
Scientia Iranica D (2019) 26(3), 1567{1588

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

Localizing exception faults in Android applications

H. Mirzaei and A. Heydarnoori�

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

Received 8 August 2017; received in revised form 22 April 2018; accepted 24 September 2018

KEYWORDS
Fault localization;
Unhandled exceptions;
Exception faults;
Android applications.

Abstract. In software programs, most of the time, there is a chance for occurrence
of faults in general, and exception faults in particular. Localizing those pieces of code
that are responsible for a particular fault is one of the most complicated tasks, and
it can produce incorrect results if done manually. Semi-automated and fully-automated
techniques have been introduced to overcome this issue. However, despite recent advances
in fault localization techniques, they are not necessarily applicable to Android applications
because of their special characteristics such as context-awareness, use of sensors, being
executable on various mobile devices, limited hardware resources, etc. To this aim, in this
paper, a semi-automated hybrid method is introduced that combines static and dynamic
analyses to localize exception faults in Android applications. Our evaluations of nine
open source Android applications of di�erent sizes with various exceptions show that
the technique proposed in this paper can correctly identify root causes of the occurred
exceptions. These results indicate that our proposed approach is e�ective in practice in
localizing exception faults in Android applications.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The goal of software testing is to make sure that a
program does what it was designed to do; conversely,
it does not do anything unintended [1]. Due to
the diversity of application con�gurations, platforms,
and inputs, software testing is typically an unpleas-
ant, complicated, di�cult to automate, and costly
process [2]. Consequently, software systems are of-
ten not thoroughly tested, and they usually include
some faults. Hence, there is a high demand for
automating the process of localizing faults in faulty
software applications [3,4]. Fault localization is the
process of identifying the pieces of an application's
source code responsible for the occurrence of that

*. Corresponding author.
E-mail addresses: hamedmirzaei@ce.sharif.edu (H.
Mirzaei); heydarnoori@sharif.edu (A. Heydarnoori)

doi: 10.24200/sci.2018.4966.1015

fault. Semi-automated and fully-automated fault lo-
calization methods have been introduced to decrease
the developers' involvement during the process of fault
localization and to increase the precision of results [5].
In recent years, smart mobile devices, specially Android
ones, are widely used, and millions of applications
have been developed for them. Mobile applications
are event-driven, i.e., they respond to user and/or
system generated actions [6]. They are also context-
aware, meaning that they can behave di�erently in
di�erent situations and locations [6]. Additionally,
Mobile applications can use various sensors of mobile
devices, can be executed on di�erent smart mobile
devices with various properties, and should be executed
and tested with limited hardware resources available on
smart mobile devices, new technologies are used in their
developments, etc. [7]. All these special characteristics
force mobile application developers to look for new
fault localization methods [7,8].

To address the above issue, a number of ap-
proaches have been proposed in related literature



1568 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

for fault localization in smart mobile applications.
However, since di�erent types of faults exist, each
technique focuses on a particular type of fault, such as
pro�le leakages, extremely energy usages, or wasting
the memory spaces. In particular, Egele et al. [9]
proposed an approach to detect pro�le leakages in iOS
applications. On the other hand, Gibler et al. [10]
used a di�erent approach for �nding pro�le leakages in
Android applications. To detect energy-related faults,
Vekris et al. [11] de�ned some energy policies and
examined Android applications to see whether or not
those policies have been followed. In a di�erent work,
Pathak et al. [12] used the data-ow analysis to detect
no-sleep energy faults, which keep the phone awake all
the time. In another work, Gottschalk et al. [13] de�ned
a number of energy-related code smells and attempted
to remove them by re-engineering the source code. The
Graphical User Interface (GUI) is an important part of
any event-driven application. Some approaches, such
as the ones done by Takala et al. [14], Yang et al. [15],
and Hu et al. [16], focus on detecting GUI-related faults
in mobile applications. More speci�cally, they attempt
to �nd objects on the screen with conicting boundaries
or out of bound layouts. On the other hand, in our
proposed approach, we are using the GUI events too;
however, we concentrate on what is occurring beyond
the GUI and in the source code itself, not just the GUI.
It is implied that our approach is unable to �nd those
out of bound and conicting boundary faults.

One of the most important kinds of faults is
unhandled exception faults, occurring in speci�c un-
wanted situations and forcing the application to stop.
Of note, these faults are very important since they
can crash the whole application. To the best of our
knowledge, no approaches have been proposed in the
literature to localize this kind of faults in Android
applications. To address this issue, in this paper,
a semi-automated hybrid method is introduced that
combines the dynamic and static analyses to localize
unhandled exception faults in Android applications.
Our approach mainly includes three phases: extraction,
execution, and evaluation. In the extraction phase,
a behavioral graph for the Android application under
the test is automatically generated using application's
activities, objects, and events. Then, that graph is used
to automatically generate a set of test cases for that
application. In the execution phase, those test cases
are executed over the application and their execution
traces are pro�led. If an exception occurs during
the execution of a test case, in the evaluation phase,
lines of the application's source code based on their
relevance to the occurrence of that exception fault.
An application may have more than one unhandled
exception fault. To localize multiple exception faults
in an Android application, our approach executes every
single test case of the application. If a test case throws

an exception, it is recorded by the approach, and the
next test case is examined. This process keeps running
until all the test cases are examined.

To rank lines of the application's source code
with respect to their relevance to causing an exception,
three di�erent scores are used: the test case score, the
value pattern score, and the backward static slicing
score. The test case score indicates the execution
frequency of each line of the code in the failed and
passed test cases. It is obvious that if a line of the code
is executed more in the failed test cases than that in
the passed test cases, it is more likely to be faulty. To
calculate this score, a combination of Tarantula [17]
and Jaccard [18] metrics is used. The value pattern
score is used to detect lines of the source code that
are not related to the occurrence of that exception.
Hence, this score helps to reduce the search space by
removing unrelated statements; thus, fault localization
can be more precise and faster. In contrast to the
value pattern score, backward static slicing score
detects those lines of the code which are related to the
occurrence of that exception. This score reduces the
search space by choosing related program statements.

The our proposed approach has been implemented
as a tool for Java and used to localize various exceptions
in nine open source Android applications of di�erent
sizes. Our evaluations indicate that the proposed
approach works as expected in most cases and can
localize lines of the code that are responsible for raising
exceptions. We also compared our ranking metric with
the Tarantula and Jaccard as two powerful ranking
metrics, and noticed that ours practically outperforms
them. The contributions of this work include (i) a new
ranking metric to rank lines of the source code based
on their relevance to the occurrence of an exception;
(ii) the ability to localize multiple exception faults in
a single run of the approach; and (iii) a prototype
implementation of the proposed approach.

The rest of this paper is organized as follows:
Section 2 provides a running example used throughout
this paper. Then, Section 3 introduces the proposed
approach and ranking metric. Next, Section 4 de-
scribes our prototype implementation of the proposed
approach. Afterwards, Section 5 presents the results
of our evaluations of the proposed technique on nine
open-source Android applications of di�erent sizes with
various exceptions. Section 6 provides discussion on
various aspects of the proposed approach. Section 7
considers the related work. Finally, Section 8 concludes
the paper and provides future research directions.

2. Running example

In this section, an example Android program is pro-
vided in order to clarify the problem that our proposed
approach aims to tackle. This example is then used



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1569

throughout this paper. However, �rst, the structure
of an Android application is briey explained to make
the paper more understandable for readers who are not
familiar with Android programming.

Each Android application is composed of the
following four main components (http://developer. an-
droid.com):

1. Activity : An activity represents a single screen
with a user interface. It is the main component in
any Android application since it is the point where
users interact with the application. Each action
of the user with the application's user interface is
known as an event to the application, which will be
responded by an event listener;

2. Service: A service is a component that runs in the
background to perform long-running operations.
For example, a service might synchronize emails,
while the user is in a di�erent application;

3. Broadcast receivers: Broadcast receivers simply
respond to broadcast messages from other applica-
tions or from the system. For example, applications
can initiate broadcasts to let other applications

know that some data have been downloaded to the
device and is available for them to use. Thus, this
is the broadcast receiver who will intercept this
communication and initiate an appropriate action;

4. Content providers: A content provider component
supplies data from one application to others on
request.

Android applications are event-driven in na-
ture [19]. The user works with the user interface
and makes a request by triggers events. When an
event is triggered, the user interface sends it to the
back-end source code; after processing the event, the
response is returned to the user. The main problem
with testing these applications is the huge number of
available events. In addition, the user can trigger any
possible sequence of events and this would lead testers
to a huge number of test scenarios.

Now that the reader is familiar with the
structure of Android applications, consider an An-
droid application with the following four activities:
the running example: MainActivity (Listing 1),

Listing 1. MainActivity.java.



1570 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

Listing 2. SubActivity1.java.

