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Abstract. This research introduces an approach to predict maximum scour depth, scour
hole length, and the length of the deepest point of the scour hole at equilibrium conditions
at downstream of stilling basins by using the GEP. Five non-dimensional parameters in
terms of physical properties of bed sediments, stilling basin length, tail water depth, and
discharge of spillway were considered as input variables to evaluate the scour hole geometry.
The GEP model was developed using experimental datasets collected from literature.
Results of the GEP models were compared with those obtained using ANFIS and non-linear
regression analysis. Performances indicated that the proposed GEP models to characterize
scour hole geometry produced more accurate results than the other methods. In addition,
results of sensitivity analysis to de�ne the most e�ective independent parameters on scour
hole geometry were reported. Finally, proper application of the proposed model has been
con�rmed as the GEP-based best formulation, which is a useful soft computing tool for
prediction of scour hole geometry at downstream of a stilling basin.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Scouring process at downstream of hydraulic structures
is issued as one of the most signi�cant features in river
engineering which jeopardize the stability and safety of
structures. Occasionally, hydraulic jump at the down-
stream of stilling basin with high velocity causes high
local shear stress which basically exceeds the threshold
shear stresses of bed materials. Within the scour
phenomenon, deposition of sediments downstream from
reservoir can lead to increase in the tail water depth.
Hence, decreasing the total available head for power
production is met. To obtain the optimum design of
stilling basins as an energy dissipater for decreasing the
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destructive in
uences of scour process, hydraulic engi-
neers should take into account an accurate prediction
of maximum scour depth due to hydraulic jump with
regard to the economic problems. Evaluating the local
scour at downstream of hydraulic structures is one of
the most attractive issues in water sciences [1,2].

Experimental studies on the scouring phe-
nomenon at downstream of a ski-jump bucket, grade-
control structures, sluice gates, and stilling basins
have been conducted comprehensively. From previ-
ous investigations, it was established that the exiting
traditional equations based on laboratory as well as
prototype observations in hydraulic structures were
met and also it was the most remarkable to obtain an
accurate prediction of the maximum scour depth at
downstream of hydraulic structures. Laboratory and
�eld investigations indicated which e�ects of di�erent
variables on the scour process could not be character-
ized comprehensively. In case of experimental and �eld
studies, lack of facilities for conducting the experiments
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and the range of observed variables were two chief
shortcomings causing over- (or under-) prediction of
the scour depth [1,3,4-8].

Within a non-linear system with high degree of
complexity, generalization of fundamentally functional
relationships between input-output variables with the
mathematical approaches is in lack of validation to
obtain accurately e�cient performance. Empirical
equations based linear and non-linear regression meth-
ods are limited to the range of experimental data and
�eld input-output data collections. In this way, it
should be said that deriving equations have not high
generalization capacity to be applied for presenting an
accurate prediction of the scour depth at hydraulic
structures [9,10].

In the recent decade, in case of scouring at down-
stream of hydraulic structures, di�erent Arti�cial Intel-
ligence (AI) models such as Arti�cial Neural Networks
(ANNs), Arti�cial Neuro-Fuzzy Inference System (AN-
FIS), Genetic Programming (GP), Gene-Expression
Programming (GEP), and Group Method of Data Han-
dling (GMDH) have been applied to predict the scour
depth. From these applications, predictive methods
based on iterative and evolutionary algorithms were
established, and promisingly good validations were
yielded for the measured dataset in comparison with
empirical equations based regression [11-22].

The main object of this study is GEP approach
that has been developed to predict the geometry of
scour hole at downstream of a stilling basin due to
hydraulic jump. In fact, gene-expression programming
can be utilized to �nd optimum estimation models with
the least error and the best �t. Also, GEP model
characterizes problems with high degree of complexity
in form of simply explicit equations. Results of training
and testing stages are investigated to evaluate scour
hole for three di�erent 
ow conditions. Also, the
performance of GEP models is compared with those of
the ANFIS and traditional equations based non-linear
regression analysis [23,24].

The advantages of a system like GEP are clear
by nature, but the most important ones should be
emphasized. First, the chromosomes are simple en-
tities: linear, compact, relatively small, and easy to
manipulate genetically (replicate, mutate, recombine,
transpose, etc.). Second, the ETs are exclusively the
expression of their respective chromosomes; they are
the entities upon which selection acts and, according
to �tness, they are selected to be reproduced with
modi�cation. During reproduction, there are the
chromosomes of the individuals, not the ETs, which
are reproduced with modi�cation and transmitted to
the next generation [25].

