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Abstract. In this paper, 
ow past a single Dissipative Particle Dynamics (DPD) particle
with low Reynolds number is investigated and whether a single DPD particle immersed in
a 
uid has an intrinsic size is surveyed. Then, a minimum length scale is determined such
that the hydrodynamic behavior based on standard DPD formulation is modeled correctly.
Almost all of the previous studies assume the DPD particles as point centers of repulsion
with no intrinsic size. Hence, to prescribe the size of a simulating sphere, a structure for
frozen DPD particles is proposed. In this paper, two e�ective radii, namely Stokes-Einstein
radius and a radius based on the Stokes law, for DPD particles are introduced. For small
Reynolds numbers, it was proved that the two radii approached each other. Finally, in spite
of the typical simulations which assume DPD particles as point centers of repulsion, it was
concluded that each of the individual DPD particles interacted with other particles as a
sphere with non-zero radius. This resulted in reduction in the required number of particles
and led to more economical simulations. Contemplating the radius of the particles was
necessary for the new low-dimensional model, which was derived from the DPD method.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In this paper, a 
ow with low Reynolds number past
a single DPD particle as a point center of repulsion
is investigated and the minimum length scale is deter-
mined in such a way that the hydrodynamic behaviour
of 
ow based on standard DPD formulation is modeled
correctly. Many previous studies assumed DPD parti-
cles as point centers of repulsion with no intrinsic size.
Hence, to prescribe the size of a simulating sphere, a
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structure for frozen DPD particles is proposed. For
example, Chen et al. [1] used DPD method to simulate
the Stokes 
ow past a sphere which was constructed by
452 frozen DPD particles. This sphere was surrounded
by a 
ow of free DPD particles. The simulation results
were in good agreement with those of the Stokes law.
However, in many DPD simulations of colloidal and
polymeric solutions, the colloidal particles and polymer
beads were represented by individual DPD particles [2-
4], which were proved to be e�cient simulations. In
this study, the equilibrium radial distribution function,
g(r), as a function of distance is plotted and it will
be observed that almost no particle can penetrate into
this sphere. Then, it will be proved that each of the
individual DPD particles interact with other particles
as a sphere with non-zero radius.

A linear polymer in Brownian Dynamics (BD) is
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modelled as a chain of beads which are connected to
each other with the spring forces. In this method,
the size of the spherical beads is determined by the
assumption of Stokes law and use of the frictional
coe�cients. In DPD method, a standard model of
linear polymer is a chain of DPD particles which are
connected together by the spring forces and immersed
in a solution of free DPD particles. Since these models
of polymeric solutions are equivalent, it is necessary to
introduce an intrinsic size for DPD particles to show
that BD beads and DPD particles are equivalent as
well. Then, two e�ective radii in DPD are inferred,
which can be calculated independently; Stokes-Einstein
radius (RSE), which is shown in this paper as the
radius of a sphere impenetrable around each DPD
particle, is calculated by means of the coe�cients of
self-di�usion and viscosity [5] and the Stokes-Einstein
equation. On the other hand, the second radius (RS)
is calculated from the Stokes law in simulating the 
ow
past a single �xed DPD particle. For small Reynolds
numbers, it is proved that the two radii approach
each other. By considering the Stokes-Einstein radius
for DPD particles and representing congruous hydro-
dynamic behaviour with the analytical Stokes law, it
is concluded that each DPD particle has an intrinsic
size, which behaves as a solid sphere. In the follow-
ing sections, the relations governing these radii are
described. This conclusion can lead to a considerable
decrease in the number of particles in DPD simulating,
because each particle represents a blu� body. The
e�ect of number of particles on computational time will
be shown quantitatively, which proves that reduction
in the number of particles results in more economical
simulations.

In this paper, after an introduction to the assump-
tion of DPD point particles, the governing equations
of dissipative particle dynamics are brie
y described.
Then, the 
ow past individual DPD particles is inves-
tigated and by representing the results, the intrinsic
size for DPD particles is introduced. Finally, the main
points of the paper are summarized in the conclusion.

2. Governing equations in DPD

The dissipative particle dynamics method, which was
�rst introduced by Hoogerbrugge and Koelman [6],
is a stochastic mesoscopic simulation method [7] and
includes particles representing coarse grained molecules
that move together in Lagrangian method.

