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Abstract. Earth dams are one of the most important and expensive civil engineering
structures to which a considerable amount of budget is allocated. Their construction costs
mainly correspond to the size of embankments, which in turn depends on their cross-
sectional area. Therefore, reductions in cross-sectional areas of earth dams may cause a
decrease in embankment volumes, leading to a signi�cant reduction in the construction costs
of these structures. On the other hand, it is almost impossible to obtain optimum cross-
section in earth dams with desired stability and acceptable operational dimensions using
traditional design methods. In this paper, Ant Colony Optimization algorithm (ACO),
a well-known and powerful metaheuristic method for tackling problems in geotechnical
engineering, was used to solve this complicated problem. The results showed that applying
the ideal and optimum slope and berm arrangements resulting from ACO in designing
embankments and earth dams with di�erent heights could lead to a decrease in embankment
volumes, compared to those without any berms or those with berms resulting from usual
designs with trial and error.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Over the years, di�erent methods have been proposed
to solve optimization problems, some of which have
provided absolute optimum answers, while the others
mainly seek good and suitable answers (not necessarily
absolute optimum answers). The philosophy behind
discovering methods to reach almost absolute optimum
roots could be that some optimization problems tend
to be NP-Hard. This means that, because of the mag-
nitude of the problems, there may not be a possibility
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to reach an absolute optimum answer in a reasonable
and limited period of time.

Nowadays, due to their size and complexity, most
problems are not solvable using traditional optimiza-
tion methods, although mostly good and suitable
ones might be needed practically. In other words,
non-optimum, yet suitable, answers could be trusted.
Consequently, in recent decades, people have tried to
make tools by which one can obtain almost optimum
solutions, if not the most optimum ones. Metaheuristic
algorithm is known in optimization methods resulting
from scientists' e�orts over several decades. These
methods that are generally derived from nature are
capable of solving complicated problems in a suit-
able time to reach almost optimum answers. In
recent years, these algorithms have experienced an
enormous growth in solving complicated and di�cult
optimization problems. At �rst, these algorithms
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included Simulated Annealing (SA), Genetic Algorithm
(GA), Taboo Search (TS), and arti�cial neural network
(ANN). Successful results of using these methods, all
from nature, were so promising that natural systems
were accepted as the basic source of modeling ideas.
Some of these metaheuristic methods were based on
scienti�c studies done on the behavior of social insects,
e.g., Ant Colony Optimization (ACO), which was
proposed by Dorigo in 1991. Despite being new, it
was used much to deal with scienti�c and practical
aspects of optimization problems, leaving good re-
sults [1]. Despite favorable results, it has not been
applied seriously to solve optimization problems in
geotechnical engineering. It might be due to the recent
use of metaheuristic methods for solving optimization
problems of geotechnical engineering, dating back to
more than a decade ago. On the other hand, it could
be because of ACO, a rather novel method, which dates
back to about two decades ago. The present study
analyzed the applicability of the latter as a valuable
tool. In recent years, developing optimization methods
has been qualitatively and quantitatively in progress.
Di�erent novel metaheuristic methods, such as Bee
Colony Optimization (BCO), Charged System Search
(CSS), Water Evaporation Optimization (WEO), Col-
liding Bodies Optimization (CBO), Enhanced Colliding
Bodies Optimization (ECBO), and Vibrating Particles
System (VPS), have also been introduced.

Using ant colony optimization to �nd the opti-
mum cross-section of earth dams is considered one of
the most complicated problems in geotechnical engi-
neering. This could be due to the complex of several
optimization problems, such as �nding a critical slip
surface for a certain cross-section of an earth dam as
well as an optimum cross-section of the dam at a certain
load of its related cases.

Although several studies have been done to �nd
the geometry of a critical slip surface using some
methods of optimization, ant colony optimization for
analyzing slope stability seems to be rather new.

Baker and Garber [2] used the variation method,
which was later questioned by Luceno and Castillo [3]
who concluded that their variation relation was in-
correctly formulated. Celestino and Duncan [4] as
well as Li and White [5] used the alternating variable
method to locate the critical noncircular failure surface
in slope stability. This method was also disapproved
as it became complicated, even for simple slope stabil-
ity problems. Baker [6] used dynamic programming
to locate the critical slip surface using Spence's [7]
method of slope stability analysis. Other methods,
such as the simplex method, steepest descent, and
Davidson-Fletcher-Powell (DFP) method, have also
been considered in the literature [8-10]. Cheng et
al. [11] pointed out, at least, two broad demerits of
the above-mentioned classical methods of optimization

for slope stability analysis: (1) Classical methods are
applicable mainly to continuous functions and are
limited by the presence of the local minimum; (2)
The global minimum within the solution domain may
not be given by the condition of the gradient of the
objective function rf 0 = 0. To the above-mentioned
two drawbacks, one may also add that many classical
optimization methods usually rely on a good initial
estimate of the failure surface in order to �nd the global
minimum, which is often di�cult to estimate for the
general case.

With the advent of fast computers, modern
metaheuristic optimization-based techniques have been
developed to e�ectively overcome the drawbacks and
limitations of the classical optimization methods in
searching for the critical slip surface in slope stability
analysis. In metaheuristic optimization, the solution
is found among all the possible ones, and while
there is no guarantee that the best solution is found,
solutions close to the best are often obtained quite
e�ectively. Monte-Carlo-based techniques have been
successfully adopted for slope stability analysis through
limit equilibrium methods. This method is essentially a
randomized hunt within the search space, and �nding
the lowest factor of safety becomes a matter of pure
chance. Greco [12] and Malkawi et al. [13,14] used the
random walk-type Monte-Carlo technique for locating
the critical factor of safety in a slope. Monte Carlo-
based methods are simply structured optimization
techniques, in which a large number of random trial
surfaces are generated to ensure that the minimum
factor of safety is found. This is advantageous because
the possibility of �nding a failure surface, which is
di�erent from what the designer originally expected,
will be greater if the search space is not too tightly
de�ned. However, the process involves the analysis of
a large number of solutions, whereas the method does
not guarantee the location of the minimum factor of
safety. Fuzzy logic has also been used for locating the
critical failure surface of several simple slope stability
problems [15-17].

