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Abstract. This paper introduces a supplier selection and order allocation problem in
a single-buyer-multi-supplier supply chain in which appropriate suppliers are selected and
orders allocated to them. Transportation costs, quantity discount, fuzzy-type uncertainty,
and some practical constraints were taken into account in the problem. The problem was
formulated as a bi-objective model to minimize annual supply chain costs and to maximize
Annual Purchasing Value (APV). The fuzzy weights of suppliers, which were the output of
one of the supplier evaluation methods, were considered in the second objective function.
Then, a novel fuzzy multi-objective programming method was formulated for obtaining
Pareto solutions. The method is the extension of a single-objective method existing in
the literature. It is based on the degree of satisfaction of the Decision Maker (DM) with
each fuzzy objective considering the ful�llment level of fuzzy constraints. In the proposed
method, the problem remains multi-objective and, unlike in the existing methods, it is
not transformed into a single-objective model. At the last stage of the proposed method,
the fuzzy results are compared with an index and the DM can identify the appropriate or
inappropriate solutions. To solve the problem, Non-dominated Sorting Genetic Algorithm
(NSGA II) is designed and computational results are presented using numerical examples.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

In the current competitive environment, supplier eval-
uation and selection is one of the most important
processes in supply chain management for any orga-
nization. It is critical since suppliers have a major
impact on strategic and operational performance of
organizations. Also, this process plays an important
role in determining the cost, quality, and other aspects
of the �nished product [1]. Hence, organizations rely
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more on suppliers to reduce their costs, to improve the
quality of their products, or to focus on a speci�c part
of their operations [2].

Supplier selection is complex since organizations
must take into account multiple aspects including
both quantitative and qualitative criteria [3,4]. In
such cases, the criteria are con
icting and a trade-o�
among them is required. Therefore, selection of the
best suppliers becomes a multi-criteria decision-making
problem. Furthermore, the process becomes more
complicated if parameters are incomplete or uncertain.

On the other hand, higher levels of inventory
lead to increased supply chain responsiveness, but
decrease cost e�ciency because of inventory holding
costs [5]. Inventory costs account for a number between
20 and 40% of the total product value. Hence,
inventory management is one of the signi�cant parts
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of supply chain management [6]. Allocating orders
to the selected suppliers allows for some economies of
scale through the right choice of quantities to order
from each supplier. Sometimes, suppliers o�er quantity
discounts as a powerful incentive to motivate buyers
to increase the amount of their ordered quantities [7].
Indeed, the unit price paid by buyers for large orders
is usually smaller than the unit price of small orders
[8]. Incremental quantity discounts, business volume
quantity discounts, and all-unit quantity discounts are
the three main types of quantity discounts [9].

This paper introduces a supplier selection and or-
der allocation problem in a single-buyer-multi-supplier
supply chain in which appropriate suppliers are selected
and orders allocated to them. Transportation costs,
quantity discount, fuzzy-type uncertainty, and some
practical constraints are taken into account in the
problem. Firstly, the problem is formulated as a bi-
objective model for minimizing annual supply chain
costs and maximizing Annual Purchasing Value (APV).
The fuzzy weights of suppliers, which are the output of
one of the supplier evaluation methods, are considered
in the second objective function. The assumptions of
the model are appropriate to the real-world conditions.
Therefore, the model can be applied to any type of
supply chain in which a buyer acquires the demanded
items from some potential suppliers.

To overcome the complexity of the process, we
propose a novel fuzzy multi-objective programming
method for obtaining Pareto solutions. The method is
an extension of the single-objective method proposed
by Jim�enez et al. [10]. It is based on the level of
satisfaction of the Decision Maker (DM) with each
fuzzy objective considering the degree of realization of
fuzzy constraints. In the proposed method, the prob-
lem remains multi-objective and, unlike in the existing
methods, it is not transformed into a single-objective
model. At the last stage of the proposed method, the
fuzzy results are compared with an index and the DM
can identify the appropriate or inappropriate solutions.
To solve the problem, Non-dominated Sorting Genetic
Algorithm (NSGA II) is designed and computational
results are presented using numerical examples.

The rest of this paper proceeds as follows. In
Section 2, the related literature is brie
y reviewed.
In Section 3, we describe the problem, state the
assumptions, and give the parameters, variables, and
the formulation of the model. Section 4 deals with
the novel fuzzy multi-objective programming method.
Section 5 is devoted to describing the solution proce-
dure, including changes in objectives and constraints,
solution encoding, repair algorithm, and NSGA II
procedure. In Section 6, we illustrate the �ndings of
the implementation of the proposed methodology with
some numerical examples. Finally, Section 7 concludes
the study and presents future research directions.