The coarse grained DPD particles interact via
three pairwise additive forces, namely repulsion con-
servative force, FCij , dissipative force, FDij , and random
force, FRij , which conserve linear momentum. In this
method, it is assumed that these forces vanish beyond
a cut-o� radius, rc. It is assumed that the DPD system
consists of N point particles with mass mi, position ri,

and velocity vi. The Newton's laws govern the motion
of the DPD particles and for a particle i, the following
relations are satis�ed [7]:

dri
dt

= vi;

mi
dvi
dt

= fi =
X
j 6=i

(FCij + FDij + FRij ): (1)

The sum of runs over all other particles resides in a
sphere with cut-o� radius, rc. The three forces are
introduced below. The conservation force is a soft-core
repulsive force given by [7]:

FCij =

(
aij(1� rij

rc )r̂ij (rij < rc)
0 (rij � rc) (2)

where, aij = paiaj ; and ai and aj are repulsive
parameters for particles i and j, respectively. ~rij =
~ri�~rj is the distance vector pointed from particle j to
i and rij = j~rij j.

The dissipative and random forces are given
by [7]:

FDij = �
!D(rij)(r̂ij :vij)r̂ij ;

FRij = �!R(rij)�ij r̂ij ; (3)

where, 
 and � are the amplitudes of dissipative
and random forces, respectively. !D and !R are r-
dependent weight functions, which are equal to zero
for r > rc. vij = vi�vj is the relative velocity between
particles i and j, and �ij is a normally random variable
with zero mean and unit variance (�ij = �ji).

Espa~nol and Warren [8] showed that in a
DPD system with random and dissipative forces, the

uctuation-dissipation theorem should be satis�ed as
follows:

!D(r) = !R(r)2; �2 = 2
kBT; (4)

where kB is the Boltzmann constant and T is the
equilibrium temperature of the system. To estimate
the temperature in the simulation, the average kinetic
energy for one particle is calculated, which assumes
that every particle has the mass 1 DPD unit, and
then the coe�cient 2=3 is multiplied. Obeying this
theorem, DPD produces a thermostat system [7,8].
The standard weight function is [7]:

[!R(r)] =

(
(1� r

rc ) (r < rc)
0 (r � rc) and

!D(r) = [!R(r)]2: (5)

In order to increase the viscosity of DPD 
uid,
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Yaghoubi et al. modi�ed the standard weight function
and proposed a new formulation as follows [9]:

[!R(r)] =

(
(1� r

rc )k (r < rc)
0 (r � rc) (6)

In this new formulation, if k = 1, the conventional
weight function in standard DPD systems is obtained,
but the great defect with the standard weight function
is the low Schmidt number for the liquids. Considering
k > 1 leads to increase in viscosity and then, a Schmidt
number even more than the modi�cation proposed by
Fan et al. [10].

In these simulations, the particle mass, tem-
perature, and interaction range have been chosen as
units of mass, energy, and length, respectively, and
to evaluate equations of motion, the modi�ed velocity-
Verlet algorithm is used [7].

3. Flow past a single DPD particle

In this section, 
ow past a single Dissipative Particle
Dynamics (DPD) particle as a centre of repulsion is
investigated and then, an e�ective radius is introduced.
It will be seen that each DPD particle is surrounded
by a spherical space, which is almost impenetrable
by other DPD particles. The radius of this sphere
is known as Stokes-Einstein radius and the size of
the radius depends only on the repulsive coe�cient
in the conservative force [11]. Calculating the self-
di�usion and viscosity coe�cient of the 
uid, and using
the Stokes-Einstein equation, the radius RSE can be
obtained. The Stokes-Einstein equation is given by:

RSE =
kBT

CD1��
; (7)

where, D1 is the self-di�usion coe�cient of a speci�c
particle, which is subject to Brownian motion in
an unbounded domain, and the coe�cient � is the
viscosity of the surrounded 
uid. In particle based
models such as DPD, the di�usion coe�cient can be
calculated using displacement data, which is obtained
by employing mean square displacement during long
term in equilibrium simulations due to the Einstein
relation [12]:

D1 = lim
t!1

Djr(t)� r(0)j2E
6� t ; (8)

where, < : > represents the ensemble averaging, and
r(0) and r(t) are the particle positions at the initial
time and time t, respectively. In this paper, the
Lees-Edwards periodic boundary conditions are used
to determine the viscosity coe�cient of the 
ow [13].

Table 1. DPD simulation parameters.

n a 
 � rc kBT

3 25 4.5 3 1 1

To show that the Stokes-Einstein sphere sur-
rounding a DPD particle is approximately impene-
trable, the equilibrium radial distribution function is
required during a simulation time. For this purpose,
the initial DPD parameters are listed in Table 1, where
n is the number density and a is the conservative
force coe�cient. Other parameters have been de�ned
previously.