On account of these characteristics, GEP is ex-
tremely versatile and it greatly surpasses the existing
evolutionary techniques. Indeed, in the most complex

problem presented in previous work, GEP surpasses
GP by more than four orders of magnitude [25].

2. AI approaches for the scour modeling at
downstream of hydraulic structures

Prior to applications of the AI models for prediction of
the scour at downstream of a hydraulic structure, Aza-
mathulla et al. (2005) investigated geometry of scour
hole downstream of ski-jump bucket using di�erent
arti�cial neural networks [12]. They found that Feed
Forward Back Propagation Neural Network (FFBP-
NN) had performed relatively well, compared to the
Radial Basis Function Neural Network (RBF-NN) and
equations based non-linear regression. Neural networks
models are \black boxes" and have limited ability
to explicitly identify possible causal relationships, so,
it may be more di�cult to use them in the �eld;
they require greater computational resources; they are
prone to over-�tting; their development is empirical;
and there remain many methodological issues to be
resolved [11,12,15].

Azamathulla et al. (2007) predicted local scour
at downstream of 
ip bucket using ANFIS model [26].
They developed the ANFIS models using experimen-
tal input-output datasets. Results of performances
indicated that the ANFIS model characterized the
best model in comparison with the empirical equa-
tions based non-linear regression models. In addition,
Several researchers represented ANNs, ANFIS, and
GP approaches based �eld datasets for predicting the
maximum scour depth at downstream of ski-jump
bucket [11,27,28]. Their proposed models were in
compromisingly good agreement with the observed
scour depth values. Other researchers predicted scour
downstream of grade-control structures using the GP
and ANNs methods. GP algorithm operates with
populations of individuals that can encode simple
computer programs, functions, and solutions to our
problem. Similarly, as in the case of genetic algorithms,
the e�ciency of the evaluation function greatly impacts
the e�ciency of the whole algorithm and therefore, as
well, the application of genetic programming. For that
reason, it is important to implement fast evaluation
of individuals. From their studies, it was found that
AI models produced more e�cient results than those
obtained using empirical methods [16,18,21].

Goel and Pal (2009) represented ANNs and Sup-
port Vector Machines (SVM) for evaluation of scour
depth downstream of grade-control structures. They
found that equations, based on SVM, work better
for large-scale. Also, as other research results from
the SVM based modeling show a better performance
in comparison to the back propagation ANN and
empirical Equation. Performances for training and
testing stages indicated that the SVM model gave
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better prediction of the scour depth than both exiting
equations and FFBP-NN models [13].

Farhoudi et al. (2010) applied adaptive ANFIS to
predict the maximum scour depth and its location in
downstream of stilling basins due to hydraulic jump.
They found that ANFIS predicts the characteristics of
scour hole with more e�cient results [29]. The overall
performance of ANFIS model is superior to that of the
ANN model when compared to error based criteria.
Further, it is required to collect �eld data of scour to
train the GP approach and validate its usefulness [17].

Also, Guven (2011) used a multi-output Descrip-
tive Neural Network (DNN) model to predict scour hole
geometry downstream of hydraulic structures [15]. The
suggested method shows that the explicit formulation,
extracted from DNN, can replace the conventional
regression equations with high accuracy. Luacelli and
Goistolisti (2011) applied Evolutionary Polynomial Re-
gression (EPR) based �eld and experimental datasets
for prediction of maximum scour depth downstream of
grade-control structures [19].

Samadi et al. (2012) have predicted the scour
process below free overfall spillways by assessment
of M5' model tree and Classi�cation And Regression
Trees (CART). Statistical error parameters used for
qualitative and quantitative representation of results
indicated that model trees were more accurate than
the CART model for evaluating the scour depth. The
research results of soft computing approaches were
compared with those of empirical equations and showed
that the soft computing methods are more accurate
and have better performance than the empirical equa-
tions [22].

Multi-Objective Evolutionary Polynomial Regres-
sion (MO-EPR) is a new modeling technique that
combines numerical regression and evolutionary com-
puting to local scouring downstream of GCS (Growing
Cell Structures) modeling. MO-EPR performs an
evolutionary-based multi-objective optimization in the
space of solutions, using three con
icting objective
functions describing accuracy of the candidate models.
MO-EPR performs a set of optimal data models of
di�erent accuracy and complexity [19].

Sreeja (2012) evaluated empirical equations for
predicting scour at downstream of ski-jump spillway us-
ing laboratory and �eld datasets. Finally, he proposed
a generalized equation with more e�ciency using exper-
imental and �eld data reported in the literature [30].