SubActivity1 (Listing 2), SubActivity2 (Listing 3),
and SubActivity3 (Listing 4). MainActivity is
the main activity that includes two buttons and
works normally without any exceptions. However,
SubActivity1 includes a textView and two but-
tons, and will throw a NullPointerException on
the long click event of the �rst button and a
ResourceNotFoundException on the click event of
the second one. Nevertheless, SubActivity2 has
one textView and one button, and SubActivity3
includes only one textView. Both SubActivity2
and SubActivity3 work normally without any excep-
tions.

The NullPointerException (Exception1 in the
rest of this paper) in SubActivity1 (Listing 2) occurs
because of the following reasons: (i) an invalid assign-

ment to variable num in line 42 of Listing 2; (ii) an
invalid assignment to variable view in line 43 ; (iii) the
missing of the else statement in the if block of line
44 ; �nally, (iv) the execution of line 47 throws the
exception; ResourceNotFoundException (Exception2
in the rest of this paper) in SubActivity1 occurs
because of an invalid Resource at line 56. In the
next section, we are going to introduce the proposed
exception fault localization approach and apply it to
our running example.

3. Proposed approach

3.1. Approach overview
Before delving into the details of the proposed ap-
proach, an overview is provided �rst. The approach



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1571

Listing 3. SubActivity2.java.

Listing 4. SubActivity3.java.

is a hybrid one, i.e., it uses both of the Android
application's source code and the test cases' runtime
traces to detect lines of the program's source code
responsible for raising exceptions. From the user's
perspective, the proposed approach has three phases
as depicted in Figure 1. The extraction and execution
phases are fully automated, while the evaluation phase
consists of both manual and automated sub-phases. In
the extraction phase, all the information about the ap-
plication's activities, objects, and events is extracted.
In addition, the events that transfer the control of the
application from one activity to another are identi�ed.
In the execution phase, a set of test cases is generated,
and their execution traces are pro�led. Finally, in the
evaluation phase, our technique uses the collected test
cases' traces and the application's source code to rank
program statements based on the probability of causing
the exception fault. In the following, the details of
these phases are discussed by means of the example
provided in Section 2.

3.2. Approach details
The proposed approach is a hybrid approach that
statically analyzes the source code of an Android
application and dynamically executes its test cases
to locate those program statements responsible for
the occurrence of an exception fault. The rest of
this section discusses the details of the extraction,
execution, and evaluation phases, which are followed
in this process, as depicted in Figure 1.

3.2.1. The extraction phase
The main goal of this phase is to extract all the
information about the Android application's activities,
objects, and events. Furthermore, control changer
events, which are events that transfer the control of the
application from one activity to another, are identi�ed
in this phase. To this aim, �rst, a list of �reable
events for each type of the objects of the application
is generated. For instance, for a button object, events
such as click and long click can be generated. Next, for



1572 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

Figure 1. The proposed exception fault localization approach for Android applications.

each activity of the application which is reachable from
the main activity, all the information about its objects
is extracted (e.g., information like size, unique-id, and
location for the button object). Of note, activity B is
reachable from activity A if there exists at least one
sequence of events starting from activity A and ending
at activity B.

To detect control changer events, for each activity,
a test case that triggers all the possible events on the
activity is generated. Next, control changer events are
detected by comparing the activities before and after
triggering the events and investigating if the control of
the application has been transferred from one activity

to another. To perform this, in our implementations of
the proposed approach (see Section 4), AndroidView-
Client (https://github.com/dtmilano/AndroidViewCli
ent) (AVC ) library of the Python programming lan-
guage is used. Table 1 lists control changer events
for our running example. We have basically two
kinds of control changer events which are of interest
in this work: (i) Some events transfer the control
of the application to an activity outside of it (e.g.,
clicking on a button may open an external browser),
and (ii) Some events may transfer the control of the
application to an exception fault. For the �rst kind
of events, since all these events are treated equally in



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1573

Table 1. The control changer events of the running example presented in Section 2.

Event number Source Destination Description
event1 MainActivity SubActivity1 Click on button1

event2 MainActivity SubActivity2 Long click on button1

event3 MainActivity SubActivity1 Click on button2

event4 MainActivity MainActivity Long click on button2

event5 MainActivity MainActivity Click on textView1

event6 SubActivity1 SubActivity2 Click on button3

event7 SubActivity1 NullPointerException Long click on button3

event8 SubActivity1 ResourceNotFoundException Click on button4

event9 SubActivity1 SubActivity1 Long click on button4

event10 SubActivity1 InvalidActivity Click on textView2

event11 SubActivity2 SubActivity2 Click on button5

event12 SubActivity2 InvalidActivity Long click on button5

event13 SubActivity2 SubActivity3 Click on textView3

event14 SubActivity3 SubActivity3 Click on textView4

Figure 2. The labeled graph generated for the running example presented in Section 2.

our approach, for the sake of simplicity, it is assumed
that there exists an activity named InvalidActivity such
that all these events transfer the control to it. For the
second category of events, we de�ne an activity named
ErrorActivity and assume that all the events causing
an exception, transfer the control to it.

At the end of the extraction phase, we know
all the events as well as their source and destination
activities. To accomplish the task of generating test
cases in the next phase of our proposed approach, a
labeled graph G(V;L;E) (e.g., Figure 2) is created in
which:

� V : The set of nodes such that each node is an
activity of set of reachable activities from the Main-
Activity, InvalidActivity, and ErrorActivity ;

� L: The set of labels that denote the �reable events
of the application;

� E: The set of edges. Such that an edge from activity
A to activity B with a label l meaning that the �ring
of event l in activity A transfers the applications'
control to activity B.

3.2.2. The execution phase
In this phase, a set of test cases is automatically
generated using the data from the extraction phase.
For instance, Table 2 illustrates a set of test cases for
our running example. This set should cover all the
functionalities executable from the application's GUI
(Graphical User Interface). Lee et al. [20] carried
out a statistical analysis, and showed that redundant
test cases would decrease the precision of results. A



1574 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

Table 2. The set of test cases generated for the running example presented in Section 2. Test cases whose event sequences
are a pre�x of another test case, which are not mentioned here because they are redundant. Passed test cases TC9, TC14,
TC19, and TC22 are not considered in the evaluation phase because they are irrelevant to the faulty activity SubActivity1.

Status TCN The sequence of events

Failed

TC1
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event3 ! SubActivity1 ! event9 !
SubActivity1 ! event7 ! ErrorActivity

TC2
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event1 ! SubActivity1

! event9 ! SubActivity1 ! event7 ! ErrorActivity

TC3
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event7 ! ErrorActivity

TC4
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event7 ! ErrorActivity

TC5
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event8 ! ErrorActivity

TC6
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event8 ! ErrorActivity

TC7
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event8 ! ErrorActivity

TC8
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event8 ! ErrorActivity

Passed

TC9
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event2 ! SubActivity2 !
event11 ! SubActivity2 ! event12 ! InvalidActivity

TC10
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event6 ! SubActivity2 ! event11 ! SubActivity2 ! event12 ! InvalidActivity

TC11
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event10 ! InvalidActivity

TC12
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event6 ! SubActivity2 ! event11 ! SubActivity2 ! event12 ! InvalidActivity

TC13
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event10 ! InvalidActivity

TC14
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event2 ! SubActivity2 !
event11 ! SubActivity2 ! event12 ! InvalidActivity

TC15
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event6 ! SubActivity2 ! event11 ! SubActivity2 ! event12 ! InvalidActivity

TC16
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event10 ! InvalidActivity

TC17
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event6 ! SubActivity2 ! event11 ! SubActivity2 ! event12 ! InvalidActivity

TC18
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event10 ! InvalidActivity

TC19
MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event2 ! SubActivity2 !
event11 ! SubActivity2 ! event13 ! SubActivity3 ! event14 ! SubActivity3

TC20

MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event6 ! SubActivity2 ! event11 ! SubActivity2 ! event13 !
SubActivity3 ! event14 ! SubActivity3

TC21

MainActivity ! event4 ! MainActivity ! event5 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event6 ! SubActivity2 ! event11 ! SubActivity2 ! event13 !
SubActivity3 ! event14 ! SubActivity3

TC22
MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event2 ! SubActivity2 !
event11 ! SubActivity2 ! event13 ! SubActivity3 ! event14 ! SubActivity3

TC23

MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event3 ! SubActivity1 !
event9 ! SubActivity1 ! event6 ! SubActivity2 ! event11 ! SubActivity2 ! event13 !
SubActivity3 ! event14 ! SubActivity3

TC24

MainActivity ! event5 ! MainActivity ! event4 ! MainActivity ! event1 ! SubActivity1 !
event9 ! SubActivity1 ! event6 ! SubActivity2 ! event11 ! SubActivity2 ! event13 !
SubActivity3 ! event14 ! SubActivity3



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1575

redundant test case is a test case that is a pre�x of
another one, and the execution of the bigger test case
will guarantee the execution of all the functionalities
executed by the redundant one. Many of the fault
localization approaches, including ours, use ranking
metrics to detect faulty statements. The ranking met-
rics themselves are based on the execution frequency
of program statements in passed and failed test cases.
Consequently, if redundant test cases are taken into
account, the results will be biased towards the pieces
of code that are visited during their execution. This
can a�ect the precision of results; hence, redundant
test cases are ignored in our approach.