2. Literature review

2.1. Supplier selection and order allocation
In this section, the researches which have been con-
ducted in the area of supplier selection and order
allocation with quantity discount are reviewed and
their objectives and solution methods are addressed.
Dahel [11] assumed multi-item volume discounts and
proposed a multi-objective mixed-integer program-
ming model, which could be solved through either
a preference-oriented approach or the generating ap-
proach. Demirtas and �Ust�un [12] studied a model to
maximize the purchasing value and to minimize the
budget and the defect rates. They used analytical
network process and the multi-objective mixed-integer
programming, and adopted epsilon-constraint method
and reservation level through Tchebyche� procedure to
solve the problem. Xia and Wu [13] studied a problem
to maximize total weighted quantity of purchasing,
minimize total purchasing cost, minimize the number
of defective items, and maximize the number of on-time
delivered items. They proposed a two-stage method to
solve the problem by means of Analytical Hierarchy
Process (AHP) improved by rough set theory, at the
�rst stage, and a multi-objective mixed-integer linear
programming, at the second stage. Burke et al. [14]
considered three types of discounts, namely linear
quantity discount, incremental unit price discount, and
all-unit quantity discount. They developed a heuristic
to measure the e�ect of quantity discounts in the
problem. Kokangul and Susuz [15] investigated a bi-
objective model by minimizing total purchasing cost
and maximizing purchasing value obtained using AHP.
They proposed a bi-objective non-linear programing
model using goal programming. Amid et al. [16] stud-
ied a model which minimized total cost, the percentage
of late-delivery items, and the percentage of rejected
items. They developed a fuzzy multi-objective mixed-
integer linear programming model to solve the problem.
Wang and Yang [17] developed a model to minimize
total cost, defective rate, and delivery lateness rate
and proposed a two-stage procedure using AHP and a
multi-objective mathematical programming. Ebrahim
et al. [18] developed a model to minimize cost, late
delivered items, and defective items considering three
types of discount and proposed a Scatter Search (SS)
algorithm and exact method to solve the problem.
Razmi and Maghool [19] considered three types of
discount in a fuzzy bi-objective model to minimize
total purchasing cost and maximize total purchasing
value. They adopted an augmented epsilon-constraint
and reservation level by Tchebyche� models. Kamali et
al. [20] investigated a model to minimize total annual
cost, total number of defective items, and total number
of late delivered items as well as to maximize total
purchasing value. They proposed Particle Swarm Op-
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timization (PSO) and SS algorithm to solve the model.
Zhang and Zhang [21] studied a single-objective model
to minimize costs with stochastic demand and solved a
mixed-integer programming in which all suppliers met
the qualitative criteria level. Lee et al. [22] investigated
a single-objective model to minimize total purchasing
cost under all-unit and incremental quantity discounts
and designed a genetic algorithm to solve the model.
Pazhani et al. [5] addressed a single-objective model
to minimize total cost per unit time considering the
purchasing, setup, holding, and transportation costs.
A mixed-integer nonlinear programming model was
developed to solve the problem using exact methods.
Moghaddam [23] set the four objectives of maximizing
total net pro�t and minimizing total defective parts,
total late deliveries, and total risk factors of the
economic environment associated with each supplier.
Bohner and Minner [24] considered both all-units and
incremental quantity discounts as well as failure risk
to minimize total costs and solved the mixed-integer
linear programming model using an exact approach.
C�ebi and Otay [25] developed a model to minimize total
cost, total late deliveries, and total defective items and
to maximize total utility of the purchasing activity.
Hamdan & Cheaitou [1] considered green criteria to
maximize total value of purchasing and minimize total
costs. They proposed a three-stage method using fuzzy
TOPSIS at the �rst stage to assign two preference
weights to every potential supplier, AHP at the second
stage to determine the importance weight of each sup-
plier, and bi-objective integer linear programming at
the third stage. The model was solved by the weighted
comprehensive criterion method and the branch-and-
cut algorithm. Hamdan and Cheaitou [26] dealt with
green criteria, quantity discounts, and varying supplier
availability and applied the same three-stage method
proposed in their previous study [1] in order to max-
imize total green and traditional values of purchasing
and minimize total purchasing cost. Ranjbar Tezenji et
al. [27] considered supplier location selection and order
allocation under capacity constraints in a stochastic
environment. The objective function included estab-
lishment, inventory, and transportation costs. They
developed a bi-objective model for optimization of the
mean and variance of costs and solved the model by
genetic algorithm and simulated annealing.

In this paper, we assume two common objectives
of minimizing total costs and maximizing purchasing
value.

2.2. Fuzzy multi-objective approaches
There are some methods in the literature for ag-
gregating fuzzy goals and constraints. Jim�enez and
Bilbao [28] proposed a method for multi-objective pro-
gramming problem with fuzzy objectives to maximizeP
�ifi(x) subject to �Zf (x) � �, with � representing