Meantime, Azamathulla (2013 & 2014) studied
local scour depth at downstream of the ski-jump
bucket spillways. He gave some comments on the
previous investigations and suggested constructive cor-
rections [31,32].

Najafzadeh et al. (2014b) have applied the GMDH
networks based laboratory datasets for prediction of
scour hole geometry at downstream of a ski-jump

bucket [33]. Their studies have shown that GMDH
networks give relatively good results in comparison
with the ANNs, ANFIS, GP, and empirical mod-
els. Meantime, Najafzadeh and Lim (2014) improved
Neuro-Fuzzy GMDH network using Particle Swarm
Optimization (PSO) algorithm to predict the local
scour depth downstream of sluice gates. Performances
of the Neuro-Fuzzy Group Method of Data Handling
Particle Swarm Optimization (NF-GMDH-PSO) net-
work produced more accurate results than those of the
other empirical equations [20].

2.1. Analysis of e�ective parameters on the
scouring downstream of stilling basins

In the previous investigations about scouring prediction
at hydraulic structures, e�ective parameters on the
scour hole geometry have been considered, including
those of tail water condition, physical properties of bed
material, hydraulic conditions of hydraulic jump, and
geometry of hydraulic structures [1,12,16,19,29,33,34].
In this way, for scour modeling at downstream of
stilling basins, the functional relationship between
input-output parameters can be expressed as follows:

f (q; g; d50; �g; d2; hd; L; �s; �w; ds; ls; lh) = 0; (1)

in which q, g, d50, �g, dw, hd, L, �s, �w, ds, ls, lh and
ls are the unit discharge of spillway, acceleration due
to gravity, median sediment size, geometric standard
deviation of sediment size distribution, tail water
depth, spillway height, length of stilling basin, density
of sediment, density of water, maximum scour depth,
length of the scour hole, and length of the deepest point
of the scour hole, respectively [1,33,34].

Previous investigations for prediction of the scour
hole geometry downstream of hydraulic structures in-
dicated that grouped non-dimensional variables pro-
duced good results in comparison with those of dimen-
sional variables [12,15,23,24,33,35]. Therefore, using
the Buckingham theorem, non-dimensional equations
in functional forms were used to develop the model as
follows:
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in which q=
p
gd3
w is the Froude number (Fr) due to tail

water. The ratio of sediment density to water density,
�s=�w, would be constant and can be eliminated from
the analysis. In this way, Eqs. (2)-(4) are applied to
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Figure 1. De�nition sketch for characterizations of scour
hole geometry downstream of a stilling basin.

develop the gene-expression programming for predict-
ing the scour hole geometry at downstream of stilling
basin [24,33,35]. To perceive the e�ective parameters
on the scour depth, the process of scour phenomenon
downstream of a spillway due to hydraulic jump is
illustrated in Figure 1 [36].

Datasets were reported from di�erent conditions
of 
ow, bed sediments, and scales of experimental
models. Farhoudi (1979) conducted laboratory works
with three types of bed sediments including sand,
coarse bakelite, and �ne Bakelite [36]. Also, median
sediment sizes were between 0.15 and 0.85 mm. In his
tests program, three sizes of physical models catego-
rized as small, medium, and large were built to which
the lengths of stilling basins were �xed at 41.5, 83,
and 166 cm. Heights of spillways were 0.1, 0.2, and
0.4 m. Local scour experiments due to the hydraulic
jump have been carried out in three various conditions
downstream of stilling basin, i.e. free (balanced tail
water), repelled (low-tail water), and drowned (high-
tail water) hydraulic jump. In the free jump status,
the tail water depth is e�cient to produce hydraulic
jump on the apron [36].

In this status, hydraulic jump occurs over the
movable bed sediments in downstream of stilling basin,
leading in an intense sediment transport process due
to development of the large eddies in the scour hole
and washing the sediments back towards the apron and
pile adjacent to its end. Whenever the piled sediment
reaches enough height to interrupt the passage of 
ow
�laments leavings the apron, re-entertainment of the
piled sediment particles is observed. This mechanism
of the scour phenomenon is dominant at initiation
of each experiment that has been performed by an
oscillation action in the scour hole location. In low
tail water conditions, the scour hole depth increases
and water level raises tended to move the front of the
jump towards of the apron. In addition, it is seen that

ow separation mechanism is developed further along
the downstream face of the scour hole [36].

Through the drowned hydraulic jump with high
tail water conditions, the tail water depth is such that

it forces the jump back toward the spillway and forms
the jump adjacent to the spillway toe. As tail water
depth increases, the hydraulic jump inclines to be more
submerged and occurs closer to the drop toe [36].