Metaheuristic optimization algorithms have
evolved rapidly in recent years. These algorithms
use some basic heuristic in order to escape local
optima. Metaheuristic implies that low-level heuristics
in the global optimization algorithm are allowed
to obtain solutions better than those they could
have achieved alone, even if iterated. The heuristic
approach is usually controlled by one of the two
general mechanisms: (1) constraining or randomizing
the set of local neighbor solutions to consider in the
local search; (2) combining elements taken by di�erent
solutions. Many metaheuristic algorithms have been
developed in recent years that loosely imitate natural
phenomena.

The simulated annealing method [18], which is
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based on the simulation of a very slow cooling process
of heated metals, is perhaps one of the �rst methods
used for determining the location of the critical failure
surface in slope stability analysis. Cheng [19] applied
the mentioned algorithm to slope stability analysis.
The Genetic Algorithm (GA) developed by Holland [20]
is one of the most popular metaheuristic methods used
in slope stability analysis and is, also, based on the
concepts of genetics and evolution of living creatures.
The optimum solution in GA evolves through a series
of generations. Genetic algorithm-based solutions
have been reported in the literature by Zolfaghari et
al. [21], MacCombie and Wilkinson [22], and Sengupta
and Upadhyay [23], among others. Particle Swarm
Optimization (PSO), �rst developed by Kennedy and
Eberhart [24], is another method that has attracted
attention in slope stability analysis in recent years. As
described by Cheng et al. [25] who successfully applied
the method and the modi�ed form of the algorithm,
Modi�ed Particle Swarm Optimization (MPSO), to
locate the critical non-circular failure surface in slope
stability analysis, PSO is based on the simulation of
simpli�ed social models, such as bird ocking, �sh
schooling, and the swarming theory. Cheng et al. [26]
also used the �sh swarm algorithm for determining the
critical slip surface in slope stability analysis. Other
methods include the harmony search algorithm [27,28],
which is based on the musical process of �nding the
state of perfect harmony, tabu search [29], and the leap-
frog algorithm by Bolton et al. [30].

As a pioneer in the application of modern meta-
heuristic optimization algorithms to slope stability
analysis, Cheng et al. [11] evaluated the performance
of six metaheuristic global optimization methods in
determining the location of critical slip surface in
slope stability analysis, including ACO. As investigated
by Cheng et al. [11], ACO performed e�ciently for
simple problems, while relatively poor performance
was observed in cases where soft bands existed in the
problem. It was also mentioned that all six methods
studied, i.e., simulated annealing, genetic algorithm,
particle swarm optimization, simple harmony search,
modi�ed harmony search, tabu search, and ant colony
algorithm, could work e�ciently and e�ectively, pro-
vided that the domain transformation technique as
suggested by Cheng [19] is adopted in the optimization
algorithms. It must be noted that, in the present
study, in order to determine the critical slip surface,
the simplest and earliest algorithm from the collection
of ant colony algorithm called (AS) has been briey
surveyed. Here, the function of this algorithm has
been evaluated without analyzing the function of other
new, corrected and promoted algorithms of ant colony
in solving the problem of determining the unsuitable
critical slip surface [1].

Kahatadeniya et al. [31] conducted a study on ant

colony optimization in 2009. In their work, although
the simple Ant System (AS) algorithm was used, much
time and care was allocated to setting some param-
eters to achieve better results with which ant colony
optimization algorithm could be evaluated in solving
the problem of slope stability, even in recognizing non-
circular critical slip surface in slopes with complicated
layering. In 2011, Rezaeean et al. [32] carried out
research into determining critical slip surface using
four algorithms selected from ant colony optimization
algorithms, with Ant System algorithm (AS) being
one of them. The study showed that the function of
these new modi�ed algorithms would be far better than
ant system algorithm, which is the �rst, simplest, and
rather most incomplete algorithm in known ant system
algorithms. As a result, in addition to special care
in setting parameters of the algorithm, using modi-
�ed and newer algorithms of ant colony optimization
could de�nitely be one of the most powerful tools to
determine critical slip surfaces, even in complicated
problems of slope stability. In addition, Kashani et
al. [33] and Kang et al. [34] determined the critical
slip surface of slopes in the non-circular mode using
imperialistic competitive algorithm and bee colony
algorithm, respectively. Kang et al. [35,36] also used
support vector machines together with metaheuristic
optimization methods to solve slope stability problems.

Many studies have been carried out on the use of
metaheuristic methods to optimize the shape of con-
crete dams, e.g., gravity dams and arch dams. Kaveh
and Zakian [37], for instance, worked on the optimiza-
tion of cross-sectional areas of gravity dams using opti-
mization algorithms (CSS, CBO, and ECBO) and, also,
Deepika and Suribabu [38] applied Di�erential Evolu-
tion algorithm (DE). Kaveh et al. [39,40] and Talata-
hari et al. [41] also studied the e�ciency of metaheuris-
tic optimization methods in determining the optimum
arch shape in arch dams. However, there has not been
much research done on the optimization of embank-
ments and earth dam cross-sections, whose principles
of analysis and design are completely di�erent from
concrete dams. In 2000, Ponterosso and Fax [42] con-
ducted a study on the optimization of the cross-section
of constructed embankments with reinforced soil using
genetic algorithm. In 2012, Rezaeeian et al. [43]
researched the function of ant colony optimization in
optimizing homogeneous symmetric embankments of
di�erent heights. However, the study did not analyze
the optimization of heterogeneous and asymmetric
earth dams with regard to di�erent load cases.

