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Abstract. Behavioral economics has received much attention recently. Learning and
fatigue are two typical behavioral phenomena in industrial production operation processes.
The existence of learning and fatigue results in a dynamic change in productivity. In this
paper, a classical Economic Production Quantity (EPQ) model is extended to consider
the behavioral economic value of learning and fatigue. Based on a real case study, each
production cycle was divided into �ve phases, namely learning phase, stable phase, fatigue
phase, fatigue recovery (rest) phase, and relearning phase. The new production inventory
decision model was formulated with dynamic productivity and learning-stable-fatigue-
recovery e�ect. Numerical simulation and sensitivity analysis showed that appropriate rest
would alleviate employees' fatigue and increase productivity, resulting in a lower average
production cost. On the other hand, when the rest time was too long, exceeding a certain
value, it led to the decline of the actual labor productivity, resulting in an increase in the
average cost of the system.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, behavioral economics has received
increasing attention [1]. In 2002, Daniel Kahneman
and in 2017, Richard Thaler were awarded the Nobel
Prize in Economic Sciences for their excellent work
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in behavioral economics. In management science,
there has been a strengthening inclination to consider
human factors in operations management, leading to a
new management �eld, namely behavioral operations
management [2]. Learning e�ect is a kind of human
behavior which reects the accumluation of experience
in a worker during production. Since Wright [3] dis-
covered the phenomenon of learning e�fect in airplane
production for the �rst time and established the �rst
learning e�ect mathematical model (experience curve),
there have been many learning behavioral e�ect studies
in production operations management.

Since the cost of retaining skilled labor is high,
e�ectively utilizing learning e�ect of the workers can
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reduce the workforce cost. Although more automatic
equipment is being used nowadays, there are still many
labor-intensive manufacturing companies. Therefore,
studying how to improve the productivity of workforce
is very important. This paper studies the behavioral
value of learning and fatigue recovery in production op-
erations decision and provides managerial implications
for practitioners.

The study is motivated by our connection with
a garment factory (detailed information on the back-
ground of the case-study company will be presented
in Section 3). In the observations, the e�ect of the
phenomenon of learning with fatigue appeared obvious
and this inspired carrying out this research.

Jaber et al. [4] presented the Learning-Forgetting-
Fatigue-Recovery Model (LFFRM), which addressed
the comprehensive e�ect of the learning, forgetting,
and fatigue recovery by rest in a production process.
However, they only established the productivity change
curve using the LFFRM model and they did not
derive the production inventory decision or analyze how
fatigue recovery would impact the inventory decision.

Although many scholars have extended Economic
Production Quantity (EPQ) models with learning ef-
fect, they do not consider learning and fatigue e�ects,
simultaneously. We develop an EPQ model and
establish the production inventory decision model for
one production cycle time with �ve phases: learning
phase, stable phase, fatigue phase, rest phase, and re-
learning phase. Furthermore, we develop a production
inventory optimization model to determine the optimal
production lot size considering learning and fatigue
e�ects, and study the impact of fatigue recovery policy
on the production inventory decision. Through this
study, we can answer the following questions:

1. What is the optimal fatigue phase production time
when the fatigue during production is considered?

2. In order to reduce fatigue in the production process,
what is the optimal rest time for workers for fatigue
recovery?

3. Compared with the traditional production inven-
tory decision, how does fatigue e�ect inuence the
optimal production decision?

The contribution of our study is to consider multiple-
stage e�ects of learning, fatigue, and recovery on the
production inventory system decision and its signi�-
cance is introducing a new phase of productivity change
based on the real case study of a trousers manufactur-
ing factory as well as analyzing the impact of fatigue
recovery on the production inventory decision. The
improvement suggested by this model is of signi�cance
in practical applications. The rest of the paper is
organized as follows; Section 2 presents a review of
the literature and compares the di�erences between

previous studies and our work. Section 3 describes
the background of the case study and problem assump-
tions, and formulates the problem. Section 4 describes
the solution algorithm. Section 5 demonstrates appli-
cability of the model using a numerical example and
sensitivity analysis. Finally, Section 6 summarizes the
conclusions and future research directions.

