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Abstract. Economic Load Dispatch (ELD) is an important part of cost minimization
procedure in power system operation. Di�erent derivative and probabilistic methods are
used to solve ELD problems. This paper proposes a powerful Sine Cosine Algorithm (SCA)
to explain the ELD issue including equality and inequality restrictions. The main aim of
ELD is to satisfy the entire electric load at minimum cost. The SCA is a population-based
probabilistic method, which guides its search agents that are randomly placed in the search
space towards an optimal point using their �tness functions and keeps a track of the best
solution achieved by each search agent. SCA was used to solve the ELD problem due to
its favorable exploration and local optima escaping technique. This algorithm con�rmed
that promising areas of the search space were exploited to have a smooth transition from
exploration to exploitation using sine and cosine functions. Simulation results proved that
the proposed algorithm surpassed other existing optimization techniques in terms of quality
of the solution obtained and computational e�ciency. The �nal results also proved the
robustness of the SCA.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Economic Load Dispatch (ELD) is considered as one of
the valuable optimization problems in the �eld of power
system operations. The ELD ful�ls the total load
demand by economically allocating the load demand
to each and every generator while satisfying their
operation and physical constraints. The main aim of
the ELD is to make the entire system reliable and to
minimize the total generation cost of the thermal power
plant. Also, it satis�es all the constraints on each
and every generator that is considered for the ELD
problem.
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There are many classical optimization methods,
e.g., gradient method [1], Quadratic Programming
(QP) [2], Lagrangian relaxation [3], Hop�eld modeling
framework [4], Linear Programming (LP) [5], and
Dynamic Programming (DP) [6], which assume a linear
increasing cost function. The application of such
methods to solving the ELD problem has generally
been successful. However, the main problem with the
classical approach is that it tends to converge on a
local optimum and then, begins to diverge from the
global optimal solution. The problem with the DP
approach is that it requires very large dimensions and
so many programming e�orts. These classical methods
are not able to locate the global optimum solution
because of the presence of many non-linear equations
like the non-smooth cost function, ramp rate limit,
and discontinues Prohibited Operating Zones (POZs).
Also, due to non-linearity of the ELD problem, many of
the classical optimization techniques cannot reach the
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global optimal solution and tend to diverge at a local
optimum. Therefore, it is imperative to develop an
optimization technique that can overcome drawbacks
of the classical methods and give the global optimum
solution in the lowest computational time. Many
arti�cial intelligence algorithms like the Hop�eld neural
network [7] have been used in solving the ELD problem
to overcome the mentioned drawbacks. The problem
with the arti�cial intelligence algorithms is that they
take a huge number of iterations to reach the global
optimum solution. Hence, more time is required to
reach the global solution. The computer technology has
helped to develop many population based heuristic op-
timization techniques, e.g., Di�erential Evolution (DE)
[8], Evolutionary Programming (EP) [9], Hybrid Evo-
lutionary Programming (HEP) [10], Particle Swarm
Optimization (PSO) [11], Civilized Swarm Optimiza-
tion (CSO) [12], Craziness based PSO (CRPSO) [13],
Hybrid PSO (HPSO) [14], Modi�ed PSO (MPSO) [15],
Genetic Algorithm (GA) [16], Hybrid GA (HGA)[17],
Adaptive Real Coded GA (ARCGA) [18], Bacteria
Foraging Optimization (BFO) [19], Modi�ed BFO
(MBFO) [20], modi�ed Arti�cial Bee Colony (ABC)
[21], Seeker Optimization Algorithm (SOA) [22], Ant
Colony Optimization (ACO) [23], Tabu Search (TS)
[24], Backtracking Search Algorithm (BSA) [25], and
Teaching Learning Based Optimization (TLBO) [26]
for solving ELD problems. Roy and Bhattacharjee [27]
and Zarei et al. [28] solved the problem of unit
commitment. Also, an optimization technique based on
trigonometric functions, called Sine Cosine Algorithm
(SCA), was used to solve the problem of unit commit-
ment [29]. Apart from electrical problems, SCA has
also been used to solve the engineering design problems
[30]. Even the problem of short-term hydrothermal
scheduling has been solved using the SCA technique
[31]. An enhanced version of the PSO was proposed
to solve the problem of ELD [32]. A new maximum
likelihood optima technique was presented to solve
the ELD problem [33]. Group Leader Optimization
(GLO) [34] with special ability to solve the non-
linear and the non-quadratic equations with greater
ease was proposed. However, some of the above-
mentioned algorithms have di�culties in �nding the
local optimum and some have problems in �nding
the global optimum solution. Therefore, to overcome
such kind of problems, a new powerful optimization
technique is needed.

The SCA [35] was proposed based on the trigono-
metric functions sine and cosine to �nd the �tness
function of a search agent. In this method, the search
agent having the maximum �tness is made to move
towards the global optimum. The superiority of this
method is the exploration and exploitation property
it utilizes to reach the global optimal value in the
lowest computational time. This characteristic helps

the method to avoid the local optima and move directly
towards the global optimum value.