the degree of satisfaction of DM with the achievement
of goals. A unique optimal solution to the above
problem is the e�cient fuzzy solution to the original
Multi Objective Problems (MOPs) [29]. There are
some approaches such as the weighted additive ap-
proach [30,31], compromise approach [32], the method
with achievement degrees [33], augmented max-min
model [34,35], and two-phase approach [36] in the
literature, which ensure the existence of an e�cient
fuzzy solution. Moghaddam [23] applied fuzzy goal
programming approach to the supplier selection and
order allocation problem in reverse logistics systems.
He utilized a Monte Carlo simulation integrated with
fuzzy goal programming to determine the entire set of
Pareto optimal solutions. By incorporating the linear
membership functions for objectives and constraints
in other constraints, he formulated a fuzzy goal pro-
gramming model. Erginel and Gecer [37] investigated
a fuzzy multi-objective linear programming model for
the supplier selection problem. Weight, cost, and
calibration time were handled as fuzzy numbers for
modelling the imprecise data. A two-phase approach
was used to obtain a Pareto optimal solution and
solve the fuzzy multi-objective decision model. C�ebi
and Otay [25] studied the supplier selection and order
allocation problem considering quantity discounts and
lead time. They applied a two-stage fuzzy approach
to solving the problem and used the augmented max-
min model, guaranteeing non-dominated solutions, to
transform the fuzzy multi-objective model into a crisp
single-objective one. To select suppliers, they utilized
fuzzy MULTIMOORA at the �rst stage and fuzzy
goal programming, to determine order amounts at the
second stage. Govindan et al. [38] addressed the sup-
plier selection problem with transportation decisions
in an eco-e�cient closed-loop supply chain network
by utilizing weighted fuzzy mathematical programming
approach to generating a properly e�cient fuzzy solu-
tion. They �rst de�ned linear membership functions for
each fuzzy goal as introduced by Zadeh [39] and then,
applied a weighted max-min approach to searching for
an optimal solution. Their aim was to make the levels
of achievement of the goals and the weights of the goals
as close to each other as possible.

As observed in the review of the literature, all
fuzzy approaches transform a model into a single-
objective one. However, in this paper, we propose
a method to solve a problem in its original multi-
objective form.

3. Problem formulation

Assume that a supply chain includes a buyer and
several suppliers. The buyer intends to evaluate
suppliers and allocate orders to them, as shown in
Figure 1. Thus, the buyer faces a supplier selection and
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Figure 1. Schematic view of supply chain.

order allocation problem. The main objectives of the
buyer are to minimize annual supply chain costs and
maximize APV so that they do not face any shortages.
The main assumptions of the problem are as follows:

� There is only one single product involved; the buyer
can purchase their required amount from several
suppliers;

� The annual demand is known and constant over
time;

� Each supplier has a speci�c production capacity;

� Inventory shortage is not allowed for any supplier or
buyer;

� The inventory cannot be transferred from period to
period;

� The transportation cost from each supplier to the
buyer depends on the distance and the number of
required vehicles;

� The defective rate of each supplier is known;

� In each period, the (i + 1)th order by the supplier
cannot be entered unless the whole ith order is
consumed;

� All suppliers use the price discount policy to en-
courage the buyer to place large orders. Suppose
that there are n suppliers in the supply chain. Each
supplier i uses the quantity discount policy, which
includes Ki price levels, and the kth price level is
determined by price cik and order range [ui;k�1; uik).
The logical assumption is that for ui1 < ui2 < ::: <
ui;Ki , we have ci1 > ci2 > ::: > ci;Ki .

The model studied in this research has some
similarities with those of Kamali et al. [20] and
Alaei and Khoshalhan [40]. They also considered the
problem as a multi-objective programming model for
maximizing APV and minimizing annual supply chain
costs, defective items, and late deliveries. To solve
the model, Kamali et al. [20] utilized PSO and SS; in
addition to PSO and SS, Alaei and Khoshalhan [40]
used the harmony search and the hybrid harmony-
cultural algorithm. However, while the above papers

both dealt with the problem in deterministic environ-
ment, in this study, the problem is considered as a bi-
objective optimization model with fuzzy parameters for
objectives and constraints. Therefore, a novel method
is proposed for obtaining Pareto solutions to the fuzzy
bi-objective problem. The method is an extension of
the single-objective method proposed by Jim�enez et al.
[10]. We also utilize NSGA II to solve the problem.

3.1. Notation
The following parameters and decision variables are to
be used in the model.

Parameters
D Annual demand rate of the buyer
Si Fixed production setup cost to supplier

i
Ai Fixed ordering cost for supplier i
hi Inventory holding cost to supplier i per

unit per unit time
hb Inventory holding cost to buyer per

unit per unit time
Ti Consumption time of an order quantity

from supplier i
T Length of period for the buyer
ci Variable cost per unit (fuzzy) to

supplier i
cik Discounted unit price of interval k

o�ered by supplier i
Pi Production rate of supplier i
uik Upper bound of discount interval for

supplier i
ri Defective rate (fuzzy) for supplier i
R Maximum acceptable defective rate for

all purchased quantities
disi Distance between buyer and supplier i
cap Capacity of vehicles
C Fixed cost of transportation per

distance unit (fuzzy)
Wi Importance rate of supplier i in

supplier evaluation methods (fuzzy)
Decision variables
qik Purchased quantity per period from

supplier i in discount interval k
yik Binary variable equal to 1 if qik falls

into discount interval k of supplier i, 0
otherwise

Qi Order quantity from supplier i per
period

Q Total order quantity per period from
all suppliers

Zi Integer variable denoting the number
of required vehicles for transporting Qi



M.A. Sobhanolahi et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 481{493 485