2. Literature review

As one of the most important behavioral phenomena,
learning e�ect has received much attention during
the recent years. Many researchers have studied the
application of learning e�ect to production inventory
decision. Some of them extended the EPQ models to
consider learning e�ect [5{7] and others combined the
human learning e�ect into the EPQ models to improve
the applicability of the traditional EPQ models [8{
9]. Salameh et al. [10] developed an EPQ model with
learning e�ect. Afterwards, Jaber and Salameh [11]
extended Salameh's [10] model by taking into account
shortage and backorder. Balkhi [12] studied the
learning e�ect on production lot size for deteriorating
and partially backordered items considering varying
demand and deterioration rate. Boer and Zwart [13]
studied dynamic pricing and learning for perishable
products with �nite initial inventory. Teng et al. [14]
analyzed the e�ect of learning rate on the optimal
credit payment period and the optimal batch size
in the EPQ model. Khan et al. [15] studied an
integrated vendor-buyer inventory decision model with
learning in production at the vendor's end. Mahata [16]
investigated the learning e�ect on the unit production
time for an imperfect production system with partial
backlogging and fuzzy environment. Khan et al. [17]
investigated the role of variable lead time, learning
in production, and screening errors in a vendor-buyer
supply chain with defective items.

Besides the learning e�ect, another kind of be-
havioral phenomenon, known as forgetting e�ect, also
exists. During operations, experience and skills can
be accumulated by learning e�ect, but they can also
be forgotten with time. This is called forgetting
e�ect. Forgetting e�ect can reduce production rate and
output. Jaber and Bonney [18] explored both learning
and forgetting e�ects in a production process. They
developed a learning-forgetting curve to model the
learning and forgetting e�ects with production break.
Chiu and Chen [19] established a dynamic lot size
model considering the e�ects of learning and forgetting
during setup and production. Alamri and Balkhi [20]
studied the learning and forgetting e�ects on the
production lot size for deteriorating items with varying
demand. Teyarachakul et al. [21] investigated the
e�ects of learning and forgetting with respect to batch
sizes. Their �nding was that small batch production
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Table 1. Major considerations of the models in the literature.

Literature Inventory Learning Forgetting Fatigue
Chen and Tsao [36] Yes Yes No No
Khan et al. [15] Yes Yes No No
Khan et al. [17] Yes Yes No No
Manna et al. [37] Yes Yes No No
Mahata [38] Yes Yes No No
Grosse and Glock [39] Yes Yes Yes No
Glock and Jaber [40] Yes Yes Yes No
Jaber and Glock [26] Yes Yes Yes No
Kumar and Goswami [41] Yes Yes No No
Sturm et al. [42] Yes Yes No No
Givi et al. [27] No Yes No Yes
This paper Yes Yes No Yes

was better when there were learning and forgetting
e�ects. Zanoni et al. [22] studied how learning and
forgetting e�ects provided supply chain stakeholders
with exibility in Vendor Managed Inventory (VMI)
environment. Glock and Jaber [23] studied a multi-
stage production-inventory decision with product re-
work. They considered the learning and forgetting
e�ects on production and rework. Teyarachakul et
al. [24] studied the long-term characteristics of skill
levels of the workers under learning and forgetting.

However, the above studies in the literature failed
to consider fatigue during production [25{27]. Fatigue
can lead to increasing error rates, quality problems,
and reduction in e�ciency and productivity. When
fatigue becomes chronic or excessive, it can contribute
to work-related disorders [28{30]. Many reasons may
cause fatigue, such as overwork and sleeplessness [25]
as well as physical discomfort [31]. Some authors
have considered the fatigue phenomenon in production
operation decision. Battini et al. [32] developed an
economic lot-sizing model that considered ergonomic
issues in calculating optimal lot sizes and used a rest
allowance function to take account of recovery periods
for maintaining low levels of fatigue and ergonomic
risks.

Other authors have also considered human errors
and customer satisfaction in the production inventory
decision. Kang et al. [33] incorporated human errors
into the decision making process focusing on group
technology inventory model. Cheng et al. [34] assumed
that the inspection process was carried out by the ven-
dor and the defective items were disposed in multiple
batches. They proposed an optimal integrated vendor-
buyer inventory model with defective items, but did
not consider inspection error. Customer satisfaction
was considered by Besheli et al. [35] in a fuzzy dy-
namic multi-objective, multi-item model. Jaber and
Glock [26] developed a new learning curve model that
comprised cognitive and motor components.