In this study, e�ects of di�erent scales on per-
forming the predictive data-exiting approaches and
regression based techniques are neglected. There may
exist the expectation that the capacity generalization
of models reduces. Meantime, this feature was issued
in previous studies [2,12,16].

Datasets used for scour modelling are represented
in three groups based on tail water conditions. The �rst
group of datasets is the maximum of scour hole depth
related to the high tail water condition (ratio of tail
water depth, dw, to the conjugate depth of hydraulic
jump, d2, is 1.25 (dw=d2 = 1:25)). In this condition,
442, 156, and 221 series datasets are devoted to pre-
diction of ds=dw, ls=dw, and lh=dw, respectively. The
second group of datasets is the maximum of scour hole
length pertained to the balanced tail water conditions
(dw=d2 = 1). For the balanced condition, 418, 156,
and 262 series datasets are devoted to prediction of
ds=dw, ls=dw, and lh=dw, respectively. Finally, the
third one is the distance between the end of stilling
basin and the maximum of scour hole depth in low tail
water status (dw=d2 = 0:78). For this condition, 356,
150, and 206 series datasets are related to prediction of
ds=dw, ls=dw, and lh=dw, respectively. Generally, 1216,
462, and 689 datasets are collected for prediction of the
maximum scour depth, length of the deepest point of
the scour hole, and scour hole length downstream of
stilling basins, respectively. Each of datasets is divided
into two parts for training and testing stages. It is clear
that the selected models are inherently very sensitive
to the number of datasets used for training. In this
way, for each condition, 75% of datasets are selected by
trial and error for the training stage, and the remaining
of them (25%) are devoted to test the model. Also,
Table 1 presents the ranges of input-output parameters
to evaluate scour hole geometry downstream of stilling
basins [31,32,36].

2.2. Development of the gene-expression
programming

Most recently, a new technique, called GEP, was
developed which was an extension of the GP approach.
The GEP is a search model that evolves computer
programs in forms of mathematical expressions, deci-
sion trees, and logical expressions. In addition, the
GEP model has attracted the attention of investigators
in prediction of characteristics in hydraulic problems.
This research represents GEP models for evaluation of
scour hole geometry at downstream of stilling basins.
The GEP approach is coded in form of linear chromo-
somes which are then expressed into Expression Trees
(ETs) [37-40].
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Table 1. Range of input-output parameters for scour hole modeling.
Tail water
conditions

Fr
d50

dw

L
dw

hd
dw

�g
ds
dw

ls
dw

lh
dw

High
(dw=d2 = 1:25)

0.1507-3.46 0.000706-0.0119 3.73-19.88 0.898-4.79 1.28-1.35 0.0398-0.9132 0.205-8.963 0.404-7.831

Balance
(dw=d2 = 1)

0.3407-0.3413 0.00154-0.0132 5.073-10.633 1.222 -2.562 1.28-1.35 0.0403-2.063 | |

0.225-0.329 0.00117-0.0129 3.905-10.395 0.941-2.504 1.28-1. 31 | 0.216-6.143 |

Low
(dw=d2 = 0:78)

0.329-0.341 0.0015-0.0132 4.96-10.63 1.195-2 .56 1.28-1.35 | | 0.2304-12.78

0.4781-0.4788 0.00192-0.0166 6.357-13.32 1.532-3.211 1.28-1.35 0.238-4.179 0.792-12.34 2.366-16.04

In fact, the ETs are sophisticated computer pro-
gramming which are usually evolved to solve a practical
problem, and are selected according to their �tness
at solving that problem. The corresponding empirical
expressions can be obtained from these trees structures.
A population of the ETs will discover traits, and
therefore will adapt to the particular problem it is
employed to solve [37-40].

Development of the GEP approach includes �ve
steps. The �rst step is to select the �tness function, fi,
of an individual program (i). This item is evaluated as
follows:

fi =
CtX
j=1

�
M � jC(i;j)�Tj j� ; (5)

in which M , C(i;j), and Tj are the selection range,
the value returned by the individual chromosome i for
�tness case j, and the largest value for �tness case j,
respectively [37-40].

In the second stage, the set of terminals, T ,
and the set of functions, F , are selected to gen-
erate the chromosomes. In this study, the termi-
nal includes �ve independent parameters in form of
T
�
ds
dw ;

ls
dw ; and lh

dw

�
= Fr, hd

dw , �g, d50
dw , and L

dw [37-
40].