3.2. Model
The mathematical modeling of the problem is shown
as a mixed-integer nonlinear programming model as
follows:

Min Cost =
D
Q

� nX
i=1

KiX
k=1

(~ci + cik) qik

+
nX
i=1

KiX
k=1

(Ai + Si) yik

+
nX
i=1

Q2
i

2

�
hb
D

+
hi
Pi

�
+

nX
i=1

~CdisiZi
�
;
(1)

Max APV =
D
Q

nX
i=1

~wiQi; (2)

Qi =
KiX
k=1

qik 8i = 1; :::; n; (3)

Q =
nX
i=1

Qi; (4)

D
Q
Qi � Pi 8i = 1; :::; n; (5)

cap (Zi � 1) � Qi 8i = 1; :::; n; (6)

Qi � capZi 8i = 1; :::; n; (7)

KiX
k=1

yik � 1 8i = 1; :::; n; (8)

ui;k�1yik � qik 8i = 1; :::n; 8k = 1; :::;Ki; (9)

qik � uikyik 8i = 1; :::; n; 8k = 1; :::;Ki; (10)

1
Q

nX
i=1

Qi~ri � R; (11)

yik 2 f0; 1g 8k = 1 : Ki; i = 1; :::; n; (12)

Zi 2 Integer 8i = 1; :::; n; (13)

qik � 0 8k = 1 : Ki; i = 1; :::; n; (14)

Qi � 0 8i = 1; :::; n; (15)

Q � 0: (16)

Eq. (1) minimizes the cost objective function, which
consists of four parts. The �rst part involves variable
and purchase costs; the second part includes order-
ing and setup costs; the third part is the inventory
holding costs to the buyer and to suppliers; and

the fourth part calculates the transportation costs.
Eq. (2) maximizes the total APV, which determines the
weighted quantities of orders. These weights specify
the importance of suppliers and can be the output of
the multi-criteria decision-making methods [25]. This
maximization relation leads to allocating more orders
to more important suppliers. Eq. (3) states that the
sum of purchases in the discount intervals of a supplier
is equal to the amount of purchases from that supplier.
Based on Eq. (4), the total purchase of the buyer in
each cycle is equal to the sum of purchases from all
suppliers. Capacity constraints of the suppliers are
expressed by Eq. (5). The number of required vehicles
to carry the products of each supplier is calculated
using Eqs. (6) and (7). Eq. (8) ensures that the
order to each supplier is only at one of its discount
intervals. Through Eqs. (9) and (10), the order to
each supplier falls into one of the discount intervals
o�ered by the supplier. Eq. (11) ensures that the rate
of defective products does not exceed a predetermined
value. Finally, Relations (12){(16) de�ne the types of
variables.

4. Fuzzy multi-objective approach

Various methods have been presented in the literature
for fuzzy multi-objective optimization. However, we
propose a novel method for the problem, which is
based on satisfaction degree of the DM with fuzzy
objectives and the level of ful�lment of the constraints.
This method is an extension of the single-objective
fuzzy programming proposed by Jimenez et al. [10]
to the multi-objective environment. The method aims
to identify the Pareto solutions which best match
the desires of the DM. Fuzzy objective functions are
replaced by the degree of satisfaction de�ned in the
algorithm and fuzzy constraints are rewritten as a
function of �, which represents the level of ful�lment.

Step 1. According to Jim�enez et al. [10], fuzzy
constraints must be rewritten as a function of alpha.
With these modi�cations, the problem space becomes
wider for � = 0 and more limited for � = 1. For any
constraint type \�," fuzzy coe�cient ~a = (a1; a2; a3)
and fuzzy right-hand side ~b = (b1; b2; b3) should be
replaced by the following expressions, respectively:

~a (1� �)
�
a1 + a2

2

�
+ �

�
a2 + a3

2

�
; (17)

~b �
�
b1 + b2

2

�
+ (1� �)

�
b2 + b3

2

�
: (18)

Step 2. The DM is asked to specify the interval�
G; �G

�
for each objective. For a minimization objec-

tive, if z � G, they will �nd it totally satisfactory;
but if z � G, their degree of satisfaction will be null.
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Accordingly, the goal is expressed by means of a fuzzy
set ~G whose membership function is as follows:

� ~G (z) =

8><>:1 if z � G
�� [0; 1] decreasing on G � z � �G
0 if z � �G (19)

Similarly, we de�ne ~G for maximization objectives as
follows.