As discussed in Section 2, Android applications
are event-driven, i.e., they respond to user and/or
system generated actions. The main challenge in
testing event-driven applications, which is very time-
consuming, is the huge number of events in the ap-
plication [21]. Since an exception fault can occur in
any of the event-handlers of an application, we need
to test all of them in our approach. In our test case
of generator module, the approach presented in [21]
is adapted. More speci�cally, a two-step process is
performed to generate test cases: (i) generating all the
possible passed and failed test cases; and (ii) pruning
the set of generated test cases. In the �rst step, the set
of passed test cases are those paths of the generated
graph (e.g., Figure 2) that end at a node other than
ErrorActivity ; the set of failed test cases are those that
end at ErrorActivity.

While performing the �rst step, i.e., generating
the test cases, four important rules should be consid-
ered. These rules are necessary to claim that the set
of test cases will cover all the functionalities of the
application:

1. Any of the edges of the generated graph, including
loop edges, should be visited in at least one test
case. This is because each edge represents an event
of the application;

2. Since the execution order of events can produce
di�erent results, all the possible permutations of
events should be considered;

3. To avoid in�nite paths in the case of loops, it has
been decided to meet all the loop edges of each
node just for once in the entrance of the node. This
may decrease the �nal precision of our approach in
some special cases; however, we accept it and try
to overcome this issue in the future work;

4. Any of the test cases, which is a pre�x of another
one, will be removed from the set of test cases
because redundant test cases may decrease the
performance of the approach [20].

After employing the two-step process discussed
above to automatically generate test cases for an

Android application under the test, we automatically
run those test cases on the application and label each
test case as passed or failed. To reach this goal, in
our implementations of the proposed approach (see
Section 4), the AVC library of the Python program-
ming language is used. For instance, Table 2 indicates
whether each test case is labeled as passed or failed
for our running example. In addition to labeling each
test case as passed or failed, their execution traces
are also pro�led. Each execution trace includes the
program statements during the test case execution and
their order of execution. Additionally, all the value
assignments to program variables are also pro�led.

3.2.3. The evaluation phase
The evaluation phase is the �nal phase of our proposed
approach that uses the information gathered so far to
rank lines of the application's source code based on the
probability of being faulty. Our approach's precision
is highly dependent on the coverage criterion which
is used to generate test cases out of the generated
graph. Our coverage criterion, as explained earlier,
is not complete in the case of loop edges; thus, we
cannot claim that our approach is capable of detecting
all the exception faults. For example, if an application
throws an exception whenever a button is continuously
tapped for �ve times, our approach is unable to detect
it. Nevertheless, in other situations, we can claim that
our approach is able to detect all unhandled exception
faults. Consequently, as discussed below, the �rst step
in this phase is to cluster test cases with respect to
occurred exception faults.

Clustering test cases. Figure 3 indicates how we
bene�t from the clustering mechanism to cluster test
cases with respect to occurred exception faults for the
running example presented in Section 2. At �rst, those
test cases that are related to SubActivity1.java will
be selected. Of note, a test case is related to a �le
A.java if at least one of the program statements of
that �le is visited during the execution of that test
case. Consequently, test cases TC9, TC14, TC19,
and TC22 will be pruned since they are irrelevant to
SubActivity1.java. Next, the related failed test cases
will be clustered based on the occurred exceptions. For
example, test cases TC1, TC2, TC3, and TC4 will
become a cluster related to Exception1 (i.e., Failed
Cluster1), and test cases TC5, TC6, TC7, and TC8
will become another cluster related to Exception2
(i.e., Failed Cluster2). At the end, to localize each
exception, the related passed test cases are analyzed,
and the corresponding failed test cases are clustered.
For example, to localize Exception1 in our running
example, Passed and Failed Cluster1 test cases are
analyzed. Note that, by this de�nition, a passed test
case relates to many exceptions, while a failed test



1576 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

Figure 3. Clustering the test cases provided in Table 2 with respect to occurred exceptions.

case is exactly related to one exception. The step
after clustering the test cases is to rank lines of the
application's source code based on their probability of
causing each exception. To this aim, we will propose
a ranking metric. However, before introducing that,
the weaknesses of existing ranking metrics should be
discussed.

Weaknesses of existing ranking metrics. The
ranking metrics, Tarantula [17,22] and Jaccard [18],
are widely used in related literature to rank suspicious
lines of code. However, in our experiments, we noticed
that these metrics could not necessarily rank the lines
of code correctly in some situations. For instance,
consider Exception2 in our running example (i.e., line
56 of SubActivity1.java (Listing 2)). Based on
the generated test cases in Table 2 and the clustering
results in Figure 3, we see that both of the ranking
metrics Tarantula and Jaccard will not only return line
56 (which is the real reason of occurring the exception),
but also incorrectly introduce line 54 and line 55 as
the main reasons of occurrence of the exception. This
problem is that because these ranking metrics attempt
to rank a program statement by only its execution
frequency in test cases. As discussed below, we attempt
to tackle this problem by proposing a ranking metric
that employs other information, too.

Proposed ranking metric. As discussed above, ex-
isting ranking metrics, such as Tarantula and Jaccard,
only use the execution frequency of each statement
in passed and failed test cases to rank it as relevant
to an occurred fault. However, this might lead to
incorrect results in cases such as the one occurred
in Exception2 of the running example (i.e., line 56

of SubActivity1.java (Listing 2)). This problem
emerged from irrelevant statements involved in the
ranking process. However, based on our studies, there
exist two other factors that complement each other and
can be used to detect irrelevant statements. These
factors together try to remove irrelevant statements by
reducing the search space for faulty statements. The
�rst one uses the slicing techniques [23] to detect those
statements that are relevant to faulty statements and
to mark the others as irrelevant. The other factor,
called the value-pattern, uses the value assignments of
variables in passed and failed test cases to partition the
program statements as relevant or irrelevant. Thus,
as discussed below, our ranking metric (i.e., S(l) in
Eq. (1)) combines these two factors with the execution
frequency of program statements in passed and failed
test cases. The evaluations of our proposed ranking
metric are provided in Section 5.

S(l) = V P (l) � (a � Prob(l) + (1� a) � Slice(l)): (1)

In the above formula, we have the following
parameters:

� Value Pattern Score (VP(l)): For each variable in
the application source code and each test case, a
sequence of pairs < line number; value > which
is called a value pattern is generated from the
traces of test cases. Please note that, as discussed
before, we pro�le the assignments to variables, too.
V Ppass(v) and V Pfail(v) are de�ned as sets of
value patterns generated for variable v from the
passed and failed test cases, respectively. For a
variable v, if V Pfail(v) is a subset of V Ppass(v), then
variable v is marked as unrelated to the occurred
exception. Based on the generated test cases for



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1577

Table 3. The value patterns for the variable num of SubActivity1.java.

Exception PVPsa FVPsb Description

Exception1 f<16,8> <24,8>g f<16,8> <24,8> <42,7>g The lines that use the variable num will get 1 for the
VP score because FVPs are not a subset of PVPs

Exception2 f<16,8> <24,8>g f<16,8> <24,8>g The variable num has no e�ect on the VP
score because FVPs are a subset of PVPs

aPVP: Passed Value Pattern; bFVP: Failed Value Pattern.

our running example (Table 2) and the source
code of SubActivity1.java (Listing 2), the value
patterns for variable num are listed in Table 3. We
conclude from the calculated value patterns that,
for the Exception1, the lines that use variable num
will get 1 for the V P score since V Pfail(num) is
not a subset of V Ppass(num). Nevertheless, for
Exception2, this variable is an unrelated variable
and has no e�ect on V P score, since V Pfail(num)
is a subset of V Ppass(num). In general, V P (l) value
is 0 if and only if all the variables used in line l are
marked as unrelated variables, and it would be 1
otherwise.

� Backward static slicing score (Slice(l)): According
to the de�nition of slicing, the static slice of line
l is the set of program statements that may a�ect
the values of variables in line l [23]. Therefore,
when an exception occurs in a line of code, it can
be the result of some faults in some parts of the
static slice of that line of code. Thus, this score is
used to highlight related lines of code to the line
where the exception has occurred. Therefore, for
each line l of the application's source code, if l is in
the static slice of the faulty line, then Slice(l) is 1,
otherwise it would be 0. Therefore, in Listing 2, the
backward static slice of line 47 represents lines 16,
24, 42, 43, 44, and 47 ; Slice(l) score for these lines
is 1.