To give a better solution to the ELD problem
by implementing the trigonometric functions in the
algorithm, we applied SCA to solving the problem.
ELD is also a problem related to power system opti-
mization in which the fuel cost has to be minimized.
These are elaborately described in the following sec-
tions.

Section 2 formulates various ELD problems with
di�erent feasible constraints. The conception of the
SCA is described in Section 3. The performance of
the SCA under various test systems and the simula-
tion studies are discussed in Section 4. Finally, the
conclusions are presented in Section 5.

2. Problem formulation

The ELD problems are either convex or non-convex
with some linear and nonlinear constraints in di�erent
applications.

The objective function of ELD with quadratic cost
function is given as follows [36]:

FCost = min
NX
a=1

�
�a + �aPa + aP 2

a
�
: (1)

For more realistic and practical application of ELD
problems, the smooth quadratic cost function can be
modi�ed by adding sinusoidal terms of ripples input-
output curve with valve point e�ects. The valve point
e�ect based cost function of ELD is given below [36]:

FCost = min
NX
a=1

�
�a + �aPa + aP 2

a +
�����a

� sin
�
"a
�
Pmin
a � Pa�	�����; (2)

where �a, �a, a, �a, and "a are the constant values of
fuel cost function. N is the total number of thermal
generators. Power generation by each generator is
indicated by Pa. Lower limit and higher limit of power
generation are characterized by Pmin

a and Pmax
a , respec-

tively. Power generation by each unit is determined by
the capacity constraint of the following generator:

Pmin
a � Pa � Pmax

a : (3)

After identifying the inequality constraint of ELD
problem, its equality or real power balance constraint
can be formulated as:

NX
a=1

Pa � PD � PLoss = 0; (4)

where PD is total active power demand of the system
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and total transmission loss PLoss is calculated using the
B-matrix loss coe�cients, which are expressed as [36]:

PLoss =
NX
a=1

NX
b=1

PaBabPb +
NX
a=1

B0aPa +B00: (5)

Ramp rate limit is another constraint considered in
ELD problems to increase the life of generators as given
below:

Pa � Pa0 � URa (as generation rises) ; (6)

Pa0 � Pa � DRa (as generation declines) ; (7)

and:

max
�
Pmin
a ; Pa0 �DRa� � Pa

� min (Pmax
a ; Pa0 + URa) ; (8)

where Pa0 is power generation of the ath previous
interval. Also, URa and DRa are the up-ramp and
down-ramp limits, respectively.

For di�erent faults in the operation of the ma-
chines, boilers, feed pumps, and steam valve as well
as the vibration in the bearing, the POZ constraint
is considered in the ELD problems. Mathematically,
POZ can be expressed as given below:

Pmin
a � Pa � P la;1
Pua;j�1 � Pa � P la;j
Pua;n � Pa � Pmax

a

9=; ; j = 1; 2; : : : ; na (9)

where Pua;j and P la;j are respectively the upper and
lower limits of the jth POZ of the ath unit. The total
number of generators under POZ is denoted by na.

Specifying slack generator is one of the important
parts of ELD problem formulation. Let N be the total
number of generators. Initially calculate the number
of (N � 1) power generations randomly based on Eq.
(3) and Eqs. (6){(9). The remaining generator (Nth),
which is called slack generator, has to be identi�ed
using Eq. (4). The value of slack generator is given
below:

PN = PD �
N�1X
a=1

Pa (without transmission losses);
(10)

PN =PD+PLoss�
N�1X
a=1

Pa (with transmission losses):
(11)

Transmission loss (PLoss) is also dependent on power
generation based on Eq. (5). Therefore, Eq. (11) is
further modi�ed as follows:

BNNP 2
N + PN

 
2
N�1X
a=1

BNaPa +
N�1X
a=1

B0N � 1

!

+
�
PD +

N�1X
a=1

N�1X
b=1

PaBabPb

+
N�1X
a=1

B0aPa �
N�1X
a=1

Pa +B00

�
= 0: (12)

3. Sine Cosine Algorithm (SCA)

SCA [35] is a population-based optimization technique.
This technique starts with a random number of search
agents. The optimization process is divided into two
phases, namely exploration and exploitation. In the
phase of exploration, SCA combines all the random
numbers of solutions in a set of solutions quickly with
a higher rate of randomness so that it can �nd those
regions of search space where there is a higher proba-
bility to �nd the global solution. On the other hand, in
the phase of exploitation, there are slow changes in the
random solutions and low random variations compared
to the exploration phase.

In the SCA, there are four main parameters,
namely e1, e2, e3, and e4. The parameter e1 indicates
the next position, which could be between the solution
and the destination or even outside it. The parameter
e2 decides the distance that the search agents have to
cover in the direction of the solution. The parameter e3
helps to decide the weighting factor for the destination.
Weighting factors greater than one indicate increased
emphasis on a destination and lower than one represent
decreased emphasis. The parameter e4 equally switches
between the sine and cosine components. Due to the
involving property of switching between the sine and
cosine functions, the algorithm is known as the SCA.
The sine and the cosine functions have the tendency to
re-position themselves around the global solution.