Based on the above literature review, the major
characteristics of the models have been summarized
and compared with our work. The comparison is
shown in Table 1. Unlike previous studies, we consider
learning and fatigue e�ects in the production inventory
environment.

3. Formulation of the problem

In this section, we describe background of the case,
motivation of our study, and the collected data and
develop a mathematical model.

3.1. Background of the case
This study is motivated by our involvement in a labor-
intensive manufacturing company. Company X in our
case study is a trousers production factory with 200
workers. There are nearly 50 processing procedures in
the production line of trousers and the processing ow
can be classi�ed into �ve stages (Figure 1):

1. Preparation for production: At this stage, the
workers prepare the needed clothes. The main tasks
include selecting and checking cloths according to
sample sizes and speci�cations;

2. Tailoring clothes: At this stage, the workers cut
cloths into di�erent components and sizes according
to the speci�cations of trousers. This work is half
automated by workers operating the cloth-cutting
machines;

3. Sewing: This is the core step of garment manu-
facturing. At this stage, the workers sew clothes
into di�erent trousers according to the production
instructions. This stage demands labor-intensive
work and work load is very high in it;

4. Ironing: When trousers are �nished, in order to
make the faces of trousers smooth, ironing is a nec-
essary process for garment production. This work
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Figure 1. The main production processes for trousers in Company X.

usually is completely manual, hence the loading is
also very high;

5. Checking: This is the last operation of garment
manufacturing before package and storage. It is a
necessary quality check done manually.

In the above production process, most of the work
in the garment factory is done manually. With the
accumulation of experience, the production e�ciency
of the workers increases due to the learning e�ect phe-
nomenon. However, fatigue and decreasing production
rate may occur if working time is prolonged.

In order to understand the behavioral phenomena
in production, on-site data collection was done for
di�erent production phases. The following tables
illustrate some of the collected data.

Table 2 shows the sewing time of a worker for
sewing the waist of a pair of trousers.

In Table 2, some data points are abnormal, e.g.,
the data points of 61.10 and 66.06 at the observation
instants of 16:37 and 16:44. The reason for these
results is that the worker A has checked the trousers
without actually working on the waist of the trousers.
We measured productivity of the worker (unit of

Table 2. Time for sewing the waist of a pair of trousers.

Observation
instant

Time per
trousers

(sec)

Observation
instant

Time per
trousers

(sec)

14:05 94.42 16:32 105.89

14:15 96.73 16:37 114.17

14:40 87.89 16:43 61.10

14:42 84.42 16:44 66.06

15:01 81.24 17:28 129.13

15:32 85.91 17:32 114.49

15:42 92.81 17:40 127.34

15:55 101.48 17:45 157.22

trousers/10 minutes) and the result is depicted in the
Figure 2.

The results are depicted in Figure 3 after deleting
the abnormal data points.

From the productivity curve shown in Figure 3,
we can see that a change in the productivity of a worker
leads to a typical multiple-phase change law. At the
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Figure 2. Productivity curve for worker A in the sewing
process (trousers/10 minutes).

Figure 3. Productivity curve for a worker in the sewing
process (after deleting abnormal data).

beginning, productivity increases with learning e�ect;
then, it enters a relatively stable phase; �nally, with
the progression of time, productivity decreases due to
the fatigue.

Another example is shown in Table 2. This
example was surveyed in the process of ironing for an
observed worker B. The work was carried out from
the morning until afternoon. Based on the data in
Table 2, we could calculate the productivity of worker
B (trousers/10 minutes) in one day. Similar to the
situation for worker A, worker B did not follow the
work standard very strictly and there were some inter-
ferences leading to abnormal data points. As predicted,
the productivity change curve was not consistent with
the expectation of classical models.

Figure 4 illustrates the productivity curve for
worker B based on the data in Table 3. In Figure 4,
we can observe that productivity of worker B also
follows a change law similar to that for worker A,
i.e., productivity increases at the beginning; then, it
enters a relatively stable phase; and �nally, with the
progression of time, productivity decreases due to the
fatigue.