2. Characteristics of determining optimum
cross-section model

2.1. General model
Using ant colony optimization to �nd optimum cross
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Figure 1. Function of the algorithm in determining the optimum cross-section of an earth dam in a certain load case.

Figure 2. Determination of factor of safety in a slip
surface with Newton's Method.

-section of earth dams is considered one of the most
complicated problems in geotechnical engineering. It
generally consists of several optimization problems such
as:

1. Finding safety factors in a certain slip surface based
on the equilibrium method;

2. Finding the critical slip surface in a certain cross-
section of an earth dam;

3. Finding the optimum cross-section of an earth dam
in certain load cases in an earth dam;

4. Finding the critical load case of an earth dam
dominant in choosing the �nal cross-section of an
earth dam.

Subsections of determining critical slip surface,
especially noncircular critical slip surface, and the op-
timum cross-section of an earth dam are considered as
notable problems in optimization, which are too time-
consuming to be solved by usual traditional methods.
It would become more distinctive when observing these
four steps at the same time. In Figures 1-4, a schematic
of this problem is shown.

In the following, the problem of optimizing the
cross-section of earth dams has been described after
a brief description of the optimization process with
the ant colony optimization algorithm. To avoid
prolongation of the article, the subcategory of how to
determine the critical slip surface of a speci�c cross-
section of an earth dam by ACO algorithm has been

Figure 3. Determination of the critical slip surface in a
certain cross-section of an earth dam.

Figure 4. Determination of the optimum cross-section of
an earth dam showing platform e�ects to decrease the
volume of the dam in certain load cases.

considered; however, Reference [31] has been added for
a further explanation of this point. ACO has been
selected out of a large set of metaheuristic algorithms
to solve this optimization problem due to the fact
that, according to technical texts, it is one of the
best algorithms for solving the problem of determining
the critical slip surface of slopes. As described in
Sections 1, it is regarded as one of the most important
parts of the program of optimizing earth dams.

2.2. Biologic behavior of real ants and
modeling arti�cial ants

Ant Colony Optimization (ACO) is a metaheuristic
method, suggested in 1991 by Dorigo [1], which success-
fully passed its �rst test regarding the Traveling Sales-
man Problem (TSP). The algorithm is generally used to
solve some problems, such as routing problems in trans-
portation, time management in the management �eld,
planning water supply systems, routing telecommuni-
cation networks, etc., leaving many successful results.



1108 A. Rezaeeian et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 1104{1121

Figure 5. Indirect relationship of ants to pheromone to
�nd shorter paths to food source.

In recent years, this optimization algorithm has been
increasingly used to deal with di�erent optimization
problems in several scienti�c �elds, too.

Ant colony optimization is modeled with a natural
process of �nding the shortest path between the nest
and the food source by ants. Biologic bases of this
process were discovered by biologic teams of Goss and
Denenburg who answered the following question: \de-
spite their weak eyesight, how do ants manage to �nd
the shortest path between their nest and food source
even with existing obstacles on their paths?" Here is
where pheromone trails appear as the possible answer
to it. Pheromone is a speci�c odorous substance,
somehow considered to be ant footprint followed by
the other ants to �nd their way. In other words, at the
beginning of the food searching process, there would
be no pheromone left in the environment; therefore,
the pioneered ants tend to move randomly to �nd food
and leave their pheromone trail in the environment.
Having found food by speci�c coding, ants would
return on the same way. Next ants would choose their
paths by the routes being coded by the pioneered ants
and leave pheromone on them. Although choosing
a path tends to be done randomly, much pheromone
could be left on the path. The more odorous the
paths are, the more probable it will be for them to
be chosen. However, at a shorter transition time,
shorter paths (more optimum) are passed more quickly
with more pheromone being left on them. Conversely,
at a longer transition time and longer paths to the
food source, less pheromone trail would be left. As
a result of pheromone evaporation, the longer paths
would gradually disappear, and almost all of the ants
would move towards the shorter paths as a result
(Figure 5) [1].

Immediately after this discovery by biologists in
1991, Dorrigo modeled, according to this natural opti-
mization event, and invented ant colony optimization
algorithm. In order to use the process of food �nding
by natural ants in optimization problems, the following
equation was presented:

G = (D;L;C);

Figure 6. Graph of a general optimization case by ACO
algorithm.

where D = fd1; d2; :::; dng would represent a collection
of decision points from which decision points could be
decided. L = fli;jg is a collection of destination points,
j = 1; 2; :::; n in the decision point, and i = 1; 2; :::;m
chosen as graph points by ants. Finally, C = fci;jg
represents di�erent costs related to each destination
point. Each possible path on the graph and a path
with the minimum cost are generally called answer
(') and optimum answer ('�), respectively. Members
of D and L could be constrained, if necessary. In
Figure 6, a general sample of a graph of optimization
with variables X1, X2, X3, and X4 is presented [1].

2.3. Cross-section subdivision optimizer
The problem of �nding optimum cross-section is pre-
sented in Eq. (1):

C = minA(x); (1)

where C is the objective function of the problem, A(x)
is the cross-sectional area of a certain section of the
earth dam, and x is a set of variables in this problem,
explained further.

In determining the optimum cross-section prob-
lem, the objective function was considered the cross-
sectional area of certain sections which should be
minimized. In other words, the objective was to �nd
one cross-section with minimum area and, thereupon,
minimum volume of earth works in certain earth dams.
Variables used for determining the optimum cross-
section problem generally include n, n0, b1i, b2i, h1i,
h2i, I1i, and I2i, represented in Figure 7. As shown
in Figure 7, n and n0 are the number of berms at
upstream and downstream of an earth dam, b1i and
b2i are widths of the ith berm at both upstream and
downstream, h1i and h2i are the heights of the ith
berm at upstream and downstream of it from the
foundation level, and I1i and I2i are the slopes of the
ith zone at upstream and downstream of the structure.
In Figure 7, B, H, and Hf are constant parameters
of the cross-section of the earth dam, which are the
width of earth dam crest, the height of the dam, and
the foundation depth, respectively.