To update the result in every iteration, the fol-
lowing two equations are used:

Xt+1
a = Xt

a + e1 � sin(e2) � je3 � POta �Xt
aj; (13)

Xt+1
a = Xt

a + e1 � cos(e2) � je3 � POta �Xt
aj; (14)

where e1, e2, and e3 are constant variables. The
modi�cation is done using variable e4 given a random
value within [0, 1] through the following equation:

Xt+1
a =(
Xt
a + e1 � sin(e2) � je3 � POta �Xt

aj; e4 � 0:5
Xt
a + e1 � cos(e2) � je3 � POta �Xt

aj; e4 � 0:5(15)

Xt+1
a is the position of the search agent in the current

(t + 1)th iteration and ath dimension, and Xt
a is

the position of the search agent in the previous tth
iteration and ath dimension. POta is the position
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of the destination location up to the tth iteration.
The main bene�ts of SCA over other present e�ective
optimization techniques are the following:

1. This algorithm works upon the set of solutions
that it has created randomly, so that it can avoid
the local optima and bene�t from the favourable
exploration property. Such feature cannot be found
in other classical algorithms;

2. When the sine and cosine functions give a value
lower, or greater, than 1, then di�erent regions of
the entire search space are explored for �nding the
global solution;

3. When the sine and cosine functions give a value
between 1 and {1, then the search agents will
exploit the present regions;

4. The entire range of the sine and cosine functions
is utilized to make a smooth transition from the
exploration to the exploitation phase;

5. The global solution obtained by the SCA is stored
in a variable at a known destination point; thus, the
global solution is never lost.

The authors [29{31] have already proved the
versatile advantages of SCA algorithm in di�erent
domains. The sequential steps of SCA are given below:

3.1. Sequential steps of SCA
(i) In the initialization process, the lower bound

and the upper bound values are assigned to each
search agent randomly. Also, the total number
of iterations is decided and then, the number
of search agents to be used in the algorithm is
identi�ed;

(ii) The objection function of the system is calcu-
lated. This function depends on the independent
variables given by the user;

(iii) If the value of the �tness function obtained in
the present iteration is lower than that in the
previous iteration, then it can be considered as
the local best. Then, the sine and cosine functions
start processing. Initially, the parameters of SCA
are assigned �xed values and as the iterations
increase, the values of these four parameters keep
on changing. Here, the parameter e1 decides the
direction of movement of the search agent in the
search space while the parameter e2 decides the
distance that a particular search agent will move
in a particular direction given by parameter e1.
The parameter e3 assigns a random weighting fac-
tor to a particular search agent, which decides its
importance among the searching criteria. Finally,
the parameter e4 equally switches between the
sine and cosine functions;

(iv) Using SCA algorithm, the changed values of the
search agents have to be checked with regard to
di�erent constraints. If there is any violation,
then their values are �xed with their boundary
conditions;

(v) As the iteration changes, the values of the four
parameters also change and the search agents
move towards the global optimum value together.
After every iteration, the �tness values of the
search agents also change. The nearest search
agent to the global optimum value has the highest
�tness. In this way, the search agents will move
in the search space and explore it entirely for
the optimized value. Once the location of the
optimized value is known to the search agent,
the exploitation phase will be started. Now, the
search agents, instead of moving in the entire
search space, will exploit the regions where the
results are promising. In this way, the search
agents tend to move towards the global optimum
value. Once the identi�ed number of iterations
is reached or the value of the cost function is
obtained within the tolerance limit, the iteration
is terminated. The result obtained is considered
as the sub-global value;

(vi) Once the �nal iteration is performed, the algo-
rithm is terminated and the search agents having
the highest �tness are considered as the nearest
to the global optimum value.

3.1.1. Consecutive steps of SCA algorithm for the
ELD problem

In this subsection, the steps to solve the ELD problem
by the implementation of SCA are explained. The
owchart for the implementation is shown in Figure 1.
The steps for solving the ELD problem are the follow-
ing:

(i) Initialization of various parameters takes place
in the �rst step. Di�erent variables such as
lower bound, upper bound, total power demand
PD, etc. are initialized. The total number of
generators is denoted by N and total number of
search agents is denoted by Popsize.

The search agent matrix is represented as:

Xij = Xi = [X1; X2; X3; :::; XPopsize];

where i = 1; 2; 3; :::; Popsize. In the ELD
problem, the search agent matrix is considered
for active power generation and represented as
follows:

[Xij ] = [Xi1; Xi2; Xi3; :::; XiN ]

= [Pi1; Pi2; Pi3; :::; PiN ] = [Pij ];

where N is the number of generators;
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Figure 1. Sine Cosine Algorithm (SCA) Flowchart.