In Figure 4, the fatigue recovery e�ect can be
observed. Worker B works from the morning until
afternoon with a break for lunch at noon. After a time
of rest, his productivity increases slightly as compared

Figure 4. Productivity curve for worker B in the ironing
process (trousers/10 minutes).

Table 3. Observed time needed to iron a pair of trousers
by worker B.

Observation
instant

Time per
trousers

(sec)

Observation
instant

Time per
trousers

(sec)
8:18 165.90 10:33 151.37
8:37 125.86 10:48 156.30
8:57 141.70 10:51 138.58
9:02 165.15 11:23 137.16
9:11 158.75 11:44 145.37
9:16 170.41 14:11 131.88
9:22 148.70 15:16 129.48
9:27 152.64 15:57 133.76
9:36 145.96 16:24 152.90
9:48 143.86 17:20 172.19
10:06 141.69 17:23 167.30
10:16 148.03 17:26 159.01

with the time before lunch break. In the afternoon,
after an initial rise due to learning, productivity re-
mains constant for a while before it decreases in the
late afternoon.

3.2. Problem description
Based on examination of the above case, we develop
a theoretical production inventory decision model con-
sidering the dynamic productivity phenomena during
production with learning and fatigue, recovery (rest),
and relearning e�ects. Figure 5 shows the production-
inventory pro�le (shown in the upper part of the �gure)
under the dynamic productivity process (shown in the
lower part of the �gure).

Figure 5(b) shows the assumption that the pro-
duction process includes learning phase, stable phase,
fatigue phase, and rest (fatigue recovery) phase. In
the learning phase, productivity increases; in the stable
phase, it remains stable; in the fatigue phase, it
decreases; in the rest phase, it is zero; and in the
relearning phase, it increases. This assumption �ts
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Table 4. Notations and descriptions.

i Production phase Ii(t) Inventory level of t in phase i

i = 1 Learning phase Si Maximum inventory when phase i ends

i = 2 Stable phase A Setup cost

i = 3 Fatigue phase b Learning coe�cient

i = 4 Rest phase d Productivity under normal labor load

i = 5 Relearning phase f Labor load index

D Demand rate T0 First-piece production time

ti Time instant Cih Holding cost in phase i

a Productivity under normal physiological load Pi(t) Productivity of t in phase i

c Physiological load index Qi Maximum production quantity when phase i ends

h Holding cost per unit per unit time l Labor cost per unit time

Figure 5. Production inventory change with dynamic
productivity over time.

the above examination of examples. In this case,
production process of worker A can be divided into
the learning phase, stable phase, and fatigue phase
(Figure 3). For worker B, in one day, the production
process can also be divided into the learning phase,
fatigue phase, rest phase, relearning phase, and fatigue
phase (Figure 4). The observed dynamic productivity
changing process combines the observations for worker
A and worker B. The production process includes learn-
ing phase, stable phase, fatigue phase, rest (fatigue
recovery) phase, and relearning phase.

Based on the above productivity change charac-
teristics, we extend the classic EPQ model considering
the learning and fatigue e�ects on production. Then,
we analyze how learning, fatigue, and fatigue recovery
impact the production decision. The study derives the
optimal production schedule and the most e�ective rest
time for each stage of production.

3.3. Assumptions and notation
The following assumptions are made in this study:

1. The demand rate of the manufacturer is continuous
and constant. Shortage is not allowed;

2. There are learning e�ect and fatigue e�ect during
production;

3. The production process includes learning phase,
stable phase, fatigue phase, rest (fatigue recovery)
phase, and relearning phase;

4. Productivity is greater than demand during the
learning, stable, and fatigue phases;

5. The rest time for fatigue recovery depends on the
production time;

6. The productivity in the relearning phase depends
on the rest time.

Assumption 3 is supported by the productivity behav-
ior of workers A and B in our case study.

The notation used in this paper is listed in
Table 4.

3.4. Model development
During the production phase, the inventory equation
can be expressed as:

dIi(t)
dt

= Pi(t)�D; (1)

with the boundary conditions:

I1(0) = 0 t0 = 0;

Ii�1(ti�1) = Ii(ti�1); i = 2; 3; 4; 5:

From Eq. (1), the relation between the inventory level
and time can be obtained:

Ii(t)=Ii�1(ti�1)+
Z t

ti�1

[Pi(u)�D]du; ti�1� t � ti: (2)
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The holding cost in phase i is:

Cih = h
Z ti

ti�1

Ii(t)dt = h
Z ti

ti�1

Z t

ti�1

[Pi(u)�D] dudt

+h
Z ti

ti�1

Ii�1(ti�1)dudt: (3)

In the following analysis, we model the total production
cost for di�erent production times.