A. Rezaeeian et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 1104{1121 1109

Figure 7. Optimization of the cross-section of an earth dam.

Figure 8. Optimization problem graph involving minimization of earth dam cross-section.

The variables, shown in Figure 8, are involved
in �nding optimum values of the cross-section with n
berm at upstream and n0 berm at downstream variables
by moving arti�cial ants on this graph and depositing
pheromone trail on the nodes of each path.

Two groups of independent constraints are consid-
ered in this problem. The �rst includes constraints that
de�ne the boundary of ant searching space, provided by
searching space including possible solutions (possible
paths). Zones with impossible solutions need to be
avoided to determine searching space. To tackle this
problem, variables b1i and b2i were chosen to be from
4 to 10-40 m (according to the height of the dam). The
minimum width of the berm was determined according
to administrative issues. Its maximum range was also
measured by the maximum de�ned width of berms
in earth dams with di�erent heights. Values of h1i
and h2i were chosen between 10 and H minus 10
m, randomly. I1i and I2i were also randomly, yet
reasonably, selected, i.e., between response angle of soil
material and slope of 1:4.

The second group of constraints includes condi-
tional constraints, which would di�erentiate between
possible solutions and impossible ones. To determine
their impossibility and avoid them if encountered, one
way could be punishment due to not following the
constraints. Thus, instead of applying pheromone

trial based on the objective function on these paths,
pheromone trail was avoided by applying a penalty.
This was exposed to the conditional constraints pre-
sented by Eqs. (2)-(4):

h1i+1 � h1i � a; (2)

h2i+1 � h2i � a; (3)

Fs � Fsallow: (4)

According to Eqs. (2) and (3), the height of
each berm should be more than that of previous
berms. The di�erence of the height of each berm
from that of the previous one should also be more
than or equal to a. Moreover, the minimum height
of the �rst berm (lower berm) should be greater than
or equal to foundation level a, unless this section
was forgotten due to applying penalty because of
not satisfying geometrical conditions. Eq. (4) also
indicates that each section of an earth dam should
meet slope stability conditions in all load cases of
the earth dam. These load cases included the end
of construction step, steady-state seepage of mid-level
step, steady-state seepage of maximum level step, and
rapid drawdown of the normal level step. In all load
cases, the security factor of considered minimum cross-
section should be more than the allowed security factor
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Figure 9. Flowchart of ant colony optimization algorithm for determining the optimum cross-section of earth dams.

while loading. Otherwise, if the security factor was
less than the allowed security even in one of the load
cases, it would be forgotten by applying penalty. In
this case, the penalty would apply a cross-section of
1010 m2. This large amount would cause pouring
pheromone deposit to approach zero on unsuitable
paths. As a result, impossible paths (solutions) would
be forgotten, hence not e�ective in selecting further
arti�cial ants in future iterations. In order to optimize
earth dam cross-sections in all common load cases of
earth dams, ODACO (Optimization of Dams by Ant
Colony Optimization) was coded in more than 11000
lines by MATLAB. Figure 9 shows the owchart of
general stages of determining optimum cross-section of
earth dam algorithm, ACO.

3. Review of ant colony optimization
algorithms

Various improvements have been introduced to the
original algorithm in recent years, aiming to make
the search algorithm both more e�ective and more
e�cient. Accordingly, in addition to the Ants System

(AS) algorithm, three other algorithms have been more
successful and have been used in the present study:
ranked ant system (ASrank), elite ant system (ASelite),
and Maximum-Minimum Ant System (MMAS). The
principal features of these algorithms are briey dis-
cussed herein:

a. Ants System (AS): This is the simplest form of
ACO �rst introduced by Dorigo et al. [44]. In AS,
arti�cial ants choose their path according to the
following probabilistic relation:

�i;j(k; t) =
[�i;j(k; t)]�[�i;j(k; t)]�Pj
j=1[�i;j(k; t)]�[�i;j(k; t)]�

; (5)

where �i;j(k; t) is the probability of selecting the ith
node of the jth column by the kth ant in the tth
attempt. �i;j(k; t) in Eq. (5) represents the heuristic
information, and the determination of its value is
problem-speci�c. In some problems, the value of
�i;j(k; t) is hard to determine and is, therefore,
omitted from the equation. � and � in Eq. (5) are
constants that determine the role of pheromone and
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heuristic information in the arti�cial ants' decision-
making process. If �� �, the role of pheromone is
emphasized and heuristic information has less e�ect
on the decision of the ants. Adversely, � � �means
that the ants decide which node to move to base on
the heuristic information, paying less attention to
the pheromone deposited in the previous attempts
[44].

Another important characteristic of ant colony
algorithms is the way that pheromone update is
de�ned in these algorithms. AS de�nes pheromone
using Eq. (6) and ��i;j is determined as follows:

��i;j(t) =
mX
k=1

Q
f(Sk(t))

Isk(t)f(i; j)g; (6)

where m is the number of arti�cial ants, or the
number of solutions produced; Q is a constant
named the pheromone return index, and its value
depends on the amount of pheromone deposited;
Sk(t) represents all the nodes in which the kth ant
has been chosen on the tth attempt; ISk(t)f(i; j)g is
a coe�cient which is either zero or one, depending
respectively on whether the kth ant has chosen the
node (i; j) or not. In other words, ISk(t) ensures
that only the nodes towards which the kth ant has
moved will be considered in depositing pheromone.
It can be deduced from Eq. (8) that, in AS,
solutions with a lower objective function will have
more pheromone deposited, and vice versa [44].