(ii) Each of the elements of the search agent should
follow Eq. (3) and Eqs. (6){(9). If various
e�ects like the ramp rate limit and the POZ are
considered, then the equation should be satis�ed
based on Eqs. (6){(9), respectively;

(iii) The objective function is the fuel cost of power
generation and it is calculated through Eq. (1)
when quadratic fuel cost function is used and
Eq. (2) when valve point loading e�ect is con-
sidered. This objective function serves as the
base of the algorithm. It should be minimized
to minimize the cost of power generation in the
system. The objective function of fuel cost is
calculated based on the power generation (Pij)
in step (i);

(iv) The main working mechanisms of the algorithm

begin at this point. The values for the main
four parameters of the algorithm are assigned
to the concerned variables, i.e., e1 to e4. These
values help the movement of the search agent
(Xij) (i.e., power generation (Pij)) in the search
space. Using Eqs. (13){(15), the movement of
search agents takes place in the search space;

(v) If the value of parameter e1 is greater than
1, then the search agent has to move in the
direction opposite to its current one; but if the
value of e1 is less than 1, then the search agent
has to move in the same speci�ed direction.
Similarly, the parameter e2 will determine how
much distance a particular search agent has
to move in the speci�ed direction. Also, the
parameter e3 will give the weighting factor to
the search agent based upon its proximity to the
optimized value;

(vi) Now, the new values of power generation are
obtained. These new values are checked for the
constraints given in Eq. (3) and Eqs. (6){(9). If
various e�ects, like the ramp rate limit and the
POZ, are considered, then the equation should
be satis�ed based on Eqs. (6){(9), respectively.
If any variable violates any of these constraints,
then its upper or lower value is considered.
The slack value of power generation can be
calculated based on Eqs. (11) and (12). If there
are any violations of any inequality constraint
among Eq. (3) and Eqs. (6){(9) that are valid
for the slack generator, then step (ii) onward
is repeated. This process will continue until
the ultimate set of power generation matrix is
formed;

(vii) The new objective function of fuel cost can be
calculated based on the newly generated power
generation matrix;

(viii) Now, the current objective values are compared
with the values obtained in the previous iter-
ations. If the present objective value is lower
than the previous one, it is treated as the best
local optimal value. Otherwise, i.e., if it is not
lower than the previous value, then the previous
value takes the position of the newly generated
value in the power generation matrix. Now, the
objective function value obtained in the present
iteration will be compared with all other values
obtained in various iterations and, �nally, the
minimum value will be made the global optimum
value. This global optimum value will be stored
in a di�erent memory location;

(ix) In the next iteration, step (ii) and the following
ones are repeated. When a predetermined
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Table 1. Comparison of the optimum power output and fuel costs obtained by Sine Cosine Algorithm (SCA) and other
techniques for 13-unit test system.

Unit Power output (MW)

SCA BSA [25] SDE [37] ORCCRO [39] OIWO [40] FPSOGSA [41]

P1 628.3179 628.3158 628.32 628.32 628.3185 628.3185

P2 299.1992 299.1947 299.20 299.20 299.1989 299.1993

P3 297.4468 297.4764 299.20 299.20 299.1991 299.1993

P4 159.7327 159.7322 159.73 159.73 159.7331 159.7331

P5 159.7327 159.7330 159.73 159.73 159.7331 159.7331

P6 159.7328 159.7328 159.73 159.73 159.7331 159.7331

P7 159.7331 159.7318 159.73 159.73 159.7330 159.7331

P8 159.7325 159.7329 159.73 159.73 159.7331 159.7331

P9 159.7328 159.7286 159.73 159.73 159.7330 159.7331

P10 77.3995 77.3945 77.40 77.40 77.3953 76.9368

P11 114.7993 114.7992 113.12 112.14 113.1079 114.2795

P12 92.3997 92.3962 92.40 92.40 92.3594 92.2438

P13 92.4000 92.3919 92.40 92.40 92.3911 92.2007

Power generation (MW) 2559.8000 2560.3641 2560.4300 2559.43 2560.3686 2560.7765

Transmission loss (MW) 39.8000 39.8006 40.43 39.43 40.3686 40.7765

Fuel cost ($/hr.) 24512.6085 24512.6654 24514.88 24513.91 24514.83 24515.35543

number of iterations is reached, the process is
terminated.

The algorithm of SCA is presented in
Figure 1.

4. Simulations and results

To prove the e�ectiveness of the SCA, four sets of
experiments have been conducted and the �nal results
are compared with the results of various existing
methods in tabular and graphical forms.

The SCA algorithm has been applied to four dif-
ferent test systems with varying degrees of complexity
to verify its e�ectiveness and feasibility. The program
is written in MATLAB-2017B language and executed
on a 1.7 GHz Intel core i3 personal computer with 4-
GB RAM.

Test case 1: 13 generator units have been considered
in test system 1 with transmission losses. The input
data for the transmission loss is taken from the study
by Srinivasa and Vaisakh [37]. The total power demand
is 2520 MW. The input data is taken from Sinha
et al. [38] and the system runs for 400 iterations.
The number of search agents used is 50 in this case.
In test case 1, the results of the SCA algorithm
are compared with those of the Oppositional Real
Coded Chemical Reaction Optimization (ORCCRO)
[39] and Stochastic Di�erential Equation (SDE) [37]
optimization techniques. It can be seen from the graph

Figure 2. Graphical comparison of SCA, Stochastic
Di�erential Equation (SDE), and Oppositional Real
Coded Chemical Reaction Optimization (ORCCRO) for
13 generator units.

and the table that the minimum cost is �rst reached
by using SCA algorithm and the rest of the algorithms
take more time as compared to SCA. According to
Table 1, the minimum fuel cost for 13 generator units
in the proposed algorithm is 24512.6085 $/hr, which
is better than the those in SDE [37] and ORCCRO
[39]. The minimum, maximum, and average fuel costs
obtained after 50 trials are presented in Table 2. The
comparison of the convergence characteristics of the
SCA with those of SDE and ORCCRO is presented
in Figure 2. The net power delivered to the system is
2520 MW. Hence, the accuracy of the results is 100%
based on Eq. (4).
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Table 2. Minimum, maximum, and average costs obtained by Sine Cosine Algorithm (SCA) and various optimization
techniques for 13 generator units (50 trials).