� ~G (z) =

8><>:1 if z � G
�� [0; 1] increasing on G � z � �G
0 if z � �G (20)

The DM aims to gain the maximum degree of satis-
faction. However, in order to get a better objective
value, a lower level of ful�lment of constraints is
considered. Given these circumstances, the DM
might want a lower satisfaction degree of objectives
in exchange for a better level of ful�lment of con-
straints [10].
Step 3. For each objective, we need to compute the
satisfaction degree of the fuzzy goal ~G by each �-
acceptable Pareto solution, that is, the membership
degree of each fuzzy number ~z0 (�k) in the fuzzy
set ~G. There are several methods for this purpose
(e.g., [41]. We will apply the index proposed by Yager
[42] and used by Jim�enez et al. [10] as follows:

K ~G
�
z0 (�)

�
=
s+1�1 �~z0(�) (z)� � ~G (z) dz
s+1�1 �~z0(�) (z) dz

; (21)

where the denominator is the area under �~z0(�)
and, in the numerator, the possibility of occurrence
�~z0(�) (z) for each crisp value z is weighted by its
satisfaction degree � ~G (z) for goal ~G (see Figure 2).
Step 4. Here, in order to achieve a balance between
satisfaction degree and constraints ful�lment level,
we use the condition similar to that considered by
Jim�enez et al. [10] as follows:

x� (�k) : �k=argmax�k
�
�k �K ~G

�
~z0 (�k)

�	
: (22)

Figure 2. Occurrence possibility of a crisp objective
value, z, and its goal satisfaction degree.

The greater the value of �, the more limited the
problem space and the lower the satisfaction degree
and vice versa. By using the above equation, a trade-
o� between � and satisfaction degree can be achieved.
Step 5. The solutions for each fuzzy objective func-
tion can be compared and the DM can identify the
appropriate or inappropriate solutions among Pareto
solutions through the following two de�nitions:

De�nition 1: For any pair of fuzzy numbers ~a and
~b, the degree in which ~a is greater than ~b is calculated
as follows [10]:

�M
�

~a;~b
�

=8>><>>:
0 if Ea2 � Eb1 < 0

Ea2�Eb1
(Ea2�Ea1 )+(Eb2�Eb1) if

�
Ea1 � Eb2; Ea2 � Eb1� < 0

1 if Ea1 � Eb2 > 0 (23)

where [Ea1 ; Ea2 ] and
�
Eb1; Eb2

�
are the expected inter-

vals of ~a and ~b. We say that ~a and ~b are indi�erent if
�M

�
~a;~b
�

= 0:5.

De�nition 2: For a triangular fuzzy number ~a =
(a1; a2; a3), the expected interval is easily calculated
as follows [43]:

EI (~a) = [Ea1 ; E
a
2 ] =

�
a1 + a2

2
;
a2 + a3

2

�
: (24)

4.1. The case of trapezoidal fuzzy numbers
The proposed method can also be applied to trape-
zoidal fuzzy numbers. In Step 1, for any fuzzy
coe�cient ~a = (a1; a2; a3; a4) and fuzzy right-hand
side ~b = (b1; b2; b3; b4), Relations (17) and (18) can be
rewritten as [10]:

~a (1� �)
�
a1 + a2

2

�
+ �

�
a3 + a4

2

�
; (25)

~b �
�
b1 + b2

2

�
+ (1� �)

�
b3 + b4

2

�
: (26)

In De�nition 2 of Step 5, for a fuzzy number ~a =
(a1; a2; a3; a4), the expected interval will be [43]:

EI (~a) = [Ea1 ; E
a
2 ] =

�
a1 + a2

2
;
a3 + a4

2

�
: (27)

The other steps remain unchanged.

5. Solution procedure

The de�ned problem in the previous section is nonlin-
ear. The reason is that the variable Q is the denomina-
tor of Eqs. (1), (2), (5), and (11). Certainly, Eq. (5) can
be converted to a linear form, DQi � PiQ. The linear

form of Eq. (11) can also be rewritten as
nP
i=1

Qi~ri � RQ.
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However, Relations (1) and (2) are totally nonlinear.
Considering that nonlinear problems cannot be solved
by exact methods, NSGA II is designed for solving
the problem in hand. Firstly, the fuzzy objective
functions and the fuzzy constraints must be modi�ed
in accordance with the proposed method.

5.1. Modi�cation of fuzzy objectives and fuzzy
constraints

Given the �rst step of the proposed method, assuming
that eri =

�
r1
i ; r2

i ; r3
i
�
, Eq. (11) can be rewritten as

follows:
nX
i=1

Qi
�
(1� �)

�
r1
i + r2

i
2

�
+ �

�
r2
i + r3

i
2

��
� QR:

(28)

It is also assumed that the fuzzy values of the objec-
tive functions in a solution are denoted by ]Cost =
(�1; �2; �3) and ÂPV = (�1; �2; �3). The interval

�
G; �G

�
of each objective can be determined by the DM. Here,
we assume that the ideal value of each objective is
determined by optimizing the function and ignoring
the other one. Also, the non-ideal value is determined
by the DM. In optimizing each objective, the problem
is solved for the smallest possible amount of �, which
ensures that the problem space is in the broadest state.
Then, the degree of satisfaction of objectives can be
calculated as follows:

K ~G
�
Cost0 (�)

�
=

�2s
�1

�
z��1
�2��1

�� � z� �G
G� �G

�
dz +

�3s
�2

�
z��3
�2��3

�� � z� �G
G� �G

�
dz

�2s
�1

�
z��1
�2��1

�
dz +

�3s
�2

�
z��3
�2��3

�
dz

;
(29)

K ~G
�
APV 0 (�)

�
=

�2s
�1

�
z��1
�2��1

�� � z�G�G�G
�
dz +

�3s
�2

�
z��3
�2��3

�� � z�G�G�G
�
dz

�2s
�1

�
z��1
�2��1

�
dz +

�3s
�2

�
z��3
�2��3

�
dz

:
(30)

It should be noted that the objective functions in
Eqs. (1) and (2) are minimization and maximization,
respectively. Thus, the membership function of ~G is
descending for the �rst objective and ascending for the
second one. The integrals of the above relations can be
easily calculated.