To �nd the appropriate function set, it is nec-
essary to peer review previous investigations of scour
problems in this area. In this way, four basic op-
erators (+;�; �; =) and basic mathematical functions
(
p

, Power, Sin, Cos, Exp) are applied to scour hole
geometry modeling. The third step is to con�gure the
chromosomal architecture. The fourth step is selection
of liking function. Finally, for the �fth stage, the
sets of genetic operators that cause variation and their
rates was chosen. The other details related to the
architecture of GEP modeling are expressed in the
literature. In this study, characterizations of scour
hole geometry in forms of ds=dw, ls=dw, and lh=dw are
predicted using the GEP model for di�erent tail water
conditions (High, Balance, and Low) [37].

The best explicit form of the GEP approach for
scour hole geometry in high tail water condition is given
as follows:
ds=dw = 1:502 + 0:03479(L=dw)2+0:03479 sin(L=dw)

� 0:03479 cos
�

�g
d50=dw

�
� 0:3557

L=dw
(�g)2

� 0:3557(�g)2 � 0:3557(hd=dw)2

+ 2:927 sin(Fr2); (6)

ls=dw =
�
1017 sin(Fr)Fr2�738:3�gFr2 sin(Fr)

�
Fr

+ 1:263 + 0:002509(hd=dw)2(Fr2)�
hd=dw
d50=dw

� 8:539
�
; (7)

lh=dw = 0:386 + 0:6101
(Fr� L=dw) sin(Fr)
(Fr� �g) + 0:4584

�22150
(hd=dw�3:3288)d50=dw(Fr+0:25245)

L=dw(L=dw)2

� 0:01972 cos
�
(L=dw)2� :(L=dw)2: sin(Fr): (8)

Furthermore, the functional set and the operational
parameters applied in the proposed GEP models are
presented in Table 2.

2.3. Adaptive neuro-fuzzy inference system
The ANFIS, �rst introduced by Jang (1993), is an
approximator which is capable of approximating any
real continuous function on a compact set to any degree
of accuracy [17]. The basic structure of fuzzy modeling,
commonly known as Fuzzy Inference System (FIS),
is based on the knowledge that can be inferred from

Table 2. Functional set and the operational parameters
used in the proposed GEP models.

Parameter Value

Population size 100
Number of generations 500

Tournament size 5
Max. gene 4

Max. tree depth 4

Operators and functions (
p
;+;�; �; =; Power, Sin,

Cos, Exp)
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Table 3. Fuzzy rules used to predict the scour hole geometry by the ANFIS model.

Fuzzy rule (youtput = ds=dw, ls=dw, and lh=dw)
1. If (Fr is Fr mf1�) and (d50=dw is d50=dw mf1) and (L=dw is L=dw mf1) and (�g

is �g mf1) and (hd=dw is hd=dw mf1) then (youtput is youtput mf1)

2. If (Fr is Fr mf2�) and (d50=dw is d50=dw mf2) and (L=dw is L=dw mf2) and (�g
is �g mf2) and (hd=dw is hd=dw mf2) then (youtput is youtput mf2)

3. If (Fr is Fr mf3�) and (d50=dw is d50=dw mf3) and (L=dw is L=dw mf3) and (�g
is �g mf3) and (hd=dw is hd=dw mf3) then (youtput is youtput mf3)

�: mf1, mf2, and mf3 are membership functions.

available data or verbal information. In this study,
three FISs were applied to evaluate characterizations
of scour hole geometry. Each of the ANFIS models
has �ve inputs and one output. The ANFIS models
were trained using a hybrid algorithm which was a
combination of the gradient descent and least square
method. In this way, the best value of the learning
rate in back propagation, �, was adjusted 0.01 for
the ANFIS models. Also, each of these proposed
models were generated using 3 rules for the scour hole
prediction (Table 3) [41,42].

2.4. Multiple non-linear regressions
Non-linear relationships based regression models be-
tween the dependent variables of ds=dw, ls=dw, and
lh=dw and independent parameters were utilized to
�nd the least squares �t to those observations. In
triple conditions of tail water, non-linear regressions
were conducted to predict scour hole geometry. In
this way, equations given by non-linear regression were
presented to evaluate ds=dw, ls=dw, and lh=dw in
di�erent conditions of tail water as follows:

ds=dw =Fr1:081:
�
d50

dw

��0:234

:
�
L
dw

��0:387

:
�
hd
dw

�0:869

:��1:954
g ; (9)

ls=dw =Fr0:9497:
�
d50

dw

��0:146

:
�
L
dw

�0:128

:
�
hd
dw

�0:476

:�2:2056
g ; (10)

lh=dw =Fr1:0419:
�
d50

dw

��0:0605

:
�
L
dw

�1:0192

:
�
hd
dw

��0:311

:�0:6501
g : (11)