� Test Case Score (Prob(l)): The execution frequency
of each line of code in failed and passed test cases
is a useful metric to rank them. Notice that based

on our proposed clustering criterion for test cases,
for each exception, these frequencies are calculated
on related test cases (not all of them). After
analyzing the Tarantula and the Jaccard ranking
metrics, we found that the Tarantula and Jaccard
metrics respectively assigned a higher probability
and a lower probability to some lines of code,
which was beyond what was expected. Therefore,
an average of these two (i.e., Eq. (2)) is used in
our proposed ranking metric (i.e., Eq. (1)). In
Eq. (2), STarantula(l) and SJaccard(l) respectively
denote the Tarantula and Jaccard ranking metrics
of line l:

Prob(l) = (STarantula(l) + SJaccard(l))=2: (2)

� Parameter a: Parameter a in Eq. (1) controls the
e�ects of the test case and the backward static
slicing scores in the �nal ranking score. Because
the backward static slice score outweighs the test
case score, the value of parameter a must be less
than 0:5. To gain the best raking results, di�erent
values for this parameter were analyzed in our
evaluations (Section 5) on all the case studies, and
compared the ranking results with what we have
expected. In particular, we expected to �nd the
main cause of faults and rank the candidate lines
correctly. Our results showed that for values of a
greater than 0:2, their ranking may be acceptable,
however, the probability assigned to each line is
not so realistic. For values of a near 0:5, the
assigned probability is lower than what it should
be. For example, Table 4 illustrates the e�ect

Table 4. Di�erent values of parameter a used to calculate the probability of being faulty for some lines of the Gallery case
study.

Gallery line numbers a = 0:5 a = 0:45 a = 0:4 a = 0:35 a = 0:3 a = 0:25 a = 0:2

MainActivity: 19 0 0 0 0 0 0 0
MainActivity: 22 0.556 0.602 0.646 0.69 0.73 0.779 0.82
MainActivity: 23 (true) 0.567 0.699 0.73 0.766 0.79 0.833 0.87
MainActivity: 23 (false) 0.5 0.55 0.6 0.65 0.7 0.75 0.8
MainActivity: 25 0.567 0.699 0.73 0.766 0.79 0.833 0.87
MainActivity: 26 0.567 0.699 0.73 0.766 0.79 0.833 0.87



1578 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

Table 5. Ranking metrics results for Exception1 in the running example (i.e., NullPointerException).

Line numbers P
T

C
sa

F
T

C
sb

S
T
a
r
a
n
tu
la

(l
)

S
J
a
cc
a
r
d
(l

)

P
ro
b(
l)

S
li
ce

(l
)

V
P

(l
)

S
(l

)

R
an

k

MainActivity: 9, 12, 13, 14, 17, 18, 19, 43 12 4 0.5 0.25 0.375 0 0 0 3
MainActivity: 23, 24 6 2 0.5 0.2 0.35 0 0 0 3
MainActivity: 37, 38 6 2 0.5 0.2 0.35 0 0 0 3
SubActivity1: 14, 15, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32 12 4 0.5 0.25 0.375 0 0 0 3
SubActivity1: 16, 24 12 4 0.5 0.25 0.375 1 1 0.875 2
SubActivity1: 36, 37 8 0 0 0 0 0 1 0 3
SubActivity1: 42, 43, 44 (false), 47 0 4 1 1 1 1 1 1 1
SubActivity2: 21, 22, 23 8 0 0 0 0 0 1 0 3
SubActivity2: 26, 27, 28 4 0 0 0 0 0 1 0 3
SubActivity2: 34, 35 4 0 0 0 0 0 1 0 3
SubActivity3: 7, 8 4 0 0 0 0 0 1 0 3
Others - - - - - - - 0 3

aPTCs: Passed Test Cases; bFTCs: Failed Test Cases.

Table 6. Ranking metrics results for Exception2 in the running example (i.e., ResourceNotFoundException).

Line Numbers P
T

C
sa

F
T

C
sb

S
T
a
r
a
n
tu
la

(l
)

S
J
a
cc
a
r
d
(l

)

P
ro
b(
l)

S
li
ce

(l
)

V
P

(l
)

S
(l

)

R
an

k

MainActivity: 9, 12, 13, 14, 17, 18, 19, 43 12 4 0.5 0.25 0.375 0 0 0 3
MainActivity: 23, 24 6 2 0.5 0.2 0.35 0 0 0 3
MainActivity: 37, 38 6 2 0.5 0.2 0.35 0 0 0 3
SubActivity1: 14, 15, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32 12 4 0.5 0.25 0.375 0 0 0 3
SubActivity1: 16, 24 12 4 0.5 0.25 0.375 0 0 0 3
SubActivity1: 36, 37 8 0 0 0 0 0 1 0 3
SubActivity1: 54, 55 0 4 1 1 1 0 1 0.2 2
SubActivity1: 56 0 4 1 1 1 1 1 1 1
SubActivity2: 21, 22, 23 8 0 0 0 0 0 1 0 3
SubActivity2: 26, 27, 28 4 0 0 0 0 0 1 0 3
SubActivity2: 34, 35 4 0 0 0 0 0 1 0 3
SubActivity3: 7, 8 4 0 0 0 0 0 1 0 3
Others - - - - - - - 0 3

aPTCs: Passed Test Cases; bFTCs: Failed Test Cases.

of di�erent values for parameter a of an exam-
ple case study. Thus, the proposed experimental
results indicated that a = 0:2 gave the best re-
sults.

After applying the proposed ranking metric to our
running example, the results presented in Table 5 for
Exception1 and the results in Table 6 for Exception2
were obtained. These results illustrate that lines 42,
43, 44(false), and 47 of SubActivity1.java (Listing

2) are the most probable sources of Exception1, and
line 56 of SubActivity1.java is the root cause of
Exception2. The line number 44(false) means that line
44 is executed with the false condition.

4. Prototype implementation

We prototyped our approach as a Java project in
Android Developer Tools (ADT). In order to localize
exception faults in a desired Android application, that



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1579

application should be �rst imported into the ADT.
Next, while it is being executed in the ADT simulator,
our tool automatically applies the approach presented
in Section 3.2 to generate test cases for that applica-
tion. Next, our tool analyzes the pro�led execution
traces of those test cases to localize exception faults
in that Android application. To implement the test
cases generator module, the AVC library of the Python
programming language was used. Interested readers
can refer to [24] to access the source codes of our
implementations.

5. Evaluation

In this section, the evaluations of our proposed ap-
proach are presented for localizing exceptions in An-
droid applications. In particular, the objectives, setup,
and results of our evaluations are presented.

5.1. Evaluation objectives
In performed evaluations, we are in favor of answering
the following research questions to evaluate the e�ec-
tiveness of the proposed approach as well as our ranking
metric:

1. RQ1: Is the proposed approach capable of identi-
fying the lines of an Android application's source
code which are responsible for the occurrence of an
exception fault?

2. RQ2: How precise the proposed ranking metric is
compared to two widely used Tarantula and Jaccard
ranking metrics?

RQ1 intends to ensure that the proposed ap-
proach localizes exception faults correctly. In addition,
we expect that it can localize multiple exceptions in
a single run of the approach. The goal of RQ2 is
to compare the precision of our ranking metric with
the existing ones. We claim and expect that our
ranking metric would work better than the Tarantula

and Jaccard metrics in ranking suspicious lines of code
that might be responsible for the occurrence of an
exception fault.

5.2. Evaluation setup
To answer the research questions raised in Section 5.1,
have been pursued the following steps to perform the
evaluations of our proposed technique.

Selection of case studies. To evaluate our proposed
approach and our ranking metric, we chose nine real-
world open-source Android applications of di�erent
sizes with various exceptions. These applications
are either used in evaluating other fault localization
methods, or published in Android markets such as
Google Play (https://play.google.com) and CafeBazaar
(https://cafebazaar.ir/). Published applications are of-
ten exception-free; hence, some exceptions are injected
into their source codes manually. Table 7 lists our
selected case studies. As can be seen in this table,
we also chose a number of exception-free applications
(i.e., Tippy Tipper, Gestures Builder, and 24Game)
to see whether our approach can distinguish them.
For these applications, our approach �nishes after
generating the labeled graph (see Section 3.2). If there
are no exceptions in an application, there should not
be any edges in ErrorActivity in the labeled graph;
thus, our approach �nishes without generating the test
cases. Additionally, to evaluate the applicability of
our approach in localizing multiple exception faults in
a single execution of the approach, two case studies
have been chosen, i.e., the Calculator and the Running
Example (see Section 2), including two exceptions.
Interested readers are referred to [1] to access the source
codes of our case studies.

Experimental design. To answer the research ques-
tions provided in Section 5.1, our proposed approach
has been applied to the case studies presented in Ta-
ble 7. For this purpose, our prototype implementations

Table 7. The selected case studies for our evaluations.

