0926 4.0307

2 4.9979 0.4243 5.0314 0.2445 5.0192

3 6.1700 0.2234 6.2380 0.8751 6.1839

4 7.7625 0.9030 7.9030 2.7289 7.6931

5 8.0906 0.5696 8.1679 0.3801 8.137

6 9.4278 0.4399 9.5224 0.5589 9.4695

Table 18. Frequency parameters of trapezoidal plate with CCCC boundary conditions (c=a = 4=5 and b=a = 1).

t=a Mode
sequence

Present
formulation

Error (%) Classical FEM Error (%) Analytical [30]

0.1

1 5.7375 0.3789 5.7631 0.0648 5.7594

2 10.2571 0.4363 10.3439 0.4064 10.3021

3 11.3903 0.4329 11.4908 0.4450 11.4399

4 15.2196 0.4514 15.3562 0.4416 15.2887

5 16.7366 0.2117 16.9724 1.6237 16.7013

6 18.9659 0.2160 19.2318 1.6206 18.9251

0.2

1 4.6084 0.2748 4.6233 0.0468 4.6212

2 7.6185 0.3095 7.6633 0.2763 7.6422

3 8.2736 0.3054 8.3231 0.2910 8.299

4 10.6932 0.3070 10.7586 0.3023 10.7262

5 11.5552 0.1194 11.6675 1.0919 11.5415

6 12.7817 0.1203 12.904 1.0818 12.7664

o�ered formulations. Moreover, new shape functions
can simply satisfy spherical Bessel function �elds in
addition to polynomial functions. Due to their prop-
erties, achieving higher accuracy with lower degrees of
freedom is accessible. Therefore, to gain highly accu-

rate results through FEM , instead of using �ne meshes,
the proposed shape function with coarse meshes can be
utilized. It should be noted that through lower degrees
of freedom, computational cost was reduced. Finally, in
order to show the precision and reliability of the o�ered
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Table 19. Frequency parameters of trapezoidal plate with CCCC boundary conditions (c=a = 4=5 and b=a = 2).

t=a Mode
sequence

Present
formulation

Error (%) Classical FEM Error (%) Analytical [30]

0.1

1 4.2583 0.5661 4.2863 0.0875 4.2826

2 5.2811 0.6470 5.3273 0.2222 5.3155

3 6.9461 0.4005 7.0551 1.1623 6.9741

4 9.4191 1.32346 9.6581 3.8947 9.2961

5 10.0170 0.7919 10.1514 0.5395 10.097

6 11.2870 0.7558 11.4383 0.5743 11.373

0.2

1 3.5169 0.4520 3.5351 0.0631 3.5329

2 4.2913 0.5317 4.3222 0.18431 4.3143

3 5.5234 0.3645 5.5968 0.9588 5.5437

4 7.2340 0.9148 7.3869 3.0477 7.1685

5 7.3936 0.6217 7.4663 0.3558 7.4399

6 8.2143 0.5966 8.2951 0.3804 8.2637

Table 20. Buckling factor of square plate with various boundary conditions.

Boundary
condition

Method
t=a

0.001 0.05 0.1 0.2

SSSF

Classical FEM 1.4165 1.3993 1.3556 1.2224

Present formulation 1.4014 1.3812 1.3706 1.2137

Analytical [31] 1.4014 1.3813 1.3707 1.2138

SSSS

Classical FEM 4.0601 4.0578 3.8259 3.2656

Present formulation 3.9999 3.9439 3.7845 3.2637

Analytical [31] 4 3.9444 3.7846 3.2637

SCSC

Classical FEM 7.4811 7.1765 6.4186 4.5843

Present formulation 7.6910 7.2989 6.3697 4.3203

Analytical [31] 7.6911 7.2989 6.3698 4.3204

Table 21. Shape parameter values used in examples.

Example 1 Example 2 Example 3 Example 4 Example 5en 2 3 3 4 6

e 2.6189 2.7610 3.1425 1.1714 1.0631
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Figure 12. The �rst nine mode shapes for clamped boundary conditions.

Figure 13. Geometry parameters, loadings, and boundary conditions of Example 5.

Figure 14. The �rst 4 buckling modes for the case of
SSSF and t=a = 0:05.

Figure 15. The elapsed time for case t=a = 0:001.

approaches, �ve numerical examples were solved, and
the achieved results were compared with the classical
�nite element and analytical results. According to
the results, the suggested approaches are much more
versatile than classical FEM.
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