3. Results and discussion

The results of the proposed GEP, ANFIS models, and
traditional equations based regression technique are
expressed in this section. The statistical parameters

are correlation coe�cient (R), Root Mean Square Error
(RMSE), Scatter Index (SI), BIAS, and Mean Absolute
Percentage of Error (MAPE) and can be de�ned to
evaluate error indicators in the training and testing
stages:

R =

MP
i=1

�
Yi(Actual)� �Y(Actual)

��
Yi(Model)� �Y(Model)

�s
MP
i=1

�
Yi(Actual)� �Y(Actual)

�2
:

1s
MP
i=1

�
Yi(Model)� �Y(Model)

�2 ; (12)

RMSE =

"PM
i=1
�
Yi(Model) � Yi(Actual)

�2
M

#1=2

; (13)

MAPE=
1
M

"PM
i=1

��Yi(Model)�Yi(Actual)
��PM

i=1 Yi(Actual)
�100

#
;
(14)

BIAS =
PM
i=1
�
Yi(Model) � Yi(Actual)

�
M

; (15)

SI =
RMSE

(1=M)
PM
i=1 yi(Actual)

; (16)

where Yi(Model) is the predicted values (network out-
put), Yi(Actual) is the observed values (target), �Y is the
mean values, and M is the total of events.

Results of the performances of GEP, ANFIS
models, and traditional equations based non-linear
regression to predict the scour hole geometry are
presented in Table 4.

From Table 4, statistical error parameters for
training stage indicate that the GEP approach pro-
duces the maximum scour depth with relatively good
performances in forms of RMSE = 0.35, MAPE =
0.0426, and SI = 0.551. For prediction of ls=dw, the
best formulation included four e�ective parameters of
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Table 4. Performances of the proposed models for
prediction of scour hole geometry.

Parameters GEP (training stage)
R RMSE MAPE BIAS SI

ds=dw 0.657 0.349 0.0426 0 0.551
ls=dw 0.764 1.372 0.103 0 0.473
lh=dw 0.831 1.733 0.0612 0 0.418

Parameters GEP (testing stage)
R RMSE MAPE BIAS SI

ds=dw 0.61 0.34 0.134 0.001 0.547
ls=dw 0.77 1.64 0.337 -0.069 0.587
lh=dw 0.816 1.802 0.19 -0.207 0.441

Parameters ANFIS
R RMSE MAPE BIAS SI

ds=dw 0.61 0.344 0.138 0.011 0.552
ls=dw 0.79 1.6 0.322 -0.121 0.495
lh=dw 0.794 1.9 0.206 -0.26 0.463

Parameters Non-linear regression
R RMSE MAPE BIAS SI

ds=dw 0.286 0.548 0.144 -0.062 0.878
ls=dw 0.747 1.96 0.365 -0.645 0.607
lh=dw 0.222 5.82 0.287 -0.284 1.438

Figure 2. Performance of the training stage of GEP
model for prediction of ds=dw.

d50=dw, hd=dw, �g, and Fr. Also, high accuracy of the
GEP model (R = 0:76) was met in comparison with
that obtained for ds=dw (R = 0:65). The proposed
GEP model for evaluating lh=dw has given R = 0.831,
RMSE = 1.733, and MAPE = 0.0612. Qualitative
training results for the proposed GEP model in pre-
dicting the ds=dw, ls=dw, and lh=dw parameters are
illustrated in Figures 2 to 4, respectively.

For prediction of ds=dw, performing the test-
ing results indicated that the GEP model provided
relatively acceptable accuracy in terms of BIAS =
0.001, compared to the ANFIS model (BIAS = 0.011).

Figure 3. Performance of the training stage of GEP
model for prediction of ls=dw.

Figure 4. Performance of the training stage of GEP
model for prediction of lh=dw

Also, according to the statistical error parameters of
R, RMSE, MAPE, and SI, the proposed GEP (R
= 0.61, RMSE = 0.35, MAPE = 0.134, and SI =
0.547) produced approximately the same performance
in comparison with that obtained using the ANFIS
model (R = 0.61, RMSE = 0.344, MAPE = 0.138, and
SI = 0.552). Furthermore, the ANFIS model presented
prediction of ls=dw with relatively higher accuracy (R
= 0.79, RMSE = 1.6, and SI = 0.495) than that yielded
using the GEP model (R = 0.77, RMSE = 1.64, and
SI = 0.587), whereas the BIAS given by the GEP
model (BIAS = -0.069) is lower than that obtained
by the ANFIS model (BIAS = -0.121). For predicting
the lh=dw parameter, the proposed GEP approach
indicated remarkably higher accuracy in terms of R =
0.816, RMSE = 1.802, and BIAS = -0.207, compared to
that given by the ANFIS model (R = 0.794, RMSE =
1.9, and BIAS = -0.26). Performances of testing results
for the proposed GEP models in predicting the ds=dw,
ls=dw, and lh=dw parameters are given in Figures 5 to
7, respectively.