b. Elitist Ants System (ASelite): In this algorithm,
much attention is dedicated to the elite ant of the
colony. The elite ant is the one which has produced
the best answer in all previous attempts. Specif-
ically, in ASelite, extra pheromone is deposited on
the path which the elite ant has produced. The ants
decide which node to move towards using Eq. (7).
The pheromone update rule in ASelite is as follows:

�i;j(t+ 1) = (1� �)�i;j(t) + ��i;j(t) + ��� qbi;j(t);
(7)

where ���gbi;j(t) is the extra pheromone, deposited
by the elite ant, and � is the weight of the extra
pheromone. ASelite is an attempt to make a
balance between exploration and exploitation in the
algorithm [44].

c. Ranked Ants System (ASrank): The ranked
ants system was �rst introduced by Bullnheimer
et al. [45,46] as an extension of the elitist ants
system. In this algorithm, unlike ASelite in which all
ants participate in the pheromone update process,
only � � 1 elite ants that have created better
solutions are chosen to update the pheromone of
the paths they have chosen. In ASrank, following

each attempt, the ants are lined up according to
the solutions they have obtained, and pheromone
update values are assigned to each ant; the most
pheromone is assigned to the best solution and
decreases thereafter to the last ant in the line.
Thus, the pheromone update rule in ASrank can be
stated as in Eq. (8) [44]:

�� ranki;j (t) =
��1X
k=1

(� � k)
Q

f(Sk(t))
ISk(t)f(i; j)g:

(8)

d. Minimum-Maximum Ants System (MMAS):
Stutzle and Hoos [47-49] �rst reported the MMAS
algorithm in a successful attempt to improve the
e�ciency of AS. The general structure of MMAS
is similar to AS. However, only the path with the
best solution in each attempt is chosen to deposit
pheromone on its trail. In this way, the solution
rapidly converges to the optimum. The danger
always exists that the ants quickly move towards
the �rst optimum solution achieved, before having
the chance to explore other possibly better solutions
in the search space. In order to prevent this
danger, a restriction is placed on the minimum
and maximum allowable net pheromone deposit on
the trails, i.e., the deposited pheromone value is
limited to [�min; �max]. Following each pheromone
deposition step, all pheromone values are controlled
to �t within the mentioned limit, and any node for
which the pheromone value exceeds the limits is
adjusted to the allowable limit. This is one way
to promote the ants to explore new solutions in
the search space. The maximum and minimum
allowable pheromone values of the tth attempt are
calculated as follows:

�max(t) =
1

1� �
Q

f(Sgb(t))
; (9)

�min(t) =
�max(t)(1� n

p
Pbest)

(NOavg � 1) n
p
Pbest

; (10)

where f(Sgb(t)) is the value of the objective func-
tion up to the tth attempt, Pbest is the probability
of the ants choosing the best solution once again,
and NOavg is the average of the number of decision
choices in the decision points. It is noteworthy to
mention that the initial pheromone value associated
with the nodes, �0, is �max(t) [47].

4. Implementation of ACO in optimization of
cross-sections in embankments and earth
dams

Three examples were analyzed in this study. In
the �rst example, the optimization of a homogenous
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and symmetric cross-section of an embankment with
di�erent heights was analyzed in which, besides ant
colony optimization (AS) as the earliest and simplest
algorithm from the collection of any colony, three
other algorithms were also used, e.g., elite Ant System
(ASelite), rank Ant System (ASrank), and Maximum
Minimum Ant System (MMAS), to make a comparison
between the answers in this optimization problem.
In the second and third examples, in order to show
the e�ect of optimizer program on decreasing volume
and costs of these dams, a case study regarding the
optimization of cross-sections of two existing earth
dams in Iran was investigated.

4.1. Embankments
Example 1
The �rst example represented homogeneous symmetric
embankments composed of coarse soils with di�erent
heights, in addition to the number and arrangement of
berms. Soil parameters were considered to be weight,
cohesion, and e�ective friction angle (20.0 kN/m3,
0 kPa, and 39�, respectively). The results showed
that the e�ect of berms on embankments would be
the decreasing volume of embankments, assuming that
embankments were founded on bedrock. Figure 10
shows the layout of the embankments. Here, di�erent

Figure 10. Con�guration of variables controlling
section-�lling volume.

heights were considered for embankments, and the
e�ect of di�erent berm numbers was considered in each
embankment. Thus, not only the e�ect of berms on
decreasing embankment volume was considered, but
also the optimum number of berms in each speci�c
embankment height was determined. Four di�erent ant
colony algorithms, i.e., ant system, elite ant system,
ranked ant system, and maximum-minimum ant sys-
tem, were employed to study the e�ciency of ant colony
optimization algorithms in reaching optimum cross-
section. Cross-sectional areas obtained from di�erent
embankments using each algorithm are tabulated in
Tables 1-7. Table 8 shows the amount of volume
reduction at di�erent embankment heights in a no-

Table 3. ACO calculations of minimum �lling volume
regarding a 40 m high embankment.

Algorithms Number of berms

Zero One Two

AS

F
ill

in
g

vo
lu

m
e

2960 2739 2737

ASelite 2800 2593 2775

ASrank 2800 2723 2681

MMAS 2800 2507 2636

Table 4. ACO calculations of minimum �lling volume of
a 30 m high embankment.

Algorithms Number of berms

Zero One Two

AS

F
ill

in
g

vo
lu

m
e

1740 1501 1437

ASelite 1560 1382 1488

ASrank 1560 1350 1492

MMAS 1560 1390 1550

Table 1. ACO calculations regarding minimum �lling volume of a 160 m high embankment.

Algorithms Number of berms

Zero One Two Three Four Five Six

AS

F
ill

in
g

vo
lu

m
e

63840 43499 45339 43592 49278 52745 68340

ASelite 43360 43971 42602 44236 43118 43444 43456

ASrank 43360 44336 42317 42316 43227 43523 42135

MMAS 43360 42306 42834 43071 42616 42877 42638

Table 2. ACO calculations of minimum �lling volume of an 80 m high embankment.