Generation cost ($/hr.)

Method Maximum Minimum Average Time/iteration
(s)

Number of hits to
minimum solution

SCA 24512.6085 24512.6085 24512.6085 0.041 50

BSA [25] 24512.6654 24512.6654 24512.6654 0.035 50

ORCCRO [39] 24513.91 24513.91 24513.91 0.04 50

SDE [37] 24519.74 24514.88 24516.23 NA� 21

BBO [39] 24516.09 24515.21 24515.32 0.15 44

DE/BBO [39] 24515.98 24514.97 24515.05 0.11 46

�NA: Not Available.

Figure 3. Comparison of SCA, BBO, and NEW PSO for
38 generating units.

Test case 2: In this system, 38 units of generators
are considered and transmission loss is neglected. The
total load demand is 6000 MW. The minimum fuel
cost has been calculated using SCA. The input data
is taken from Sydulu [42] and the system is run in 400
iterations. Fifty search agents are used in this case.
The �nal results obtained by SCA are compared with
those by Biogeography Based Optimization (BBO)
[43], DE/BBO [43], New PSO [43], and PSO Time
Varying Acceleration Coe�cients (TVAC) [43]. It
is clear from the tabular and graphical data that
the best result is obtained by SCA in the minimum
computational time. The best solutions obtained by
various optimization techniques are presented in Ta-
ble 3. The minimum, maximum, and average fuel costs
by other optimization techniques after 50 trials are
stated in Table 4. The comparison of the convergence
characteristics of SCA with those of BBO and NEW
PSO is given in Figure 3. The net power delivered
to the system is 5999.9999 MW. Hence, the accuracy
of the result is 99.9999% based on Eq. (4) when
transmission lost is neglected.

Test case 3: In this case, 40 generator units are

Figure 4. Comparison of Sine Cosine Algorithm (SCA),
GAAPI, and Stochastic Di�erential Equation (SDE) for
40 generating units.

considered and their transmission losses have been
taken into consideration. The total power demand is
10500 MW. The input data is taken from Sinha et
al. [38] and the system is run in 400 iterations. Fifty
search agents are used in this case. Only valve-point
loading e�ect is considered as a constraint for this test
case. The B-coe�cients for the transmission losses in
this system have been taken from the B-coe�cients of
the 6-generator test system [44] by multiplication of
rows and columns up to 40 units. The comparison
of the optimum fuel costs obtained using various
optimization techniques is given in Table 5. Table 6
illustrates the minimum, maximum, and average fuel
costs of various optimization techniques after 50 trials.
The comparison of the convergence characteristics of
the SCA with those of GAAPI [39] and SDE [37] is
illustrated in Figure 4. Looking at the tabular and
graphical data, it is clear that the minimum fuel cost
obtained by the SCA is better that those by other
techniques like GAAPI [39], DE/BBO[43], SDE [37],
and BBO[43]. The net power delivered to the system
is 10499.9999 MW. Hence, the accuracy of the result is
99.9999% based on Eq. (4).
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Table 3. Comparison of the optimum power output and fuel costs obtained by Sine Cosine Algorithm (SCA) and other
techniques for 38-unit test system.

Unit Power output (MW)
SCA BBO [43] DE/BBO [43] NEW PSO [43] PSO TVAC [43]