In addition, performances of the ANFIS models in
predicting the non-dimensional parameters of ds=dw,
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Figure 5. Performance of the GEP model for prediction
of ds=dw.

Figure 6. Performance of the GEP model for prediction
of ls=dw.

Figure 7. Performance of the GEP model for prediction
of lh=dw.

ls=dw, and lh=dw are illustrated in Figures 8 to 10,
respectively. Eqs. (9) and (11) based non-linear regres-
sion were applied to predict the scour hole geometry
downstream of stilling basin.

Statistical results of these equations are given
in Table 4. Eq. (9) provided the maximum scour

Figure 8. Performance of the ANFIS model for
prediction of ds=dw.

Figure 9. Performance of the ANFIS model for
prediction of ls=dw.

Figure 10. Performance of the ANFIS model for
prediction of lh=dw.

depth with signi�cantly lower accuracy in terms of R
= 0.286, RMSE = 0.548 and scatter index = 0.878
than those of the ANFIS and GEP models. However,
Eq. (9) based approach failed to yield more accurate
prediction of the scour depth downstream of stilling
basin. For the length of scour hole, Eq. (10) provided
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the higher di�erence between the predicted and the
observed values by parameter BIAS = -0.645 than
those given by the ANFIS (BIAS = -0.121) and GEP
models (BIAS = -0.069).

From Table 4, it should be said that Eq. (11)
provided remarkably low accuracy (R = 0.222) and
high error of prediction (RMSE = 5.82 and SI =
1.432) compared to the GEP (RMSE = 1.802 and SI
= 0.441) and ANFIS (RMSE = 1.96 and SI = 0.463)
models. The lack of validation for Eqs. (9) to (11)
corresponds to their limitation in e�ective parameters,
which commonly causes them to fail to present the
accurate feature for physical meaning of scour hole
geometry. Results of performances for the non-linear
regression equations are given in Figures 11 to 13.

4. Sensitivity analysis

To determine the relative signi�cance of each indepen-
dent parameter (input variables) on scour hole geome-
try downstream of stilling basin, sensitivity analyses
were conducted. The proposed GEP models were
selected for this purpose. In order to perform the sensi-

Figure 11. Performance of the non-linear regression
model for prediction of ds=dw.

Figure 12. Performance of the non-linear regression
model for prediction of ls=dw.

Figure 13. Performance of the non-linear regression
model for prediction of lh=dw.

tivity analyses, each time, one parameter of Eqs. (2) to
(4) was eliminated to evaluate the e�ect of that input
parameter. In this way, statistical error parameters of
R, RMSE, MAPE, BIAS, and SI were considered to
evaluate performance of sensitivity analysis. Results of
performances are given in Table 5.

For prediction of ds=dw, elimination of Fr from
the list of input variables, compared to the other
parameters, leads to relatively high error in evaluation
(R = 0.587, RMSE = 0.342, and SI = 0.57). From
Table 5, it is found that the parameter related to the
bed sediment size, d50=dw, is the second important
input in the form of BIAS = 0.0042 and also, other
statistical errors have provided approximately the same
values for sensitivity analysis of the l=dw and hd=dw
parameters. In addition, the parameter �g is de�ned as
the least important parameter in the maximum scour
depth with R = 0.64, RMSE = 0.33, and SI = 0.531.

For prediction of ls=dw downstream of stilling
basin, L=dw is de�ned as the most important input
variable (RMSE = 1.67, BIAS = -0.102, and SI =
0.518), compared to the other parameters. Meantime,
performance of sensitivity analysis indicates that the
d50=dw parameter has the least in
uence on the ls=dw
with R = 0.779, MAPE = 0.334, and SI = 0.5083.
From Table 5, it is found that the parameter related
to the bed sediment size, d50=dw, is the second im-
portant input in form of BIAS = 0.0042 and also,
other statistical errors provide approximately the same
values for sensitivity analysis of the L=dw and hd=dw
parameters. The hd=dw parameter related to the
geometry of spillway in terms of R = 0.767, RMSE
= 1.66, and MAPE = 0.348 is de�ned as the second
important parameter in the scour hole length.