Case 1. When t � t1, production is carried out only
during the learning phase.

When the total production during the learning
phase can meet the total demand, the manufacturer
will not increase production. To minimize the average
cost per unit time, it is necessary to derive the optimal
production time t�.

Based on the Wright learning curve theory [3],
suppose that T0 is the production time of the �rst unit
product; the production time for the qth product is
expressed as T0q�b. The total time to produce the
quantity Q of products is:

t �
Z Q

0
T0q�bdq =

T0Q1�b
1� b :

The dynamic productivity (number of products per
unit time) at instant t is: p(t) = dQ

dt . We have:

P1(t) =

8<: 1
1�b

�
1�b
T0

� 1
1�b

t
b

1�b 0 < t � t1
1
T0

t = 0
(4)

Let � = 1
1�b
�

1�b
T0

� 1
1�b

and � = b
1�b . Since 0 < b < 1

and � > 1, Eq. (4) can be rewritten as:

P1(t) =

(
�t� 0 < t � t1
1
T0

t = 0
(5)

From Eq. (5), when 0 < t � t1, the inventory level for
any time t during the learning phase is:

I1(t)=
Z t

0

�
�u� �D�du=

�
�

1+�
t1+� �Dt

�
: (6)

At the end of the learning phase, the inventory level in
Eq. (6) becomes S1 = �

1+� t
1+� � Dt. The maximum

output of the manufacturer is Q1 = �
1+� t

1+� . The time
available for the consumption is T1d = �t1+�

(1+�)D�t, where
T1d is the non-production time. The total production
cycle is T1 = �t1+�

(1+�)D . The holding cost during the
learning phase is:

C1h=h
Z t

0
I1(t)dt = h

�
�t2+�

(1 + �)(2 + �)
� 1

2
Dt2

�
: (7)

The average cost within a cycle is:

ATC1(t)
1
T1

�
A+ lt+ C1h +

h
2D

S2
1

�
: (8)

By substituting T1, C1h, and S1 into Eq. (8), the
average total cost is:

ATC1(t) =
(1 + �)D
�t1+�

�
A+ lt+ h�

�t2+�

(1 + �)(2 + �)
� 1

2
Dt2

�
+

h
2D

�
�t1+� �D(1 + �)t

(1 + �)

�2�
: (9)

Proposition 1. ATC1(t) is a convex function of t.
There exists t� for optimal ATC1(t).

Proof. Taking the �rst and second derivatives of
ATC1(t), we have:

@ATC1(t)
@t

=
�
�(2 + �)t� � 2(1 + �)D

�
h

2(2 + �)

� t�2��A(1 + �)2D + bDl(1 + �)t�1��
�

@2ATC1(t)
@t2

=
�t��1�h

2

+
(2+�)t�3��A(1+�)2D + bDl(1+�)2t�2��

�
:

Obviously, @2ATC1(t)
@t2 > 0. Thus, ATC1(t) is a convex

function of t. Theoretically, we can derive the optimal
solution by setting @ATC1(t)

@t = 0. However, because
of the nonlinearity of the equation, the closed-form
solution t� is di�cult to obtain. Therefore, the optimal
time t� is obtained using the one-dimensional search
method.

Proposition 2. The optimal production time t�, the
maximum output Q�1, and the maximum inventory S�1
have the same variation trend (increasing or decreas-
ing) with respect to the learning coe�cient b.