P1 426.609880 422.2305 426.6060 550.000 443.659
P2 426.630334 422.1179 426.6060 512.263 342.956
P3 429.671911 435.7794 429.6631 485.733 433.117
P4 429.649739 445.4819 429.6631 391.083 500.00
P5 429.674382 428.4757 429.6631 443.846 410.539
P6 429.667300 428.6492 429.6631 358.398 492.864
P7 429.668089 428.1192 429.6631 415.729 409.483
P8 429.646541 429.9006 429.6631 320.816 446.079
P9 114.000000 115.9049 114.0000 115.347 119.566
P10 114.000000 114.1153 114.0000 204.422 137.274
P11 119.769633 115.4186 119.7680 114.000 138.933
P12 127.048847 127.5114 127.0728 249.197 155.401
P13 110.000000 110.0009 110.0000 118.886 121.719
P14 90.000000 90.0217 90.0000 102.802 90.924
P15 82.000000 82.0000 82.0000 89.0390 97.941
P16 120.000000 120.0384 120.0000 120.000 128.106
P17 159.601791 160.3038 159.5980 156.562 189.108
P18 65.000000 65.0001 65.0000 84.265 65.0000
P19 65.000000 65.0001 65.0000 65.041 65.0000
P20 271.999999 271.9995 272.0000 151.104 267.422
P21 271.999998 271.8726 272.0000 226.344 221.383
P22 259.999994 259.7320 260.0000 209.298 130.804
P23 130.632251 125.9930 130.6486 85.719 124.269
P24 10.000098 10.4143 10.0000 10.000 11.535
P25 113.278756 109.4177 113.3050 60.000 77.103
P26 88.092495 89.3772 88.0669 90.489 55.018
P27 37.511273 36.4110 37.5051 39.670 75.000
P28 20.000000 20.0098 20.0000 20.000 21.628
P29 20.000000 20.0089 20.0000 20.995 29.829
P30 20.000000 20.0000 20.0000 22.810 20.326
P31 20.000000 20.0000 20.0000 20.000 20.000
P32 20.000000 20.0033 20.0000 20.416 21.840
P33 25.000000 25.0066 25.0000 25.000 25.620
P34 18.000000 18.0222 18.0000 21.319 24.261
P35 8.000000 8.0000 8.0000 9.1220 9.6670
P36 25.000000 25.0060 25.0000 25.184 25.000
P37 21.787463 22.0005 21.7820 20.000 31.642
P38 21.059227 20.6076 21.0621 25.104 29.935

Fuel cost ($/hr.) 9417235.7919 9417633.6376 9417235.7863 9516448.312 9500448.307

Table 4. Minimum, maximum, and average, fuel costs obtained by SCA and various optimization techniques for test
system 2 (50 trials).

Method
Generation cost ($/hr.) Time/iteration Number of hits to

Maximum Minimum Average (s) minimum solution
SCA 9417235.7919 9417235.7919 9417235.7919 5.24 50

BBO [43] 9417658.75 9417633.63 9417638.15 12.21 41
DE/BBO [43] 9417250.83 9417235.78 9417237.29 17.75 45
ORCCRO [39] 9412404.27 9412445.45 9412423.45 9.35 37
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Table 5. Comparison of the optimum power output and fuel costs obtained by Sine Cosine Algorithm (SCA) and other
techniques for 40-unit test system.

Unit Power output (MW)
SCA GAAPI [37] DE/BBO [43] SDE [37] BBO [43]

P1 113.8585 114.0000 111.0400 110.0600 112.5400
P2 114.0000 114.0000 113.7100 112.4100 113.2200
P3 119.3004 120.0000 118.6400 120.0000 119.5100
P4 183.3369 190.0000 189.4900 188.7200 188.3700
P5 91.7652 97.0000 86.3200 85.9100 90.4100
P6 139.9816 140.0000 139.8800 140.0000 139.0500
P7 299.5148 300.0000 299.8600 250.1900 294.9700
P8 299.1356 300.0000 285.4200 290.6800 299.1800
P9 297.6808 300.0000 296.2900 300.0000 296.4600
P10 279.1599 205.2500 285.0700 282.0100 279.8900
P11 171.4666 226.300 164.6900 180.8200 160.1500
P12 94.4916 204.7200 94.0000 168.7400 96.7400
P13 485.0345 346.4800 486.3000 469.9600 484.0400
P14 482.8777 434.3200 480.7000 484.1700 483.3200
P15 484.0869 431.3400 480.6600 487.7300 483.7700
P16 484.9795 440.2200 485.0500 482.3000 483.3000
P17 489.6806 500.0000 487.9400 499.6400 490.8300
P18 488.7718 500.0000 491.0900 411.3200 492.1900
P19 515.9524 550.0000 511.7900 510.4700 511.2800
P20 511.6585 550.0000 544.8900 542.0400 521.5500
P21 532.3453 550.0000 528.9200 544.8100 526.4200
P22 549.9726 550.0000 540.5800 550.0000 538.3000
P23 523.9532 550.0000 524.9800 550.0000 534.7400
P24 527.3965 550.0000 524.1200 528.1600 521.2000
P25 523.3733 550.0000 534.4900 524.1600 526.1400
P26 527.6279 550.0000 529.1500 539.1000 544.4300
P27 10.0009 11.4400 10.5100 10.0000 11.5100
P28 11.1190 11.5600 10.0000 10.3700 10.2100
P29 10.1184 11.4200 10.0000 10.0000 10.7100
P30 86.9830 97.0000 90.0600 96.1000 88.2800
P31 189.9885 190.0000 189.8200 185.3300 189.8400
P32 189.9150 190.0000 187.6900 189.5400 189.9400
P33 189.9535 190.0000 189.9700 189.9600 189.1300
P34 199.9110 200.0000 199.8300 199.9000 198.0700
P35 197.9306 200.0000 199.9300 196.2500 199.9200
P36 165.3294 200.0000 163.0300 185.8500 194.3500
P37 109.4111 110.0000 109.8500 109.7200 109.4300
P38 109.9582 110.0000 109.2600 110.0000 109.5600
P39 109.9271 110.0000 109.6000 95.7100 109.6200
P40 547.6016 550.0000 543.2300 532.4700 527.8200

Fuel cost ($/hr.) 136653.0219 139864.96 136950.77 138157.46 137026.82
Power generation (MW) 11459.5499 11545.0600 11457.8300 11474.4300 11470.0000
Transmission loss (MW) 959.5500 1045.0600 957.8300 974.4300 970.3700
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Table 6. Minimum, maximum, and average fuel costs obtained by Sine Cosine Algorithm (SCA) and various optimization
techniques for 40 generator units (50 trials).