5.2. Solution representation
Each chromosome or answer vector can be expressed
as Q : [Q1; Q2; : : : ; Qn]; the sum of the vector is equal
to Q. Qi represents the order quantity assigned to
supplier i and it is equal to Qi : [qi1; qi2; : : : ; qi;Ki ].
The procedure for generating initial solutions is shown
in Figure 3.

Figure 3. Procedure of the initial solution generation.

5.3. Repair algorithm
Due to the existence of constraints in the problem,
it is possible to face infeasible solutions in the initial
solution generation algorithm and repetition of the
main algorithm. These infeasible solutions must be
controlled using the constraints handling methods. In
this section, we propose a repair algorithm, which
transforms infeasible solutions to feasible ones. Eqs. (3)
and (4) are established by solution representation.
By calculating the number of vehicles, Eqs. (6) and
(7) are enforced. Eqs. (8){(10) are also established
according to the order quantity from each supplier,
which should fall into one of the discount intervals. The
only constraints that may lead to infeasible solutions
are Eqs. (5) and (25). In the following, we propose a
repair algorithm for them:

- Repair Algorithm 1: In an infeasible solution,
according to Eq. (5), for each supplier i, we de�ne
ai = Pi � DQi=Q. If ai > 0, then the supplier
still has some capacity for order assignment. On
the other hand, if ai < 0, the amount of annual
order assigned to the supplier exceeds its annual
production capacity. Therefore, we de�ne two sets
of S+ = fi : ai � 0g and S� = fi : ai � 0g. The
set S+ represents the suppliers with an additional
capacity for assignment and the set S� represents
the suppliers whose capacity constraints are violated.
The following changes ensure the feasibility of a
solution if we have

P
i2S+ ai �Pi2S� ai; otherwise,

the solution is rejected:

Qi =
Q
D
Pi 8i 2 S�; (31)

Qi = Qi +
�

aiP
i2S+ ai

� X
i2S�

ai 8i 2 S+: (32)

According to Eq. (31), the annual order quan-
tity from suppliers with violated capacity constraint
is set equal to their annual production rate. Eq. (32)
shares the additional order quantity (

P
i2S� ai)

among other unviolated suppliers in proportion to
their available capacities.

- Repair Algorithm 2: For Eq. (28), we de�ne:

A =
X

i=1
Qiri0 �QR

in which:
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ri0 =
�
(1� �)

�
r1
i + r2

i
�

+ �
�
r2
i + r3

i
��
=2:

Also, due to changes in Repair Algorithm 1, ai is
re-calculated for all suppliers and the sets S+ and
S� are formed. If we have A > 0, the constraint is
violated. Thus, two suppliers i and j are randomly
chosen, provided that we have r0i > r0j and j 2 S+.
Then, modi�cations Qj = Qj + �0 and Qi = Qi �
�0 must be applied. In this case, it is guaranteed
that the total order quantity (Q) is not changed.
Reducing the order quantity from supplier i does not
lead to any violation. However, increasing it may
lead to exceeding the production capacity constraint.
Therefore, consider the following changes:

� =
A

r0i � r0j ; (33)

�0 = min f�; aj ; Qig : (34)

Eq. (33) determines the amount which must be
reduced from the order quantity from supplier i
and added to the order quantity from supplier j.
This change should be considered in accordance
with Repair Algorithm 1. Therefore, according
to Eq. (34), the minimum di�erence between the
amount determined in Eq. (33) and the remaining
capacity of supplier j, aj , must be selected. Also,
to prevent negative values for Qi, the minimum
di�erence between Qi and the determined value
should be chosen. It should be noted that the
procedure is repeated until the value of A is positive.

If repair is not performed within the prede�ned
replications, the solution modi�cations of Repair Algo-
rithm 2 are ignored and Repair Algorithms 1 and 2 are
repeated again.

5.4. Non-dominated Sorting Genetic
Algorithm (NSGA II)

NSGA II was presented by Deb et al. [44] as one of
the best algorithms for obtaining Pareto frontiers. In
this algorithm, the population P1 is generated with
respect to population size Np. At repetition t, after
selecting parent chromosomes from population Pt, the
o�spring (population Ot) are generated according to
the crossover rate pc and the mutation rate pm. Then,
Pt is merged with Ot and chromosomes are sorted
into non-dominated frontiers based on their rank and
crowding distance. Np best solutions form population
Pt+1. The algorithm continues until the best Pareto
solutions are obtained in accordance with the stop
condition. For more information, see Deb et al. [44]
and Deb [45].