Proof. Taking the �rst-order derivative of ATC1(t)
with respect to t from Proposition 1, let:

F (t�; �) =

h
�(2 + �)(t�)� � 2(1 + �)D

i
�h

2�(2 + �)

� (t�)�2��A(1+�)2D+bDl(1 + �)(t�)�1��
�

:
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Taking the �rst-order derivatives of F (t�; �) with re-
spect to t� and �, we get:

Ft� =
�(t�)��1�h

2

+
(2 + �)(t�)�3��A(1 + �)2D + bDl(1 + �)2(t�)�2��

�

> 0;

F� =
h
h
� ln(t�)(2 + �)2(t�)� � 2D

i
2(2 + �)2

+
DA(1 + �) [�2 + (1 + �) ln(t�)] (t�)�2��

�

+
Dl [�(1 + �) ln(t�)� 2� � 1] (t�)�1��

�
:

The relationship between t� and � is expressed as @t�
@� =

� F�
Ft� . From � = b

1�b , we have @�
@b = 1

(1�b)2 > 0. From

Q�1 = �
1+� (t�)1+� , we have @Q�1

@t� = �(t�)� > 0. Based

on our assumption, we have @S�1
@t� = �(t�)� �D > 0.

@t�
@b

=
@t�
@�
� @�
@b

= � F�
Ft�
� @�
@b
;

@Q�1
@b

=
@Q�1
@t� �

@t�
@�
� @�
@b

= ��(t�)� � F�
Ft�
� @�
@b
;

@S�1
@b

=
@S�1
@t� �

@t�
@�
� @�
@b

= � h�(t�)� �Di � F�
Ft�
� @�
@b
:

If F� > 0, then @t�
@b < 0, @Q�1

@b < 0, and @S�1
@b < 0 . If

F� < 0, then @t�
@b > 0, @Q�1

@b > 0, and @S�1
@b > 0. This

means that the optimal t�, Q�1, and S�1 have the same
change law. �

Proposition 3. The optimal production time t�, the
maximum output Q�1, and the maximum inventory S�1
increase with respect to the initial unit production time
T0.

Proof. Set:

F (t�; �) =

h
�(2 + �)(t�)� � 2(1 + �)D

i
�h

2�(2 + �)

� (t�)�2��A(1+�)2D + bDl(1+�)(t�)�1��
�

:

Taking the �rst-order derivatives of F (t�; �) with re-
spect to t� and �, we have:

Ft� =
�(t�)��1�h

2

+
(2 + �)(t�)�3��A(1+�)2D+bDl(1+�)2(t�)�2��

�

> 0;

F� =
(t�)�h

2

+
(t�)�2��A(1 + �)2D + bDl(1 + �)(t�)�1��

�2

> 0:

Since Ft� > 0 and F� > 0, @t�
@� = � F�

Ft� < 0. From � =

1
1�b
�

1�b
T0

� 1
1�b

, we have @�
@T0

= �(1� b) 1
1�bT0

� 2�b
1�b < 0.

@t�
@T0

=
@t�
@�
� @�
@T0

=
F�
Ft�
� (1� b) 1

1�bT0
� 2�b

1�b > 0;

@Q�1
@T0

=
@Q�1
@t� �

@t�
@�
� @�
@T0

= �(t�)� � F�
Ft�
� (1� b) 1

1�bT0
� 2�b

1�b > 0;

@S�1
@T0

=
@S�1
@t� �

@t�
@�
� @�
@T0

=
h
�(t�)� �Di F�

Ft�
� (1� b) 1

1�bT0
� 2�b

1�b > 0: �

Remark. When production is carried out only in the
learning phase, with b! 0, � = b

1�b ! 0 and we have
P1 ! 1

T0
, where productivity is constant. This is a

classical EPQ model.

Case 2. When t1 < t � t2, production goes beyond
the learning phase and ends in the stable phase. At the
end of the learning phase, the productivity level reaches
P2(t = t1) = P1(t = t1) = �t�1 and the manufacturer
continues to produce at a steady level of productivity.
From the boundary condition I1(t1) = I2(t1), the
inventory change with time during the stable phase is:

I2(t) = (�t�1 �D)t� ��
1 + �

t1+�
1 ; t1 < t � t2: (10)

The holding cost during the stable phase is:

C2h = h
Z t

t1
I2(t)dt

= h
�
1
2

(�t�1�D)(t2�t21)� ��
1 + �

t1+�1 (t�t1)
�
: (11)



926 K. Fu et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 918{934

From Eq. (10), the inventory level at t is:

S2 = (�t�1 �D)t� ��
1 + �

t1+�
1 ;

and the maximum output is:

Q2 =
�t�1 (1 + �)t� ��t1+�

1
(1 + �)

:

The total time of a production cycle is:

T2 =
�t�1 (1 + �)t� ��t1+�

1
(1 + �)D

:

The average cost of the production system within a
cycle, including the costs in learning and stable periods,
is:

ATC2(t) =
D

S2+Dt

 
A+lt+

2X
i=1

Cih +
h

2D
S2

2

!
; (12)

where, inside the bracket, the �rst term is the setup
cost; the second term is the labor cost; the third term
is the holding cost of inventory during production in
leaning and stable phases (C1h and C2h are taken from
Eqs. (7) and (11), respectively); and �nally, the forth
term is the holding cost of the inventory during non-
production.