Generation cost ($/hr) Time/iteration
(s)

Number of hits to
minimum solution

Method Maximum Minimum Average

SCA 136653.10 136653.02 136653.02 0.07 48

BBO [43] 137587.82 137026.82 137116.58 0.2 41

DE/BBO [43] 137150.77 136950.77 136966.77 0.16 45

ORCCRO [39] 136855.19 136855.19 136855.19 0.07 50

Figure 5. Decreasing cost for 140 generator units using
Sine Cosine Algorithm (SCA).

Test case 4: In this case, 140 generator units have
been considered. The transmission losses have been
neglected in this test system. The total load demand
is 49342 MW and the input data is taken from Jong-
Bae et al. [45]. The large and complicated test system
of 140 generating units is considered with valve point
loading e�ects, ramp rate limits, and POZs. The
system is made to run for 1000 iterations. Fifty search
agents are used in this case. Table 7 shows the power
generation of each of the 140 generators using the
SCA. Table 8 compares the minimum, maximum, and
average fuel costs obtained using various optimization
techniques after 50 trials. The results in Table 8 prove
that the minimum fuel cost obtained by SCA is much
better than those by other algorithms. The net power
delivered to the system is 49342.0006 MW. Hence, the
accuracy of the result is 99.9999% based on Eq. (4)
when transmission loss is neglected. The convergence
characteristics for the SCA are shown in Figure 5.

4.1. Tuning of parameters for the SCA
To obtain the optimized solution by the use of SCA, it
is imperative to obtain the proper values of parameters
e1, e2, and e3. Tuning of these parameters is very im-
portant for obtaining the optimized solution. Di�erent
values of these parameters give di�erent fuel costs. For
one single value of one parameter, other parameters
have to be varied in all possible combinations. For a
single value of e1, di�erent combinations of e2 and e3

have been tried to obtain the minimum fuel cost. A
summary of the results for the 140-generator system is
provided in Table 9.

Also, using a too large or too small number
of search agents for screening the search space does
not lead to the optimized solution. Thus, only a
speci�c number of search agents will help to obtain
the optimized solution. For each number of search
agents, 50 trials have been run. The trials show
that the number of 50 search agents end in achieving
the optimized fuel cost. For other numbers of search
agents, no signi�cant improvement in the fuel cost is
observed. Moreover, beyond the number of 50 search
agents, the simulation time also increases. The best
output obtained by SCA for each number of search
agents in the 140-generator system is presented in
Table 10.

The optimum values of the tuned parameters
are Psize = 50, e1 = 0:55, e2 = 0:15, e3 = 0:72, and
e4 = 0:5.

5. Comparative study

5.1. Quality of solution
Tables 1, 3, 5, and 7 show that the fuel costs obtained
by the SCA are the lowest among all optimization
techniques. Also, the cost obtained by the SCA is
better than the cost obtained by many previously
developed algorithms. For example, in test case 1, the
minimum fuel cost obtained by the SCA is 24512.6085
$/hr, which is lower than those obtained by SDE and
ORCCRO. The comparison has been made in both
cases of taking the transmission losses into account and
neglecting them. Thus, it is clear that the quality of
the solution is the best when SCA is applied.

5.2. Robustness
The robustness of any optimization algorithm cannot
be judged by only running in for a single time. A
number of trials should be carried out in order to prove
the robustness of any optimisation technique. It is
evident form Tables 2 and 4 that SCA achieves the
global optimal solution for all the 50 trials in various
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Table 7. Optimum power output and fuel cost obtained by Sine Cosine Algorithm (SCA) for 140-unit test system.

Unit Power output
(MW)

Unit Power output
(MW)

Unit Power output
(MW)

Unit Power output
(MW)