Case study LOCa NOOb NOAc NOUd Exceptions

Calculator 110 10 2 2 Two NumberFormatExceptions
Tippy Tipper 312 39 0 0 None
Gallery 129 11 4 1 ActivityNotFoundException

3000 Pishvaz Code 2162 86 1 1 ResourceNotFoundException

24Game 228 15 0 0 None
Running Example 251 9 2 2 NullPointerException and ResourceNotFoundException

Gestures Builder 176 7 0 0 None
Tomdroid 36708 76 1 1 ArrayIndexOutOfBoundsException

FBReader 76148 879 1 1 ArrayIndexOutOfBoundsException
aLOC: Line Of Code; bNOO: Number Of 975 Objects; cNOA: Number Of All exceptions; dNOU: Number Of Unique exceptions.



1580 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

(see Section 4) have been used. Our approach utilizes
the three main phases described in Section 3.2 to
localize exceptions in each case study. At �rst, the
approach analyzes the application under the test to
extract its structure including the activities, objects,
and properties. Then, it makes a graph out of the
activities as nodes and the events as edges. The test
cases generator module then uses the obtained graph
to generate a set of test cases that cover all the possible
events in the application. The next step concerns
executing those test cases over the application. For
this purpose, the Python's AVC library facilitates the
execution of each test case while the application is
being executed in the ADT (Android Developer Tools)
simulator. Traces of these test cases will be recorded;
�nally, they are used to rank lines of the application's
source code based on their probability of being faulty.

5.3. Evaluation results
Table 8 provides the results of applying our approach
to the case studies presented in Table 7. In particular,
Table 8 indicates the number of generated passed and
failed test cases, the real causes of faults, and the
detected causes of faults by our approach, and Table 9
indicates the generated graph size and the execution
time of di�erent phases for all the case studies. As
mentioned before, the source codes of our case studies
are available online at [24], and interested readers can
consider the results themselves. As the results show,
for all the case studies, our approach works as expected
and is able to detect the main causes of occurred
exceptions. These results answer our �rst evaluations'
research question, i.e., RQ1, and con�rm that our
proposed approach is capable of correctly localizing
exception faults in the source codes of Android appli-
cations.

Regarding our second evaluation's research ques-
tion, i.e., RQ2, we claim that our proposed ranking
metric is better than existing ones. To prove this, we
compared the results of applying our ranking metric
with the results of using the Tarantula and Jaccard
metrics as two powerful ranking metrics. This compar-
ison is based on the following four factors:

1. Detecting the Main Causes of exceptions (DMC ): Is
the ranking metric capable of identifying the main
causes of occurred exceptions?

2. Incorrectly Detecting the Main Causes of exceptions
(IDMC ): Does the ranking metric detect some
lines of the application's source code as the most
probable causes of occurred exceptions when they
are not?

3. Detecting Unrelated Lines Of Code (DULOC ): In
each application, there are often many lines of
code that are unrelated to occurred exceptions.

The DULOC factor considers whether the ranking
metric can detect unrelated lines?

4. Incorrect Ranking of Alternative Lines (IRAL):
In addition to detecting the main causes of an
exception, a powerful ranking metric should also
correctly rank other lines of the application's source
code with respect to their probability of being
related to an occurred exception.

Table 10 compares the results of applying our
ranking metric with those of using the Tarantula and
Jaccard metrics on the case studies from Table 7 that
contain some exceptions. As can be seen in Table 10,
our ranking metric outperforms the Tarantula and
Jaccard metrics in ranking suspicious lines of code.
More speci�cally, our metric is capable of detecting the
main causes of exceptions (i.e., DMC ) in all the cases,
while others cannot necessarily do it. Moreover, it is
a big weakness for a ranking metric to detect incorrect
lines as the main causes of an exception (i.e., the IDMC
factor). However, the results in Table 10 show that
the Tarantula and Jaccard metrics su�er from this
problem in some case studies. Moreover, as can be seen
in Table 10, our proposed metric outperforms other
metrics in DULOC and IRAL factors, too.

5.4. Threats to validity
Several factors may potentially a�ect the validity of
the results of this experiment. This section provides a
description of these factors.

5.4.1. Internal validity
Internal validity relates to the extent to which the
design and analysis may have been compromised by
the existence of confounding variables and other unex-
pected sources of bias [25]. The main threat to internal
validity is the list of events generated for each object
before the execution of the proposed approach. An
incorrect list of events can cause uncertainty in the
�nal results. This threat is minimized by providing
the user with the ability to extend or change the lists
of events. Another threat to internal validity relates
to the test cases generated by the test case generator
module. More speci�cally, if the generated test cases do
not cover all the program statements, there may be a
chance of error in the results. This threat is minimized
by adapting a well-established approach for generating
test cases published in [21].

5.4.2. External validity
External validity relates to the extent to which the
research questions capture the objectives of the re-
search and the extent to which any conclusions can be
generalized [25].

The main threat to external validity is that
whether the proposed approach can be generalized to
localize other kinds of exceptions and faults that were



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1581

Table 8. Evaluations results (all line numbers is this table refer to the case studies available online at [1]).

Application
Number of test cases

Main causes of exceptions Detected causes of exceptions
Passed Failed

Calculator

8 8 The object amount1
has no value

The highest scores

are given to lines 17, 49, and 75

which are responsible for

assigning a value to

object amount1

8 4 The object amount2
has no value

The highest scores are given to

lines 17, 50, and 76 which are

responsible for assigning a

value to object amount2

Tippy Tipper 44 0 None None

Gallery 6 4

(i) The variable Component is not

declared in line 26 ;

(ii) The object Intent is not instantiated

correctly in line 25 ;

(iii) The true condition for the if

block in line 23

The highest scores

are given to lines 23, 25, and 26

3000 Pishvaz Code 128 4

(i) The execution of line 79

of CategoryActivity activity;

(ii) The execution of the switch

block with an incorrect value

The highest scores are given to

lines 79 and 72 2

24Game 128 0 None None

Running
example

12 4

(i) Line 47 of SubActivity1 (Listing 2)

which throws an exception;

(ii) Missing else statement in the

if block of line 44 of SubActivity1;

(iii) A bad assignment to

variable view in line 43 of

SubActivity1; and

(iv) A bad assignment to variable

num in line 42 of SubActivity1

The highest scores are given to

lines 42, 43, 44 1, and 47

which are responsible for

assigning a value to object view

12 4 The resource with id 10
does not exist

The highest score is given

to line 56 of SubActivity1 (Listing 2) which

is trying to get a non-existing resource

Gestures builder 48 0 None None

Tomdroid 127 5

(i) A bad assignment to variable

acceptedFileExtensions at line 107 or 118 ;

(ii) The execution of line 116 with

the true condition; and

(iii) A bad assignment to variable

collection at line 117

The highest scores are given to

lines 107, 117, 118 and 121 and

after them to lines 64, 70, 116 0, 116 1

FBReader 798 84

(i) A bad assignment to variable

myEditPosition at line 105 ;

(ii) Calling the function with an

incorrect argument at line 106 ; and

(iii) The execution of the

switch block with input

zero at line 94 and the

execution of line 96

The highest scores are

given to lines 106, 105, 96, 94 0, 61, and 59



1582 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

Table 9. The graph size and the execution time of applying our approach to di�erent case studies.

Case study Graph(V,E) EGTa GTCTb ETCTc RTd

Calculator (3, 13) 3.7 <1 42 <2

Tippy Tipper (5, 48) 12.6 <1 66 <2

Gallery (4, 24) 4.4 <1 66 <2

3000 Pishvaz Code (12, 62) 27.9 <1 198 <3

24Game (4, 16) 5.7 <1 192 <3

Running Example (6, 14) 4.9 <1 48 <2

Gestures Builder (4, 14) 3.53 <1 72 <2

Tomdroid (9, 65) 24 <1 198 <3

FBReader (42, 212) 256 <2 1323 <4
aEGT: Extracting Graph Time; bGTCT: Generating Test Cases Time;
cETCT: Executing Test Cases Time; dRT: Ranking Time; all times are in minutes.

Table 10. A comparison of the results of applying our proposed ranking metric with the results of using the Tarantula
and Jaccard metrics.

Comparison factors
DMCa IDMCb DULOCc IRALd

Application Ranking Metric
Pe Tf Jg P T J P T J P T J

Running Example
p p p

-
p p p p p

-
p p

Calculator
p p p

-
p p p p p

-
p p

Gallery
p p p

- - -
p p p

-
p p

3000 Pishvaz Code
p p p

- - -
p

- - -
p p

Tomdroid
p p p

- - -
p

- - -
p p

RBReader
p

- -
p p p p

- -
p p p

aDMC: Detecting main reason; bIDMC: Incorrect detection as main reason;
cDULOC: Detecting unrelated lines; dIRAL: Incorrect ranking of alternative lines;
eP: Proposed metric; fT: Tarantula metric; gJ: Jaccard metric.

not considered in our evaluations. In this paper, we
did not claim that we could localize all kinds of faults.
For example, energy-related faults are out of the scope
of this paper, and there are a large body of work
(e.g., [9,10,13]) that aim to address this kind of faults.
Regarding the exception faults which are the target
of this paper, we tried in our evaluations to localize
various kinds of exceptions in di�erent applications.
However, there is still room for further evaluations
with more sample applications and exception faults.
However, as our evaluations indicate, if the source
code of an application and the traces of test cases are
available, one can use our proposed approach to detect
suspicious lines of code.