Algorithms
Number of berms

Zero One Two Three Four

AS

F
ill

in
g

vo
lu

m
e

12080 11596 11135 12163 12314

ASelite 11440 11580 10960 11112 11007

ASrank 11440 11121 11316 10842 11363

MMAS 11440 11213 11177 11426 11731
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Table 5. ACO calculations of minimum �lling volume of
a 20 m high embankment.

Algorithms Number of berms

Zero One Two

AS
F

ill
in

g
vo

lu
m

e
760 656 697

ASelite 760 672 686

ASrank 760 728 787

MMAS 760 710 740

Table 6. ACO calculations of minimum �lling volume of
a 10 m high embankment.

Algorithms Number of berms

Zero One Two

AS

F
ill

in
g

vo
lu

m
e

200 170 243

ASelite 200 157 220

ASrank 190 166 182

MMAS 190 164 212

Table 7. ACO calculations of minimum �lling volume of
a 5 m high embankment.

Algorithms Number of berms

Zero One Two

AS

F
ill

in
g

vo
lu

m
e

55 50.5 59

ASelite 55 51.5 52

ASrank 55 47.5 54.25

MMAS 55 50 54

Table 8. Percent of reduction in �lling volume of various
heights.

Height of earth
dam (m)

Reduction of
embankment volume
compared to without
berm cross-sections

(%)
5 14
10 17
20 13.7
30 13.5
40 10.6
80 5
160 3

berm condition [33]. This simple example was chosen
to illustrate that even with the simplest problems,
the AS is weak at �nding the optimum cross-section
of embankments, compared to the other algorithms.
Moreover, a graph of the number of cycles against
the cross-sectional area for this problem is drawn
in Figure 11, suggesting that AS is not e�cient in

Figure 11. Comparison of the e�ciency of the ACAs.

searching for the optimum solution, compared to the
other ACO algorithms. The authors attribute this
behavior to the fact that, in the pheromone-depositing
process, AS does not support the optimum solutions.
Therefore, it seems critical to point out that in order
to properly assess ACO in solving geotechnical opti-
mization problems such as determination of optimum
cross-section of earth dams, it is necessary to evaluate
at least several of the available ACAs before deducing
a general judgment.

As clear in the table, in the case of homogeneous
embankments, if the height of an embankment is
less than 40 m, by using berms of suitable numbers,
levels located in the body of them may reduce their
volume by more than 10 percent, compared to an
embankment without berms. Moreover, if the height of
the embankment exceeds 40 m, as the height increases,
the e�ect of berms may reduce. According to Tables 1-
7, an optimum number of berms could be considered
in the maximum reduction of �lling volume in the
embankment. The number could be three berms in an
80 m high embankment and one berm of 40 m, 30 m,
20 m, 10 m, and 5 m high embankments [42].

Following the �rst example, by deleting some
of the geometrical constraints, a case study of a
40 m high homogenous symmetric embankment was
investigated. The aim was to compare the e�ects of
unequal slopes and berms with di�erent widths on
the decreasing volume of earthwork embankments and
earth dams (Figure 12). The results achieved through
the comparison are shown in Table 9. As can be
seen, in a 40 m high embankment containing coarse-
grained soil, the number of optimum berms is the same
in both unequal and equal slopes. As can be also
observed, in an embankment with unequal slopes, with
optimum numbers, widths, and berm levels, the volume
of earthwork decrease to around 14.3 percent, while
in an embankment with equal slope, the reduction is
10.6 percent. Thus, compared to equal slopes, unequal
slopes decrease the earthwork volume by 3.8 percent.
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Table 9. Results of ant colony optimization algorithm to determine minimum cross-section of a 40 m high embankment
with equal and unequal slopes.

The number of the berms With unequal slopes With equal slopes
The name of the algorithm One Two One Two

AS 2930 2511 2739 2737
ASelite 2398 2771 2593 2775
ASrank 2403 2631 2723 2681
MMAS 2485 2805 2507 2636

Figure 12. The General geometry of embankments: (a) With equal slope and (b) with unequal slope.

Figure 13. Slope changes in both modes of unequal slopes: (a) Optimum and (b) non-optimum.

Figure 14. E�ect of an unequal berm in the optimum cross-section of embankments: (a) Widths of berms are equal, (b)
widths of berms decrease from bottom to top, and (c) widths of berms increase from bottom to top.

Figure 15. Critical cross-section of Gotvand Oliya Earth Dam.

Indeed, this may happen when the slopes increase
from the bottom to the top of the body (Figure 13).
Research has shown that the more the widths of the
berms are at lower levels (and less at upper levels), the
more the optimum cross-section of the embankments
will be (Figure 14). Hence, using berms of suitable
numbers, widths, and levels of unequal slopes results in
more decreases in the volume of embankments because
of declines in active force as well as increases in resisting
force.

4.2. Earth Dams
Example 2
The second example is a case study on the e�ects
of optimization of an earth dam cross-section by ant
colony optimization on the Getvon-Olya Dam, a zoned
earth dam with a central clay core considered as the
highest earth dam in Iran, about 182 m high from
the foundation. It is located in Khuzestan Province
and was built in 2013 with the cost of more than
2000 billion Tomans. In Figure 15, the critical cross-
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Table 10. Characteristics of the materials used in
Gotvand Oliya Earth Dam.