Applying the above parameters, the equilibrium
Radial Distribution Function (RDF), g(r), for the DPD
particles is plotted in Figure 1. RDF is considered
as a function of dimensionless distance, r=RSE . In
this �gure, the area under the curve on the left of the
vertical line, r = RSE , is negligible relative to the total
area under the curve. Therefore, this con�rms that the
Stokes-Einstein sphere is approximately impenetrable.

4. Hydrodynamic interactions for individual
DPD particles

In this section, it is investigated whether a single DPD
particle immersed in a 
uid of identical DPD repulsive
particles has an intrinsic size. Then, the minimum
length scale is determined such that the hydrodynamic
behaviour based on standard DPD formulation is mod-
elled correctly. Before that, DPD particles are assumed
as point centres of repulsion with no intrinsic size and
then, the size of a simulating sphere is determined
by creating a construction of frozen DPD particles.
For example, Chen et al. [1] used the DPD method
to simulate Stokes 
ow around a sphere, which was

Figure 1. The equilibrium radial distribution function,
g(r), as a function of dimensionless distance r=RSE ; here
RSE = 0:144.
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created by 452 frozen DPD particles and surrounded
by a 
ow of free particles. The results of this simula-
tion agreed well with the Stokes law.

Although each DPD particle is surrounded by
a Stokes-Einstein sphere, to prove that it interacts
with the other particles as a sphere with intrinsic size,
it should be shown that each DPD sphere behaves
hydrodynamically correct as well.

For this purpose, a single DPD particle is exam-
ined in a simple 
uid 
ow with the uniform velocity,
U1, and viscosity coe�cient, �, in an unbounded
domain. It is assumed that the single DPD particle
is immersed in this 
uid of identical DPD particles and
hence, we investigate the hydrodynamic behavior of the
single particle. It is already proved that an immersed
single DPD particle in a 
uid consists of apparently
identical DPD point particles and statistically responds
as if the surrounding 
uid is a continuous system [11].
Moreover, according to Stokes [14], in the analytical
solution for a 
ow with very low Reynolds number past
a sphere with the radius RS , when the inertia forces are
neglected, the drag force on the sphere is given by [14]:

FD = 6��U1RS ; (9)

where � is the viscosity coe�cient and U1 is the
uniform velocity of the 
ow.

If the sphere behaves hydrodynamically correct in
its interactions with the other particles, it should obey
Eq. (8) for a 
ow with very low Reynolds number. To
counteract the e�ect of the drag force on the sphere and
�x its position, an external force with the same amount
but in the opposite direction is imposed on the central
sphere. Then, the position of the sphere is obtained.
To instate a suitable condition for the simulation, the
amount of the velocity, U1, must be determined such
that Re < 1.

To obtain some basic parameters, it is required to
simulate the 
uid 
ow with only the particles of the

uid. The physical parameters obtained in the initial
simulations are summarized in Table 2.

In other simulations, two types of particles are
considered; the 
uid particles and the central sphere,
which is immersed in the 
uid. It is assumed that
the radius of a single particle is equal to the Stokes-
Einstein radius (i.e. RS = RSE) and we impose the
force FD given by Eq. (9) at the opposite direction of
the velocity U1 on the single DPD sphere. The initial
position of the sphere is set at (0, 0, 0), which is in the
centre of the domain, and we investigate the hydro-
dynamic behaviour of the particle. For simplicity, we

Table 2. Parameters obtained in the initial simulations.

Re U1 RSE M D1
� 0:9 0.5 � 0:144 � 0:24 1.536

consider uniform velocity only in x-direction. The x-
position of the central sphere is plotted as a function
of time (Figure 2). According to Figure 2, after some
displacements around the origin of the coordinates,
the DPD sphere particle soon returns to its original
position, x = 0, and remains approximately in this
position. To show that the equilibrium is preserved, the
temperature is plotted in Figure 3 for the same period
of time. In this �gure, it is shown that temperature

uctuation is around kBT = 1, which guarantees the
stability of the system.

Since the position of the particle in a 
ow with
uniform velocity and an external force is constant, it is
clear that net force importing on the sphere is nearly
zero. It means that the amounts of external force and
the drag force in the 
ow are approximately equal.
Therefore, because other parameters such as viscosity

Figure 2. x-position of the central sphere as a function of
time.