A graphical view of the algorithm is shown in
Figure 4. After non-dominated sorting, the solutions
are sorted into Fi frontiers, where F1 is the best
Pareto frontier. The chromosomes within each frontier
are also sorted according to the crowding distance.

Figure 4. Graphical view of NSGA II.

After merging parents and o�spring populations, the
best frontiers are transferred to the new population.
As shown in Figure 4, the frontiers F1 and F2 and
the chromosomes with higher crowding distances on
frontier F3 are transferred to the new population and
the other frontiers are eliminated.

In the proposed algorithm, we utilize a uniform
crossover. Assume that chromosomes m and n are
selected. After choosing a random number � in the
interval (0; 1), the order quantities for each supplier i
in o�spring 1 and 2 are determined by Q1

i = �Qmi +
(1� �)Qni and Q2

i = (1� �)Qmi + �Qni , respectively.
In addition, if a mutation is applied to the chromosome,
one supplier is randomly selected and its order quantity
is exactly determined by the initial solution generation
procedure.

6. Computational results

An example is presented in this section. All the
required data, except for fuzzy data and the data
related to vehicles, are taken from Kamali et al. [20]. A
buyer with an annual demand of 100,000 units plans to
purchase the required amount from 4 suppliers. The
inventory holding cost to the buyer is $2.6 and the
capacity of each vehicle is 5,000 units. The information
on the suppliers is shown in Table 1. The �xed cost of
each vehicle per unit of distance is assumed as a fuzzy
number C = (400; 530; 640). Other fuzzy parameters

Table 1. Information on the suppliers in the example.

Parameter Supplier
1 2 3 4

S 43 39 42 30
P 35108 29898 35785 68777
A 40 19 25 39
h 2.29 1.96 2.74 0.54

dis 25 20 15 17
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Table 2. Fuzzy parameters in the example.

Supplier ~c ~w ~r

1 (3, 4.04, 4.9) (0.4, 0.44, 0.48) (0.0307, 0.0344, 0.0389)
2 (6, 6.48, 7.12) (0.55, 0.64, 0.67) (0.0498, 0.0551, 0.0674)
3 (7, 7.17, 7.8) (0.71, 0.72, 0.78) (0.0116, 0.0121, 0.0149)
4 (5, 5.87, 6.23) (0.55, 0.57, 0.62) (0.0205, 0.0215, 0.0265)

Table 3. Quantity discounts o�ered by suppliers.

Supplier Unit price Order interval

1

9 (0, 5000)
8.9 [5000, 10000)
8.8 [10000, 15000)
8.7 [15000, 20000)
8.6 [20000, 25000)
8.5 [25000, 30000)
8.4 [30000, 35108)

2

9.1 [0, 2000)
9 [2000, 4000)

8.9 [4000, 6000)
8.8 [6000, 8000)
8.7 [8000, 10000)
8.6 [10000, 20000)

3

8.7 [0, 3000)
8.6 [3000, 6000)
8.5 [6000, 9000)
8.4 [9000, 12000)
8.3 [12000, 15000)
8.2 [15000, 18000)
8.1 [18000, 21000)
8 [21000, 30000)

4

10.5 [0, 4000)
10.4 [4000, 8000)
10.3 [8000, 12000)
10.2 [12000, 16000)
10.1 [16000, 68777)

are also given in Table 2. In addition, the discount
price o�ered by suppliers is shown in Table 3.

Let us denote fuzzy objectives by ]Cost =
(�1; �2; �3) and ÂPV = (�1; �2; �3). According to the
proposed method, we need to determine the interval�
G; �G

�
for each objective. For this purpose, two single-

objective optimization models are solved for � = 0. By
minimizing �1, the fuzzy optimal solution is obtained
as ]Cost = (1584200; 1698800; 1819600). Also, by
maximizing �3, the fuzzy optimal solution is ÂPV =
(67000; 70000; 75000). Given the optimal solutions to

Table 4. Pareto solutions to the problem with respect to
di�erent values of �.

# � K1 K2 �K1 �K2

1 0.1 0.6358 0.7924 0.0635 0.0792
2 0.1 0.7909 0.1831 0.0790 0.0183
3 0.2 0.6355 0.797 0.1271 0.1594
4 0.2 0.7861 0.2038 0.1572 0.0407
5 0.3 0.5214 0.8016 0.1564 0.2404
6 0.3 0.776 0.223 0.2328 0.0669
7 0.4 0.6815 0.806 0.2726 0.3224
8 0.4 0.7802 0.258 0.3120 0.1032
9 0.5 0.4988 0.8102 0.2494 0.4051
10 0.5 0.7865 0.2828 0.3932 0.1414
11 0.6 0.6538 0.8143 0.3922 0.4885
12 0.6 0.7822 0.3043 0.4693 0.1825
13 0.7 0.6242 0.8183 0.4369 0.5728
14 0.7 0.7806 0.3252 0.5464 0.2276
15 0.8 0.6678 0.8221 0.5342 0.6576
16 0.8 0.7561 0.3218 0.6048 0.2574
17 0.9 0.6785 0.8259 0.6106 0.7433
18 0.9 0.7816 0.3722 0.7034 0.3349
19 1 0.5605 0.8295 0.5605 0.8295
20 1 0.7698 0.3253 0.7698 0.3253

the two optimization models, it is determined that
GCost = 1584200 and �GAPV = 75000. The DM also
sets the non-ideal values for both objective functions
as �GCost = 2300000 and GAPV = 55000. Thus, the
interval