Components Y (kN/M3) C (kPa) � (degree)

Shell 1 21 0 40

Shell 2 20 0 35

Filter 20 0 30

Drain 20 0 35

Core 20.5 60 20

section of the dam is presented. Table 10 provides
information on the characteristics of the materials used
for constructing it. It was built based on minimum and
maximum ant colony optimization algorithm (MMAS),
one of the most powerful ant colony optimization
algorithms surveyed and optimized under all common
load cases of earth dams. Since this structure is one
of the highest dams, the maximum width of berms
was considered to be about 40 m. The results are
shown in Figure 16 and Table 11. As can be seen,

the applied program to optimize this earth dam led
to a 5% decrease in the volume of embankment and,
consequently, to a decrease in costs. To save some
time, the analysis was done by ODACO to reach rather
optimum answers. Undoubtedly, spending more time
would result in achieving more optimum answers. On
the other hand, the maximum number of berms was
two, and several parameters of the optimum �nding
program were set experimentally with the least trial
and error. Obviously, considering more berms and
spending more time setting optimization parameters
de�nitely lead to more optimum answers. However,
this paper showed that by applying these tools without
spending too much time and boring trial-and-error
methods as well as arranging more suitable slopes
and berms in earth dams considering administrative
restraints in medium and huge projects of constructing
dams, considerable amounts of money could be saved.
For instance, in the Getvon-Olya Dam, the volume of
earthwork and the cost of construction were considered
to be more than 32 million cube meters and 2000
billion Tomans, respectively. This 5.8% decrease may

Figure 16. Results of the optimum cross-section of Gotvand Oliya Earth Dam by ant colony optimization algorithm: (a)
Critical cross-section of Gotvand Oliya Earth Dam, (b) optimum cross-section of Gotvand Oliya Earth Dam without
berms, (c) optimum cross-section of Gotvand Oliya Earth Dam with one berm, and (d) optimum cross-section of Gotvand
Oliya Earth Dam with two berms.
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Table 11. Results of the optimum cross-section of Gotvand Oliya Earth Dam by ant colony optimization algorithm
without berms and with one or two berms.

Case of the
cross-section

Cross-sectional area
(m2)

Percent of change
in cross-section

Decrease of
increase

Present 80087 | |
Optimum without berm 78006 2.6 #
Optimum with 1 berm 77075 3.8 #
Optimum with 2 berms 75444 5.8 #

Table 12. Characteristics of the materials used in Alborz Earth Dam.

Components Y (kN/M3) C (kPa) � (degree)

Shell 21 0 42
Filter 19 0 35
Core 19.5 50 11

Table 13. Results of the optimum cross-section of Alborz Earth Dam by ant colony optimization algorithm without
berms and with one berm or two berms.

Case of the
cross-section

Cross-sectional
area (m2)

Percent of change
in cross-section

Decrease of
increase

Present 15274 | |
Optimum without berm 14929 2.2 #
Optimum with 1 berm 14795 3.1 #
Optimum with 2 berms 14326 6.2 #

save more than 100 billion Tomans in the cost of
constructing dams.

Example 3
In the third example, a zoned earth dam with di�erent
heights, numbers, and di�erent berm arrangements
under all common load cases of earth dams was studied.
A case study concerning the optimization of the Alborz
Earth Dam cross-section, a 78 m high coral dam with
a vertical clay core located in Mazandaran, Iran, was
investigated �rst. The critical cross-section of the dam
and the characteristics of the materials used for its
construction are presented in Figure 17 and Table 12,
respectively.

The dam was constructed by minimum and max-
imum ant system optimization algorithm (MMAS),
one of the most powerful ant colony optimization

algorithms surveyed and optimized under all common
load cases of earth dams. Considering the height of
this earth dam, the maximum width of berms was
assumed to be about 20 m. The results are shown
in Figure 18 and Table 13. As can be seen, applying
this program in order to optimize the earth dam led
to a 6% decrease in the volume of embankments and,
consequently, a decrease in costs. The analysis was
done by ODACO. Spending more time would result
in more exact and probably more optimum answers
as well as more decreases in costs. To compare how
much the optimum cross-sectional area with berms
decreased to cross-section without berms in earth dams
of di�erent heights, the Alborz Dam was scaled and
analyzed at heights of 30, 50, 100, 150, and 200 m.
Maximum widths of berms in dams of 30, 50, 100, 150,
and 200 m high were considered to be 8, 10, 20, 30,

Figure 17. Critical cross-section of Alborz earth dam.
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Figure 18. Results of the optimum cross-section of Alborz Earth Dam by ant colony optimization algorithm: (a) Critical
cross-section of Alborz Earth Dam, (b) optimum cross-section of Alborz Earth Dam without berms, (c) optimum
cross-section of Alborz Earth Dam with one berm, and (d) optimum cross-section of Alborz Earth Dam with two berms.

and 40 m, respectively. Characteristics of optimum
cross-sections were analyzed in cases with and without
berms, presented in Table 14. As the table shows,
in comparison with cross-sections without berms, the
greater the heights of the earth dams are, the more the
lowering e�ects of berms in the decreasing cross-section
will become. In other words, in shorter dams up to the
height of 50 m, using berms in dams is administrative
with no positive e�ects on decreasing embankment
volumes. However, in higher dams of 50 m, the e�ect
of using berms on decreasing embankment volumes is
totally obvious, especially in much higher ones. In
addition, in ranges with positive e�ects on decreasing
embankment volumes (more than 50 m high), the
higher the dams are, the fewer the number of needed
berms to �nd more optimum cross-sections will be.
Therefore, in earth dams of 78 and 100 m high, two
berms are needed upstream and downstream; however,
in earth dams of more than 150 and 200 m high, only
one is required. Interestingly, the results are exactly
the opposite of the �rst example, showing that the
greater the height of the embankment, the less the
e�ect of berms in the embankment volume. In other

words, using berms in embankments of more than 40
m high might not lead to considerable decreases in
embankment volumes. This considerable di�erence
between embankments and earth dams could be due
to the variety of load cases of earth dams (compared to
embankments), the e�ect of full and half-full reservoir
in earth dams, and encountering some constraints
in analyzing the embankments, such as symmetry,
equality of slopes, and limitation on the width of berms.
The characteristics of the optimum cross-sections of
earth dams in di�erent modes are shown in Table 15,
with parameters being presented from the lower to the
upper levels.