Figure 3. Temperature as a function of time.
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and the velocity of the 
ow in addition to the drag
force are known, the only unknown parameter is the
radius of the sphere. The hydrodynamic radius of the
particle is equal to Stokes-Einstein size; this fact proves
that each DPD particle behaves hydrodynamically as
a solid sphere with radius RSE .

Accordingly, the number of particles in DPD
simulating considerably decreases, because each par-
ticle represents a blu� body. The e�ect of number
of particles on computational time is shown below,
quantitatively, which proves that the reduction in the
number of particles leads to more economical simula-
tions.

5. E�ect of some parameters on
Stokes-Einstein radius

In this study, several simulations have been carried
out to investigate the e�ect of di�erent parameters
on Stokes-Einstein radius. These parameters include
temperature of the system, particle density, repulsive
parameter in conservative force, and di�erent weight
functions for dissipative force.

As it is shown in Figure 4, decreasing the repulsive
parameter leads to decrease in the Stokes-Einstein
radius, because the repulsion power is decreased. Also,
as observed in Figure 5, decreasing the temperature of

Figure 4. Stokes-Einstein radius with di�erent repulsive
parameters.

Figure 5. Stokes-Einstein radius versus di�erent
temperatures of the system.

the system has a reverse e�ect on the Stokes-Einstein
radius and results in larger radius, because the energy
level of the other particle is decreased.

In the simulations presented in Figure 6, it is
seen that increasing the density leads to decrease in
the Stokes-Einstein radius due to aggregation of the
particles.

It is observable in Figures 7 and 8 that when
we change the simulated 
uid with di�erent weight
functions, the Stokes-Einstein radius remains �xed.

Generally, it is concluded that the size of the
Stokes-Einstein radius for every particle is only de-
pendent on the repulsive energy level of that particle.

Figure 6. Stokes-Einstein radius versus di�erent particle
densities.

Figure 7. The e�ect of di�erent weight functions
proposed by Fan [10] on Stokes-Einstein radius.

Figure 8. The e�ect of di�erent weight functions
proposed by Yaghoubi [9] on Stokes-Einstein radius.
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With increase in this energy, the size of Stokes-Einstein
radius will increase too. Also, changing the 
uid with
di�erent weight functions cannot a�ect the Stokes-
Einstein radius.

6. A more economical DPD method

One of the most time consuming steps in particle-
based methods such as MD and DPD is calculating
the forces implemented on each particle. If we consider
N particles in the simulating domain, in a very simple
view, we must know the positions of the other N � 1
particles. Hence, the computational cost is in the
order of O(N2). Fortunately, since DPD is a short-
range method, each particle does not need to have
interaction with all other N � 1 particles, but it must
interact with particles which are settled in a sphere
with the radius rc (cut-o� radius) around the target
particle. This leads to a considerable decrease in
the computational cost by using a suitable searching
algorithm such as Verlet neighbour list [15,16] and
Cell structure and linked list [15]. It is estimated
that the scaling of computational time changes to
O(N) + 1=fO(N2) with Verlet neighbour list, where f
is the frequency at which the list is recreated in a time
step [15]. Tiwari performed some simulations in a two-
dimensional domain with periodic boundary conditions
and di�erent numbers of particles [17]. The e�ect of
number of particles on computational time per time
steps is plotted in Figure 9.

In Figure 9, it is shown that the increase in com-
putational time with the number of particles behaves
almost linearly or in a quadratic manner by using or
not using Verlet neighbour list, respectively. In this
�gure, the left curve shows the computational time per

Figure 9. The e�ect of number of particles on
computational time per time steps with and without
Verlet neighbor list [17].

time steps with Verlet neighbor list versus the number
of particles and the right one shows the same parameter
without Verlet neighbor list.

In cell structure and linked list algorithm, the
computational domain is assigned to M � M � M
networks such that the dimensions of each cell, l =
L=M , should be greater than the cut-o� radius. Then,
in a two-dimensional system, we have approximately
NC = N=M2 particles in each cell and in a three-
dimensional system, NC = N=M3 particles. Therefore,
using cell structure and linked list algorithm, we only
have 9NNC and 27NNC paired particles to search in
the 2-D and 3-D systems, respectively [15]. In our
simulations, we used this e�cient algorithm, which
behaved in an almost linear equation with the number
of particles. Tiwari performed a three-dimensional
simulation in a periodic domain with di�erent numbers
of particles, with and without the cell structure and
linked list algorithm [17]. The e�ect of the number
of particles on computational time per time steps is
plotted in Figure 10. In this �gure, the left curve shows
the computational time per time steps with linked
list algorithm versus the number of particles and the
right one shows the same parameter without linked list
algorithm.