�
G; �G

�
for cost and APV will be (1584200,

2300000) and (55000, 75000), respectively.
Table 4 shows the Pareto solutions obtained by

solving the problem for di�erent values of �. The
problem has been solved for � = 0:1; 0:2; :::; 1 and the
satisfaction level of the DM has been reported. Also,
normalized satisfaction levels are shown in the �fth and
sixth columns.

Regarding the normalized satisfaction levels, if
the dominated solutions are eliminated, solutions 17{
20 are identi�ed as the �nal Pareto solutions. Figure 5
shows the remaining Pareto solutions.

Table 5 shows the order quantities assigned to
suppliers in Pareto solutions. Also, the fuzzy member-
ship functions for cost and APV objectives are shown
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Table 5. Order quantities in Pareto solutions.

Supplier
# 1 2 3 4

17 9986 0 16411 0
18 0 3323 14717 0
19 9950 0 18098 3860
20 0 5924 27355 0

Figure 5. Final Pareto solutions with respect to the
normalized satisfaction levels.

Figure 6. Fuzzy membership function of cost objective in
Pareto solutions.

in Figures 6 and 7, respectively. According to them,
the DM can choose the appropriate solution.

Given the fuzzy values of the cost in Figure 6,
we can compare the solutions. According to the
calculations of fuzzy cost values: (a) The degrees in
which solution #20 is bigger than solutions #17, #18,
and #19 are 1, 0.97, and 1, respectively; (b) The
degrees in which solution #18 is bigger than solutions
#17 and #19 are 0.85 and 0.8, respectively; and
(c) The degree in which solution #19 is bigger than
solution #17 is 0.55. Given the minimization of the cost
objective function, solution #20 is the worst among all
the solutions.

Similarly, we can compare the solutions given the
fuzzy values of APV objective in Figure 7: (a) There
is no di�erence between solutions #17 and #19; (b)

Figure 7. Fuzzy membership function of APV objective
in Pareto solutions.

Figure 8. Pareto frontiers with regard to di�erent values
of R.

The degree in which both solutions #18 and #20 are
bigger than either solution #17 or #19 is equal to 1;
and (c) There is no di�erence between solutions #18
and #20. For indi�erent solutions in APV, one can
choose a solution that is more cost-e�ective.

According to the analysis, there is no di�erence
between solutions #18 and #20 in APV and the degree
in which solution #20 is bigger than #18 is 0.97.
Therefore, solution #18 is preferred to solution #20.
Similarly, there is no di�erence between solutions #17
and #19 in APV and the degree in which solution #19
is bigger than #17 is 0.55. Therefore, solution #17 is
preferred to solution #19.

In the example above, the maximum acceptable
defective rate (R) is assumed to be 0.022. In the follow-
ing, the problem is also solved for R = 0:02; 0:024, and
0.030 and the same procedure is followed to identify the
�nal Pareto solutions. Figure 8 shows the results. In
the maximization of satisfaction levels, the farther the
Pareto frontier from the origin, the better the quality
of its solutions will be. It is expected that by increasing
R, the solution space gets wider and better results are
obtained. Figure 8 also con�rms this.

7. Conclusion

In the current competitive environment, supplier se-
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lection is one of the major processes in supply chain
management of any organization. On the other hand,
allocating orders to the selected suppliers allows for
some economies of scale through the right choice of the
quantities to order from each supplier. In this paper,
the supplier selection and order allocation problem was
studied in a single-buyer-multi-supplier supply chain.
Suppliers o�ered quantity discounts as an incentive
to motivate buyers to increase the amount of their
ordered quantities. Also, transportation cost, fuzzy-
type uncertainty, and some practical constraints were
taken into account in the problem. The problem
was formulated as a bi-objective model to minimize
annual supply chain costs and maximize the Annual
Purchasing Value (APV). We proposed a novel fuzzy
multi-objective programming method based on the
degree of satisfaction of the Decision Maker (DM) and
the ful�llment level of fuzzy constraints. After solving
the model and determining Pareto solutions, the fuzzy
results were compared with an index and the DM could
identify the appropriate or inappropriate solutions.
We utilized Non-dominated Sorting Genetic Algorithm
(NSGA II) to solve the model and the results were
presented using numerical examples. The interested
researchers can also investigate demand uncertainty,
the e�ect of di�erent potential suppliers in each period,
and other quantity discount schemes such as incremen-
tal quantity discounts and business volume quantity
discounts in the problem. Also, other algorithms
such as Multi-Objective Particle Swarm Optimization
(MOPSO) and Multi-Objective Simulated Annealing
(MOSA) can be applied to the problem in order to
investigate the e�ciency of the proposed NSGA II.
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