5. Conclusion

In embankments lower than 40 m high with coarse-
grained soil founded on hard rock, using common berms
(maximum width of 10 m) of suitable numbers, widths,
and arrangements in their cross-section could decrease
embankment volumes more than 10%. In contrast,
in embankments of more than 40 m high, the e�ect
of small berms on decreasing embankment volumes



1118 A. Rezaeeian et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 1104{1121

Table 14. Results of the optimum cross section of earth dams at the heights of 30, 50, 100, 150, and 200 m by ant colony
optimization algorithm without berms and with one or two berms.

Cases Decrease of
increase

Percent of change
in cross-section

Cross-sectional area
(m2)

Height (m) Number of berms
30 0 2130 | |

1 2275 7 "
2 2420 14 "

50 0 6025 | |
1 6190 2.7 "
2 6133 1.8 "

100 0 24600 | |
1 24519 0.3 #
2 24130 1.9 #

150 0 55350 | |
1 53700 3 #
2 55770 0.8 "

200 0 98400 | |
1 96929 1.5 #
2 99733 1.4 "

Table 15. Details of the optimum cross-section of earth dams at the heights of 30, 50, 100, 150, and 200 m by ant colony
optimization algorithm without berm and with one and two berms.

Cases Upstream
slopes

Downstream
slopes

Berms width
in upstream

(m)

Berms width
in downstream

(m)

Berms level
in upstream

(m)

Berms level
in downstream

(m)
Height

(m)
Number of

berms
30 0 1:2.2 1:2.2 | | | |

1 1:2.3 1:2.3 1:2.1 1:2.1 4.7 4 17 16
2 1:2.4 1:2.1 1:2.0 1:2.2 1:2.1 1:2.2 4.3 4 4 5.7 13 21 12 28

50 0 1:2.3 1:2.2 | | | |
1 1:2.3 1:2.2 1:2.1 1:2.1 9 10 27 13
2 1:2.4 1:2.3 1:2.0 1:2.7 1:2.0 1:2.3 9 4 5 4 11 27 11 38

100 0 1:2.3 1:2.3 | | | |
1 1:2.9 1:2.1 1:2.2 1:2.1 12 9 39 65
2 1:2.7 1:2.4 1:2.1 1:2.5 1:2.4 1:2.2 7 4 4 4 18 42 16 43

150 0 1:2.3 1:2.3 | | | |
1 1:2.3 1:2.2 1:2.2 1:2.1 4 13 97 56
2 1:2.5 1:2.2 1:2.2 1:2.2 1:2.2 1:2.2 26 8 21 4 34 72 24 81

200 0 1:2.3 1:2.3 | | | |
1 1:2.1 1:2.3 1:2.1 1:2.2 4 10 26 113
2 1:2.4 1:2.2 1:2.2 1:2.3 1:2.4 1:2.2 22 10 10 16 30 92 38 121
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would be less. Therefore, using these berms is proposed
only in meeting executive needs of the embankments.
In fact, berms with smaller embankment widths and
average or more heights are considered grooves on
embankments. Thus, to decrease the embankment
volumes, berms with more widths are undoubtedly
suggested.

In earth dams and other embankments, there are
some optimum berms at each height. With the number
of berms being more or less than needed, the volume
of embankments would increase.

In determining the optimum cross-section of em-
bankments and earth dams, MMAS, ASrank, and
ASelite might do better than AS that, according to
technical texts, proved to be the simplest and weakest
algorithm. However, this weak function could not be
enough to support AS against more optimum answers,
which were obtained out of middle iterations; hence,
in cases where only ACO is used or its function is
compared to other algorithms, AS should not be used,
and its results should not be trusted. However, its
malfunction might not necessarily mean its rejection
in that �eld.

Compared to cross-sections with equal slopes, in
earth dams and embankments, using unequal slopes
could cause decreases in embankment volumes and
more optimum cross-sections. However, it seems neces-
sary to carefully consider the fact that the slope should
gradually increase from bottom to top. In addition,
using berms of di�erent widths could cause decreases
in cross-section of embankments and earth dams. It
happened when berms were of lower levels and their
widths gradually decreased from bottom to top.

By using ODACO and an arti�cial intelligence
method, like Ant Colony Optimization algorithm,
(ACO) besides applying administrative constraints,
instead of designers, a related software product respon-
sible for implementing the trial-and-error method of
�nding either the critical slip surface or the optimum
cross-section of earth dams was used. Interestingly,
the obtained results were often much more optimum.
Therefore, this method would not only simplify design-
ing earth dams for counselors, but also cause saving and
decrease high costs of construction and, �nally, bring
more success.

In earth dams with the heights less than 50 m,
the e�ects of berms would not only be negative, but
also cause opposite e�ects. In other words, in earth
dams (up to 50 m high), using berms could only
be justi�ed in administrative requirements considered,
which would not be recommended as an alternative
to decreasing embankment volumes and optimization
of earth dam bodies. However, to increase heights
of earth dams, especially higher earth dams, using
berms could have positive and considerable e�ects on
the decreasing cross-section and volume of embank-

ments and would even result in a decrease in the
volume of embankments up to 6%. As a result, in
higher earth dams which are costlier, using berms and
�nding suitable and optimum arrangements (de�nitely
not possible without optimization tools) could lead
to considerable decreases in construction costs. As
mentioned earlier, the e�ect of berms on embankments
could be exactly the opposite of earth dams, and
the e�ect of decreases on embankment volumes could
only be considerable in shorter embankments (from 50
m high). In these embankments, using berms with
an optimum arrangement might cause a decrease in
embankment volumes up to 15 percent. Interestingly,
usually, de�ned embankments without earth dams,
such as road embankments, tend to be located here.
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