Another threat to external validity relates to
selection of sample applications that directly inuence
the results. We minimized this threat by selecting
open-source applications from widely-used Android
stores.

5.4.3. Construct validity
The test of construct validity questions whether the
theoretical constructs are interpreted and measured
correctly [25].

For this experiment, the main threat to con-
structing validity is that whether the location of faults
that the proposed approach detects are correctly inter-
preted. In other words, the actual location of faults
might be di�erent from the detected location of faults,
and we incorrectly accepted the results of the approach.
This threat was addressed by manually localizing the
exceptions before applying the approach. In addition,
for a number of sample applications, we ourselves
injected the faults; thus, we knew the precise location
of faults.

5.4.4. Replicability
Replicability validity investigates whether or not we
get the same results [25] by rerunning the approach



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1583

on the same inputs. We provided all the details
of our exception fault localization approach as well
as the setup of our evaluations, including the data
collection and data analysis procedures. The sample
applications used in this study are open-source and,
also, available online at [24]. Moreover, the prototype
implementation of our approach can be downloaded
from [24]. Consequently, it should be possible to
replicate the results.

6. Discussions

6.1. Strengths and weaknesses of the approach
The suggested approach has the ability to localize
multiple exception faults. In addition, because of using
the value pattern and the backward static slicing scores
in its calculations, it can detect related lines of code to
the line in which the exception has actually occurred.
This makes the results more precise (see Tables 8 and
10). Furthermore, as pointed out in executionphase,
redundant test cases can decrease the accuracy of
results. Hence, the suggested approach detects and
eliminates them to improve the reliability of results.

Nevertheless, the proposed approach has some
drawbacks, too. Most importantly, it relies on the
generated test cases to localize occurred exception
faults. Thus, if the generated test cases do not cover
all the application's program statements, the fault
might be in those uncovered lines; hence, the approach
would not detect it. The suggested approach is also
relatively slow like almost any other similar approaches
because running test cases over the application are
being executed in Android simulators.

6.2. Proposed ranking metric
The existing ranking metrics such as the Tarantula
and the Jaccard only use the execution frequency of
passed and failed test cases; hence, the results can be
inaccurate in some cases (see Section 5). Our ranking
metric overcomes this issue by using two other scores:
the value pattern score and the backward static slicing
score. A di�erence between the suggested ranking
metric and existing ones is that existing ones are
only based on traces of test cases without analyzing
the source code itself. Nevertheless, the suggested
approach is required to analyze the application's source
code to calculate the backward static slicing score.
Although the backward static slicing score makes the
results more accurate, the need for analyzing the source
code can be considered as a weakness for the suggested
ranking metric, too.

7. Related work

Originally, fault localization was performed manually.
This means that when an error occurs, a human

agent should manually analyze the source code and
the error report to localize that fault. However,
manual approaches are time-consuming, require a lot of
e�ort, and are error-prone because of human involve-
ments. To address these challenges, semi-automated
(e.g., [10,26-28]) and fully-automated (e.g., [9,11-15])
fault localization approaches have been proposed in
the literature. Furthermore, these approaches can be
classi�ed into static, dynamic, or hybrid ones. Static
approaches (e.g., [9-12]) only work with the source
code of an application without taking into account its
runtime information. On the other hand, dynamic
approaches (e.g., [14,16,29]) only use the information
collected at the runtime of an application and do
not consider its source code. Nonetheless, hybrid
approaches (e.g., [30-33]) use both static and dynamic
information.

This section provides an overview of automated
fault localization approaches and compares them with
our proposed approach for localizing exception faults in
Android applications. In particular, consider related
work in three categories: (i) the fault localization
approaches introduced for traditional applications; (ii)
the approaches that have been recently introduced
particularly for smart mobile applications; and (iii) the
approaches that speci�cally localize exception faults
that are of particular interest in this paper. However,
di�erent approaches may localize various kinds of faults
as will be discussed in this section.

7.1. Fault localization approaches for
traditional applications

Wong and Debroy in [5] categorized fault localization
approaches to slice-based, spectrum-based, statistics-
based, state-based, machine learning-based, model-
based, and data mining-based approaches. Therefore,
to be compatible with this categorization, in the follow-
ing, �rst, an overview of these categories of approaches
is provided.

The idea of slice-based approaches, such
as [34,35], is that if a test case fails because of an
incorrect variable value at a statement, then the cause
of that fault should be identi�ed in the program slice
associated with that variable-statement pair.

Spectrum-based techniques, such as [36,37], com-
pare the program spectra of passed and failed test cases
to localize faults. A program spectrum records the
execution information or the dynamic behavior of an
application in certain situations, such as the execution
information for conditional branches.

Statistics-based methods (e.g., [17,18,30]) at-
tempt to rank program statements of being the cause
of a fault using the statistical metrics such as Tarantula
and Jaccard. Similar to our proposed approach, these
metrics are calculated by running a set of test cases.

In state-based approaches, such as [38], the pro-



1584 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

gram states are recorded repeatedly, and when a fault
occurs, the program states before and after the fault are
compared to localize that fault. In these approaches,
a program state is de�ned as a collection of program
variable assignments in a speci�c point of execution.
By this de�nition, a program may have innumerable
states which can make the fault localization process
challenging.

In machine learning-based techniques (e.g., [39]),
the problem at hand can be expressed as trying to
learn the location of a fault based on input data such
as the statements coverage. These approaches usually
create a model (e.g., a neural network) and train it
with a plenty of failed and passed test cases. When
a fault occurs, for each line of the code, a test case is
generated and evaluated over that model. The model
then evaluates the input test case with the test cases
learned so far and detects the cause of the fault. The
main strength of this kind of techniques is that they
are robust and adaptive, and the generated models can
become stronger by feeding new test cases.

Model-based techniques, such as [31,40], are
amongst the most popular fault localization ap-
proaches. A model is a behavioral or structural
representation of the program. Di�erent model-based
techniques apply various analyses over the generated
models to localize occurred faults. For example, the
fault localization process can be interpreted as �nding
a speci�c kind of path in a graph.

Data mining techniques can unveil hidden pat-
terns in samples of data (particularly, in large volumes
of data) that may not be recognized by the human
analysis alone. Data mining-based approaches for
fault localization, such as [28,41], abstract the software
fault localization problem to a data mining problem,
especially when we have a huge number of code lines.
For example, we may seek to identify the patterns of
program statements execution that lead to program
failure. For this purpose, these approaches may use
di�erent data mining techniques, such as VSM, UM,
LSA, LDA, and CBDM, to localize faults.

Bug repositories keep historical information about
a program including the previous faults and their
solutions. When a fault occurs, the history of the
program could be analyzed; based on previous similar
faults, the new fault could be localized. We call
this category of approaches as history-based techniques.
The main characteristic of this kind of approaches,
such as [42,43], is that they are highly dependent on
the previously reported faults; if a similar fault is not
reported before, they would not work.

Sometimes, the results of a combination of the
approaches mentioned above can be stronger than
each one separately. For example, a fault localization
approach may use both of the spectrum-based and
history-based techniques together to localize faults.

This kind of approaches is named as combined tech-
niques, and their examples are included [44,45].

The fault localization process in most of the
approaches mentioned above is highly dependent on
the input test cases. To mitigate this, Zeller and
Monperrus in [46] introduced a technique named test
case puri�cation whose goal is to break each failed
test case into more atomic test cases such that each
atomic test case includes only one assertion. They
show that if their puri�cation process were used during
the fault localization, then more accurate and relevant
program statements would be returned as the reasons
of faults.

As described in Section 2, Android applications
are event-driven, i.e., they respond to user and/or
system-generated actions. Therefore, their test pro-
cess is di�erent from traditional applications. Con-
sequently, many of the fault localization approaches
introduced in this section are not applicable to smart
mobile applications in general, and Android applica-
tions in particular. Moreover, even if some of them
might be applicable to smart mobile applications, their
implemented tools are not necessarily able to detect
faults and exceptions that are speci�c to smart mobile
applications, such as ActivityNotFoundException in
Android applications. However, the proposed approach
and prototype implementation look for Android spe-
ci�c exceptions.

7.2. Fault localization approaches for smart
mobile applications

This section provides an overview of existing fault
localization techniques introduced in related literature
for smart mobile applications.

As mentioned before in Section 7.1, the advantage
of model-based fault localization approaches is that the
generated models are easier to analyze than the source
codes themselves. Hence, a number of model-based
fault localization approaches have been introduced for
smart mobile applications, too. For instance, Takala et
al. [14] used a tool named TEMA to extract the events
of an Android application. The extracted events are
then used to generate a Finite State Machine (FSM)
for the application. Next, GUI faults are localized by
means of this FSM. In another work, Yang et al. [15]
implemented a tool, named ORBIT, that tests the GUI
of an Android application in a two-step process. First,
it analyzes the source code statically to extract the set
of events supported by the GUI. It then dynamically
exercises those events on the application to obtain a
behavioral model of the application. This model can
be analyzed next to localize faults.