Sensitivity analysis was carried out for lh=dw,
which demonstrated that the parameter was assigned
as the most signi�cant input variable (R = 0.774,
RMSE = 1.94, MAPE = 0.208, and SI = 0.476) in
comparison with the other non-dimensional parame-
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Table 5. Results of sensitivity analysis.

Function R RMSE MAPE BIAS SI

ds=dw = f(d50=dw; L=dw; hd=dw; �g) 0.587 0.342 0.134 0.0264 0.57
ds=dw = f(Fr; L=dw; hd=dw; �g) 0.612 0.342 0.135 0.0042 0.547
ds=dw = f(Fr; d50=dw; hd=dw; �g) 0.616 0.34 0.134 0.0018 0.545
ds=dw = f(Fr; d50=dw; L=dw; �g) 0.612 0.341 0.134 0.0008 0.547
ds=dw = f(Fr; d50=dw; L=dw; hd=dw) 0.64 0.33 0.131 -0.0017 0.531

ls=dw = f(d50=dw; L=dw; hd=dw; �g) 0.778 1.64 0.347 -0.1301 0.508
ls=dw = f(Fr; L=dw; hd=dw; �g) 0.779 1.64 0.334 -0.0967 0.508
ls=dw = f(Fr; d50=dw; hd=dw; �g) 0.77 1.67 0.336 -0.102 0.518
ls=dw = f(Fr; d50=dw; L=dw; �g) 0.767 1.66 0.348 -0.0731 0.516
ls=dw = f(Fr; d50=dw; L=dw; hd=dw) 0.776 1.64 0.341 -0.0892 0.508

lh=dw = f(d50=dw; L=dw; hd=dw; �g) 0.774 1.94 0.208 0.146 0.476
lh=dw = f(Fr; L=dw; hd=dw; �g) 0.816 1.803 0.194 -0.158 0.441
lh=dw = f(Fr; d50=dw; hd=dw; �g) 0.814 1.809 0.194 -0.136 0.443
lh=dw = f(Fr; d50=dw; L=dw; �g) 0.775 1.94 0.2033 -0.196 0.474
lh=dw = f(Fr; d50=dw; L=dw; hd=dw) 0.81 1.87 0.197 -0.184 0.446

ters. Furthermore, the hd=dw parameter is the second
important variable on the lh=dw with R = 0.779, RMSE
= 1.94, MAPE = 0.203, and SI = 0.474. From
Table 5, statistical errors parameters in terms of R =
0.816, RMSE = 1.803, MAPE = 0.19, and SI = 0.441
indicate that d50=dw has the least e�ect on the d50=dw
parameters.

5. Conclusion

In this research, e�ciency of the GEP model based
relationship to predict the scour hole geometry in terms
of the maximum scour depth, scour hole length, and
the length of the deepest point of the scour hole at
downstream of stilling basin has been studied. The
GEP approach was designed using �ve non-dimensional
parameters and three output variables.

Results of performances for the proposed GEP
models indicated more accurate prediction of scour hole
characterizations than those for the ANFIS and non-
linear regression models. According to the quantita-
tive comparisons, statistical error parameters indicated
that the GEP approach predicted the maximum scour
depth with lower errors of BIAS = 0.001, RMSE =
0.35, MAPE = 0.134 and higher correlation coe�cient
of R = 0.97, compared to the ANNs, ANFIS (MAPE
= 0.138, BIAS = 0.011, and SI = 0.552) and non-linear
regression techniques (R = 0.286, RMSE = 0.548,
MAPE = 0.134). From the sensitivity analysis, carried
out by the GEP model, it can be concluded that Fr,
L=dw, and hd=dw were the most important parameters
in prediction of ds=dw, ls=dw, and lh=dw, respectively.

Finally, it is proven that the GEP model based on

the best relationship is a powerful technique to solve
scour problems at downstream of stilling basins as well
as the other AI models.

Nomenclature

AI Arti�cial Intelligence
ANNs Arti�cial Neural Networks
ANFIS Adaptive Neuro-Fuzzy Inference

System
GP Genetic Programming
GEP Gene-Expression Programming
GMDH Group Method of Data Handling
FFBP-NN Feed Forward Back Propagation

Neural Network
RBF-NN Radial Basis Function Neural Network
SVM Support Vector Machines
DNN Descriptive Neural Network
EPR Evolutionary Polynomial Regression
CARTs Classi�cation And Regression Trees
PSO Particle Swarm Optimization
NF-GMDH-PSONeuro-Fuzzy Group Method of Data

Handling Particle Swarm Optimization
ETs Expression Trees
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