Using particles with intrinsic size results in reduc-
tion in the required number of particles for simulations.
In this section, the e�ect of the number of particles
on computational time is shown quantitatively, which
proves that reduction in the number of particles leads
to more economical simulations.

Moreover, in Low-Dimensional (LD) model [18],
which is established based on DPD [6,7] and FPM [19]
methods, the particles radius is considered essential.
In this method, the de�ciency recognized in standard

Figure 10. The e�ect of number of particles on
computational time per time steps with and without the
cell structure and linked list algorithm [17].



1444 S. Yaghoubi et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 1438{1445

DPD is solved. Also, because of the existence of
the particles with radius, this approach is able to
interpret the essential mechanical and rheological prop-
erties correctly and economically [18]. In fact, the
suspended particles in a 
ow have both translational
and rotational movements, whereas in standard DPD,
a single particle perceives only central forces. Thus,
in the standard DPD simulation, the non-central shear
forces between particles, and the angular momentum
and torque for each single DPD particle are ignored.
Espanol et al. [19-21] recognized this defect in the
standard DPD and proposed a more complicated Fluid
Particle Model (FPM) [19]. In this method, the non-
central shear components, angular momentum, and
torque for each single particle are considered. Based
on the improvement represented by Espanol [19], a set
of new formulations for DPD technique were derived
by Pan et al. [22], which had the implementation
and computational simplicity of the standard DPD
method and yielded correct hydrodynamics in 
ows
around blu� bodies represented by a single particle.
The LD method is a generalized version of DPD based
on this new formulation [20] and seeks to resolve the
DPD de�ciency. This approach can be used with
con�dence in studying the properties of suspended
particles in a 
uid phase, including the transport of
macromolecules, colloids, biomolecules such as DNA,
and blood cells such as Red Blood Cells (RBCs) [18].
The peculiarities of these systems are often based on
their mesoscale structures. Mesoscale properties are
the structural features with the scale between the
atomistic (microscopic) and continuum (macroscopic)
levels. These structural features endue unique and
interesting peculiarities to the complex 
uids. For
instance, LD model is able to interpret the essential
mechanical and rheological properties of the red cells
in blood 
ow correctly and economically [18].

7. Conclusions

In this paper, it is shown that a single DPD particle
immersed in a 
uid consisting of identical repulsive
DPD particles has an intrinsic size. A minimum length
scale was determined such that the hydrodynamic
behaviour based on the standard DPD formulation was
modelled correctly. Many previous studies assumed
DPD particles as point centres of repulsion with no
intrinsic size and hence, to prescribe the size of a
simulating sphere, created a structure of frozen DPD
particles. For example, Chen et al. [1] used DPD
method to simulate Stokes 
ow past a sphere which was
constructed by 452 frozen DPD particles. Moreover, in
this paper, two e�ective radii in DPD were introduced,
which could be calculated independently: the Stokes-
Einstein radius (RSE) and the hydrodynamics radius
(RS). It was proved that each of the DPD particles

were surrounded by a spherical space, which was ap-
proximately impenetrable for the other DPD particles.
The radius of this sphere was known as Stokes-Einstein
and its size depended only on the repulsive coe�cient
in the conservative force. The hydrodynamics radius
was calculated from the Stokes law in simulating the

ow past a single �xed DPD particle. In the limit,
where the Reynolds number was small, the two radii
approached each other.

Based on the fact that the Stokes-Einstein radius
was equivalent to hydrodynamics radius of the DPD
particle in low Reynolds number 
ows, it was concluded
that, in spite of the previous studies that assumed DPD
particles as point centres of repulsion with no intrinsic
size, each of the individual DPD particles interacted
with the other particles as a solid sphere with non-zero
radius.

Using particles with intrinsic size led to the reduc-
tion in the required number of particles for simulations.
The e�ect of the number of particles on computational
time was shown quantitatively, which proved that
reduction in the number of particles would result in
more economical simulations.

Contemplating the radius of the particles is nec-
essary for the Low-Dimensional (LD) model, which is
derived based on DPD [6,7] and FPM [19] methods. For
instance, the LD model of the red blood cells is able
to interpret the essential mechanical and rheological
properties correctly and economically [18].
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