Data ow analysis-based approaches, such as [9-
12], analyze the data ow graph of an application to
localize various kinds of faults. For example, Vekris
et al. [11] and Pathak et al. [12] did a similar work to



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1585

detect energy faults using some de�ned policies. More
speci�cally, they sought paths in the data ow graph
that acquire a resource at some point of time and do
not release it later. Egele et al. [9] considered the
privacy threats that iOS applications pose to users.
In particular, they provided a tool, named PiOS, that
allows developers to analyze the data ow graphs of iOS
applications for possible leaks of sensitive information
from a mobile device to the third parties. Another work
presents AndroidLeaks [10], a static analysis framework
for automatically �nding potential leaks of sensitive
information in Android applications. For this purpose,
it bene�ts from data ow analysis to see if data from a
source method reach a sink method.

Besides generating models out of programs, there
are a number of techniques that directly work with the
source code itself. For instance, Hu and Neamtiu [16]
and Gottschalk et al. [13] proposed techniques that
map the fault localization problem to the issue of
�nding the pieces of the source code, which follow some
de�ned special patterns. More speci�cally, Hu and
Neamtiu [16] performed a bug mining study to identify
the patterns of GUI bugs that are quite common. On
the other hand, Gottschalk et al. [13] sought energy-
wasting patterns. Those pieces of code that follow the
de�ned patterns are marked as faulty, and the rest of
the code is known as fault-free. The pattern-based
approaches are often fast. Nevertheless, the problem
with them is that they are unable to detect those faults
that do not follow the de�ned patterns.

In addition to fault localization techniques that
use various kinds of models, exercise the application's
test cases, and/or analyze the application's source
code, state-based techniques that localize faults by
comparing di�erent states of the application are also
introduced in related literature. For instance, Pathak
et al. [29] proposed a state-based approach to localize
energy faults. In their work, the state of the application
was recorded periodically, and when an energy bug
occurred, the fault was localized by comparing the
current state of the application with the previous
ones.

Unlike our proposed approach that focuses on
exception faults, most of the existing techniques dis-
cussed above pay attention to user-interested faults
such as pro�le leakages, GUI faults, or extremely
energy usages. However, these types of faults often
do not stop the application from working and mainly
waste the resources of the smart mobile device. In some
cases, these faults can be avoided by allocating more re-
sources to the application. Nevertheless, the proposed
approach focuses on exceptions that are a very common
type of faults. Exceptions are important since they
may stop the whole application, and they cannot be
necessarily avoided by allocating more resources to the
application.

Recently, Moran et al. [19] introduced a tool
named CrashScope. This tool explores a given
Android application with the goal of triggering crashes.
For this purpose, systematic input generation is used
according to several strategies informed by static and
dynamic analyses. When a crash happens, the tool
produces a crash report that includes screenshots, de-
tailed crash reproduction steps, the captured exception
stack trace, and a script that automatically regenerates
the crash on a target device. However, unlike our
approach that localizes exception faults, this tool only
produces augmented crash reports and does not localize
them.

Finally, [47] presented the results of an empirical
study conducted to understand actual developers' prac-
tices for detecting and �xing performance bottlenecks
in mobile applications. In general, it indicates that
developers heavily depend on user reviews and manual
execution of the applications for detecting performance
bugs. Therefore, this work motivates the need for
highly automated tools that can answer this challeng-
ing task.

7.3. Exception localization approaches
There have been studies in the literature that localize
exception faults in programs. In this section, an
overview of these approaches of our particular interest
is provided.

Barr et al. [48] used symbolic execution of pro-
grams to localize FloatingPointException in C/C++
and Fortran programs. In another work, Payet et al. [6]
analyzed the source code of an Android application
statically to localize NullPointerException faults.
It is clear that static analysis is not strong enough
for localizing unhandled exceptions because of the
dynamic nature of exceptions; hence, this method is
not a general approach.

Hu et al. [16] categorized faults in Android
applications based on studying ten popular forums.
Unhandled exceptions represent one of their proposed
categories, although they do not discuss how to address
them.

Sinha et al. [49] introduced a hybrid method that
uses both dynamic analysis on stack trace information
and static backward data-ow analysis to localize three
speci�c kinds of exceptions: NullPointer, Arithmetic,
and Type exceptions. However, this method cannot lo-
calize other kinds of exceptions. In a similar approach,
Jiang et al. [50] used program slicing, backward data
ow analysis, and stack trace information to localize
runtime exceptions.

To summarize, unlike our proposed approach,
all of the techniques introduced above try to localize
some speci�c kinds of exceptions, and they are often
unable to localize Android speci�c exceptions such as
ActivityNotFoundException.



1586 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

8. Conclusions and future work

This paper presented a new approach to localize excep-
tion faults in Android applications. Our approach is
a hybrid approach that statically analyzes an Android
application's source code as well as the execution traces
of its test cases. To rank lines of source code based on
their probability of being faulty, a statistical ranking
metric was proposed that uses the following three
scores: (i) the test case score that uses test cases' traces
and gives each line a score based on its participation
in test cases' execution; (ii) the value pattern score
that attempts to detect unrelated lines of code by
examining the di�erences between passed and failed
test cases for each line; and (iii) the backward static
slicing score that analyzes the application's source code
to remove unrelated lines from the list of suspicious
lines. The approach to nine Android applications
of di�erent sizes with di�erent number of various
exceptions was evaluated. In all of our case studies,
our technique was able to detect correctly the causes
of occurred exceptions. Our experimental evaluations
also indicated that our ranking metric outperformed
two of the widely used Tarantula and Jaccard ranking
metrics.

In future, we plan to extend our technique to
support other mobile platforms such as iOS and Win-
dows. In addition, localizing other types of faults (e.g.,
user interface and security faults) will be considered in
future works.

References

1. https://sites.google.com/site/exceptionfaultlocaliza-
tion/, Supporting Materials (2016).

2. Barr, E.T., Vo, T., Le, V., and Su, Z. \Automatic
detection of oating-point exceptions", In ACM SIG-
PLAN Notices, 48, ACM, pp. 549-560 (2013).

3. Berkhin, P. \A survey of clustering data mining tech-
niques", In Grouping Multidimensional Data. Springer,
pp. 25-71 (2006).

4. Briand, L.C., Labiche, Y., and Liu, X. \Using machine
learning to support debugging with tarantula", In
Software Reliability, 2007. ISSRE'07. The 18th IEEE
International Symposium on IEEE, pp. 137-146 (2007).

5. Easterbrook, S., Singer, J., Storey, M.-A., and
Damian, D. \Selecting empirical methods for software
engineering research", In Guide to Advanced Empirical
Software Engineering, Springer, pp. 285-311 (2008).

6. Egele, M., Kruegel, C., Kirda, E., and Vigna, G.
\PiOS: Detecting privacy leaks in iOS applications",
In NDSS, pp. 177-183 (2011).

7. Gibler, C., Crussell, J., Erickson, J., and Chen,
H. \AndroidLeaks: automatically detecting potential
privacy leaks in Android applications on a large scale",
International Conference on Trust and Trustworthy
Computing, Springer, pp. 291-307 (2012).

8. Gottschalk, M., Jose�ok, M., Jelschen, J., and Winter,
A. \Removing energy code smells with reengineering
services", 208, pp. 441-455 (2012).

9. Habibi, E. and Mirian-Hosseinabadi, S.-H. \Event-
driven web application testing based on model-based
mutation testing", Information and Software Technol-
ogy, 67, pp. 159-179 (2015).

10. Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., and
Yi, L. \An empirical investigation of the relationship
between spectra di�erences and regression faults",
Software Testing Veri�cation and Reliability, 10(3),
pp. 171-194 (2000).

11. Hu, C. and Neamtiu, I. \Automating GUI testing
for Android applications", In Proceedings of the 6th
International Workshop on Automation of Software
Test ACM, pp. 77-83 (2011).

12. Jiang, S., Zhang, H., Wang, Q., and Zhang, Y.
\A debugging approach for Java runtime exceptions
based on program slicing and stack traces", In Quality
Software (QSIC), 2010 10th International Conference
on, IEEE, pp. 393-398 (2010).

13. Jones, J.A. and Harrold, M.J. \Empirical evaluation
of the tarantula automatic fault-localization tech-
nique", In Proceedings of the 20th IEEE/ACM Inter-
national Conference on Automated Software Engineer-
ing, ACM, pp. 273-282 (2005).

14. Jones, J.A., Harrold, M.J., and Stasko, J. \Visualiza-
tion of test information to assist fault localization",
In Proceedings of the 24th International Conference on
Software Engineering, ACM, pp. 467-477 (2002).