P1 110.8395 P36 499.9997 P71 140.7389 P106 880.9000
P2 163.9999 P37 240.9999 P72 388.4824 P107 873.6998
P3 189.9518 P38 240.9424 P73 230.9036 P108 877.4000
P4 189.9612 P39 773.9925 P74 271.6243 P109 871.6999
P5 168.3794 P40 768.9999 P75 175.9105 P110 864.7967
P6 186.3858 P41 3.161799 P76 293.5256 P111 881.9998
P7 489.9999 P42 3.072809 P77 306.7155 P112 94.20313
P8 489.9997 P43 239.2171 P78 385.5398 P113 95.06407
P9 496.0000 P44 249.8248 P79 530.9998 P114 94.32693
P10 496.0000 P45 247.436 P80 530.9998 P115 244.0719
P11 495.9984 P46 249.2271 P81 542.0000 P116 245.6768
P12 495.9999 P47 246.1245 P82 56.66217 P117 245.6193
P13 505.9871 P48 247.803 P83 115.1015 P118 96.84149
P14 508.9965 P49 246.1036 P84 115.0754 P119 95.7353
P15 505.9998 P50 246.5329 P85 115.9195 P120 116.5415
P16 504.9999 P51 165.1967 P86 207.117 P121 175.1441
P17 505.9566 P52 165.8992 P87 207.2333 P122 3.6211
P18 505.9948 P53 185.7631 P88 176.4165 P123 4.0487
P19 505.0000 P54 165.0393 P89 175.7241 P124 15.4299
P20 504.9951 P55 180.1148 P90 177.7537 P125 9.6570
P21 504.9971 P56 180.9737 P91 180.4744 P126 13.0826
P22 504.9874 P57 112.9304 P92 575.3998 P127 10.0005
P23 504.9936 P58 199.5520 P93 547.4997 P128 112.0987
P24 504.9997 P59 311.9997 P94 836.7998 P129 4.7148
P25 537.0000 P60 299.2522 P95 837.4999 P130 5.0210
P26 536.9998 P61 163.5181 P96 681.9973 P131 5.0062
P27 548.9997 P62 99.08827 P97 719.9999 P132 50.1757
P28 548.9996 P63 468.563 P98 717.9918 P133 5.0813
P29 500.9999 P64 510.7641 P99 719.9925 P134 42.0132
P30 498.9999 P65 489.9999 P100 963.9999 P135 42.0579
P31 505.9997 P66 201.0382 P101 957.9999 P136 41.1626
P32 505.9910 P67 488.1348 P102 947.8997 P137 17.0139
P33 505.7959 P68 485.3448 P103 933.9998 P138 7.0044
P34 505.9998 P69 132.4697 P104 934.9996 P139 7.0202
P35 500.0000 P70 338.9781 P105 876.4997 P140 31.3066

Total fuel cost = 1658384.8872 $/hr.

Table 8. Minimum, maximum, and average fuel costs obtained by Sine Cosine Algorithm (SCA) and various optimization
techniques for 140 generator units (50 trials).

Generation cost ($/hr)

Method Maximum Minimum Average Time/iteration
(s)

Number of hits to
minimum solution

SCA 1658386.57 1658384.88 1658385.04 50.47 45
BBO [43] 1657809.57 1657724.38 1657739.72 142.5 41

DE/BBO [43] 1657781.72 1657716.84 1657725.92 125.4 43
RCCRO [36] 1657742.97 1657690.83 1657693.96 75.8 47
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Table 9. E�ect of various parameters on the performance of Sine Cosine Algorithm (SCA).

e1 e2 e3 e4 Fuel cost ($/hr)

0.16 0.41 0.14 0.5 1658479.1876
0.68 0.65 0.15 0.5 1658455.6489
0.47 0.87 0.62 0.5 1658438.3245
0.57 0.54 0.25 0.5 1658420.9452
0.55 0.65 0.34 0.5 1658397.3249
0.55 0.15 0.72 0.5 1658384.8872
0.42 0.26 0.95 0.5 1658399.5475
0.94 0.32 0.84 0.5 1658456.3225
0.21 0.41 0.25 0.5 1658472.2587
0.78 0.52 0.41 0.5 1658501.3654

Table 10. E�ect of the number of search agents on the 140-generator system.

No. of
search agents

Number of hits to
best solution

Simulation
time (sec)

Max. cost
($/hr)

Min. cost
($/hr)

Average cost
($/hr)

20 32 48.25 1658406.547 1658399.254 1658401.879
50 45 50.47 1658386.570 1658384.880 1658385.0 4
100 27 54.36 1658416.235 1658406.325 1658410.884
150 19 57.25 1658428.625 1658412.658 1658422.558
200 11 62.33 1658468.235 1658435.328 1658460.995

test cases and from Tables 6 and 8 that SCA gives the
minimum fuel cost for the maximum number of trials in
comparison with other optimization techniques. This
proves that the e�ciency of the SCA is very high
and its performance is superior to other optimization
techniques, which in turn con�rms the robustness of
the algorithm.

5.3. Computational e�ciency
The e�ciency of any optimization technique is deter-
mined by the time the technique takes to the reach
the global optimal solution. It is clear form Tables 2,
4, 6, and 8 that the computational time taken for one
single iteration is the minimum in the SCA as compared
to other previously developed optimization techniques.
Thus, the SCA gives the global optimal results in the
lowest computational time.

6. Conclusion

In this paper, a new algorithm, named Sine Cosine
Algorithm (SCA), was proposed to solve Economic
Load Dispatch (ELD) problem. To prove the e�ciency
of the SCA, four test cases were considered and the
net fuel cost obtained by SCA was compared with
those by other optimization techniques. The results
were presented in tabular and graphical forms. They
proved that SCA was robust, feasible, and e�ective as
compared to other algorithms in terms of e�ciency

and computational time. The numerical results also
proved that the SCA prevented premature convergence
and had a stable convergence characteristic. Hence, by
using the exploration and exploitation ability of SCA,
the problem of ELD was successfully solved.
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