15. Lee, H.J., Naish, L., and Ramamohanarao, K. \The
e�ectiveness of using non redundant test cases with
program spectra for bug localization", In Computer
Science and Information Technology, 2009. ICCSIT
2009. 2nd IEEE International Conference on, IEEE,
pp. 127-134 (2009).

16. Linares-V�asquez, M., Vendome, C., Luo, Q., and
Poshyvanyk, D. \How developers detect and �x perfor-
mance bottlenecks in Android apps", In Proceedings of
the International Conference on Software Maintenance
and Evolution, IEEE, pp. 352-361 (2015).

17. Mao, X., Lei, Y., Dai, Z., Qi, Y., and Wang, C. \Slice-
based statistical fault localization", Journal of Systems
and Software, 89, pp. 51-62 (2014).

18. Mirzaei, H. and Heydarnoori, A. \Exception fault lo-
calization in android applications", In Mobile Software
Engineering and Systems (MOBILESoft), 2015 2nd
ACM International Conference on, IEEE, pp. 156-157
(2015).

19. Moon, S., Kim, Y., Kim, M., and Yoo, S. \Ask the
mutants: Mutating faulty programs for fault localiza-
tion", In Software Testing, Veri�cation and Validation
(ICST), 2014 IEEE Seventh International Conference
on, IEEE, pp. 153-162 (2014).



H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588 1587

20. Moran, K., Linares-V�asquez, M., Bernal-C�ardenas,
C., Vendome, C., and Poshyvanyk, D. \Automatically
discovering, reporting and reproducing android appli-
cation crashes", In Software Testing, Veri�cation and
Validation (ICST), 2016 IEEE International Confer-
ence on, IEEE, pp. 33-44 (2016).

21. Muccini, H., Di Francesco, A., and Esposito, P. \Soft-
ware testing of mobile applications: Challenges and
future research directions", In Proceedings of the 7th
International Workshop on Automation of Software
Test, IEEE Press, pp. 29-35 (2012).

22. Myers, G.J., Sandler, C., and Badgett, T. The Art of
Software Testing, John Wiley & Sons (2011).

23. Nessa, S., Abedin, M., Wong, W.E., Khan, L., and Qi,
Y. \Software fault localization using N-gram analysis",
In Wireless Algorithms, Systems, and Applications.
Springer, pp. 548-559 (2008).

24. Papadakis, M. and Le Traon, Y. \Metallaxis-FL:
mutation-based fault localization", Software Testing,
Veri�cation and Reliability, 25(5-7), pp. 605{628
(2015).

25. Pathak, A., Hu, Y.C., and Zhang, M. \Bootstrapping
energy debugging on smartphones: a �rst look at
energy bugs in mobile devices", In Proceedings of the
10th Workshop on Hot Topics in Networks, ACM, p.
5 (2011).

26. Pathak, A., Jindal, A., Hu, Y.C., and Midki�, S.P.
\What is keeping my phone awake?: characterizing
and detecting no-sleep energy bugs in smartphone
apps", In Proceedings of the 10th International Con-
ference on Mobile Systems, Applications, and Services,
ACM, pp. 267-280 (2012).

27. Payet, �E., and Spoto, F. \Static analysis of An-
droid programs", Information and Software Technol-
ogy, 54(11), pp. 1192-1201 (2012).

28. Platon, O. \Smart C# debugger: Debugging C#
programs using model based diagnosis", University
Politehnica of Bucharest Scienti�c Bulletin, Series C:
Electrical Engineering, 69(1), pp. 45-60 (2007).

29. Saha, R.K., Lease, M., Khurshid, S., and Perry,
D.E. \Improving bug localization using structured
information retrieval", In Automated Software Engi-
neering (ASE), 2013 IEEE/ACM 28th International
Conference on, IEEE, pp. 345-355 (2013).

30. Shu, T., Ye, T., Ding, Z., and Xia, J. \Fault local-
ization based on statement frequency", Information
Sciences, 360, pp., 43-56 (2016).

31. Sinha, S., Shah, H., G�org, C., Jiang, S., Kim, M.,
and Harrold, M.J. \Fault localization and repair for
Java runtime exceptions", In Proceedings of the Eigh-
teenth International Symposium on Software Testing
and Analysis, ACM, pp. 153-164 (2009).

32. Takala, T., Katara, M., and Harty, J. \Experiences
of system-level model-based gui testing of an android
application", In Software Testing, Veri�cation and
Validation (ICST), 2011 IEEE Fourth International
Conference on, IEEE, pp. 377-386 (2011).

33. Tantithamthavorn, C., Teekavanich, R., Ihara, A.,
and Matsumoto, K.-I. \Mining a change history to
quickly identify bug locations: A case study of the
Eclipse project ", In Software Reliability Engineering
Workshops (ISSREW), 2013 IEEE International Sym-
posium on, IEEE, pp. 108-113 (2013).

34. Thomas, S.W., Nagappan, M., Blostein, D., and
Hassan, A.E. \The impact of classi�er con�guration
and classi�er combination on bug localization", IEEE
Transactions on Software Engineering, 39(10), pp.
1427-1443 (2013).

35. Tip, F. \A survey of program slicing techniques",
Journal of Programming Languages, 3(3), pp. 121-189
(1995).

36. Vekris, P., Jhala, R., Lerner, S., and Agarwal, Y.
\Towards verifying android apps for the absence of
no-sleep energy bugs", In HotPower, USENIX Asso-
ciation, p. 3 (2012).

37. Wen, W. \Software fault localization based on program
slicing spectrum", In Software Engineering (ICSE),
2012 34th International Conference on, IEEE, pp.
1511-1514 (2012).

38. Wong, W.E. and Debroy, V., A Survey of Software
Fault Localization, Tech. Rep. UTDCS-45, Department
of Computer Science, University of Texas at Dallas
(2009).

39. Wong, W.E., and Qi, Y. \BP neural network-based
e�ective fault localization", International Journal of
Software Engineering and Knowledge Engineering,
19(04), pp. 573{597 (2009).

40. Wu, R., Zhang, H., Cheung, S.-C., and Kim, S.
\CrashLocator: locating crashing faults based on crash
stacks", In Proceedings of the International Symposium
on Software Testing and Analysis, ACM, pp. 204-214
(2014).

41. Xu, Z., Zhang, J., and Xu, Z. \Memory leak detection
based on memory state transition graph", In Software
Engineering Conference (APSEC), 2011 18th Asia
Paci�c, IEEE, pp. 33-40 (2011).

42. Xuan, J. and Monperrus, M. \Learning to combine
multiple ranking metrics for fault localization", In
Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, IEEE, pp. 191-200
(2014).

43. Xuan, J. and Monperrus, M. \Test case puri�cation
for improving fault localization", In Proceedings of
the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ACM, pp. 52-63
(2014).

44. Yang, W., Prasad, M.R., and Xie, T. \A grey-
box approach for automated GUI-model generation of
mobile applications", In Fundamental Approaches to
Software Engineering, Springer, pp. 250-265 (2013).



1588 H. Mirzaei and A. Heydarnoori/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1567{1588

45. Yi, Q., Yang, Z., Liu, J., Zhao, C., and Wang, C.
\Explaining software failures by cascade fault local-
ization", ACM Transactions on Design Automation of
Electronic Systems (TODAES), 20(3), p. 41 (2015).

46. Zeller, A. \Isolating cause-e�ect chains from computer
programs", In Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering,
ACM, pp. 1-10 (2002).

47. Zhang, X., Gupta, N., and Gupta, R. \Locating
faults through automated predicate switching", In
Proceedings of the 28th International Conference on
Software Engineering, ACM, pp. 272{281 (2006).

48. Zhang, Y. and Santelices, R. \Prioritized static slicing
and its application to fault localization", Journal of
Systems and Software, 114, pp. 38-53 (2016).

49. Zhong, H. and Su, Z. \An empirical study on real
bug �xes", In Proceedings of the 37th International
Conference on Software Engineering-Volume 1, IEEE
Press, pp. 913-923 (2015).

50. Zhu, L.-Z., Yin, B.-B., and Cai, K.-Y. \Software fault
localization based on centrality measures", In Com-
puter Software and Applications Conference Work-

shops (COMPSACW), 2011 IEEE 35th Annual, IEEE,
pp. 37-42 (2011).

Biographies

Hamed Mirzaei holds a MSc degree from the Depart-
ment of Computer Engineering at the Sharif University
of Technology. His primary research interest is in
the areas of reverse engineering and re-engineering of
software systems and mining software repositories.

Abbas Heydarnoori is an Assistant Professor in the
Department of Computer Engineering at the Sharif
University of Technology. He was a post-doctoral
fellow at the University of Lugano, Switzerland. Dr.
Heydarnoori did his PhD in the School of Computer
Science at the University of Waterloo, Canada. His
research interests focus on reverse engineering and
re-engineering of software systems, mining software
repositories, and recommendation systems in software
engineering.