Case 3. When t > t2, the production time includes
the learning and the stable phases in addition to the
fatigue phase up to the end. We assume that the
productivity function in the fatigue phase is P (t) =
ae�ct + dt�f + g. This assumption is based on two
factors that a�ect human fatigue behavior, namely
physiological and labor intensities. In the natural state,
productivity gets lower and lower as the body becomes
weaker and weaker in bearing the load. Di�erent people
have di�erent physiological loads. If labor intensity is
large, the employees will be fatigued quickly. In this
formula, the �rst term, ae�ct, is productivity under
normal physiological load, which diminishes with time
t; c is the physiological load index. The second term,
dt�f , is productivity under normal labor load, which
diminishes with time t; f is the labor load index. The
third term is the initial productivity when becoming
fatigue.

The reasonability of this assumption can be ex-
plained theoretically and practically. A laboratory
experiment was designed by Okogbaa (1983) [43]
to examine mental work output with and without
rest. Okogbaa (1983) observed hyperbolic as well
as exponential decay function. Bechtold (1988) [44]
found out that when workers underwent fatigue process
during production, instant productivity was an expo-
nential function of passage of time. Lindstrom et al.

(1997) [45] observed that the relationship between the
work load and maximum endurance was an exponential
function. Practically, based on our examinations,
referring to the productivity curves for worker A in
Figure 3 and worker B in Figure 4, we believe that the
productivity curve in the fatigue phase is a function
of the combination of the hyperbolic and exponential
functions. Consequently, the assumption is reasonable.

From the boundary condition P2(t2) = P3(tf =
0), since P2(t2) = P1(t1) = �t�1 , we have g =
�t�1 � ae�ct2 � dt�f2 . Thus, during the fatigue phase,
productivity can be expressed as:

P3(t) = a(e�ct � e�ct2) + d(t�f � t�f2 ) + �t�1 : (13)

Based on the boundary condition I2(t2) = I2(t3), the
inventory level changes with time as:

I3(t) =� a
c
�
e�ct � e�ct2

�
+

d
1� f (t1�f � t1�f2 )

+ (�t�1 � ae�ct2 � dt�f2 �D)(t� t2)

+(�t�1�D)t2� ��
1+�

t1+�
1 ; t2< t� t3; (14)

when the production ends at t during the fatigue
production phase, the inventory level is: S3 = I3(t).

The holding cost during the fatigue phase is:

C3h =h
a
c2

(e�ct � e�ct2) + h
d(t2�f � t2�f2 )
(1� f)(2� f)

+
1
2
h(�t�1 � ae�ct2 � dt�f2 �D)(t2 � t22)

+ h(t� t2)
�
a
c

e�ct2 � d
1� f t

1�f
2

+(ae�ct2 +dt�f2 )t2
�
�h(t�t2)

��
1+�

t1+�
1 : (15)

The average cost of a production cycle is:

ATC3(t) =
D

Dt+ S3

 
A+lt+

3X
i=1

Cih+
hS2

3
2D

!
: (16)

The problem is to minimize ATC3(t), which is an
unconstrained nonlinear programming equation. Due
to the nonlinearity of Eq. (16), it is di�cult to derive
the closed-form optimal solution. Therefore, Newton
iteration is used to solve the problem.

Case 4. When T > T4, production includes the
learning, stable, fatigue, rest, and relearning phases.
When production goes to the rest phase, it stops.
Productivity rate is zero during the rest time (t3 �
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t � t4). Although there is no production during the
rest time, demand still exists. The inventory level at
time t in the rest phase is:

I4(t) =� a
c
�
e�ct3 � e�ct2

�
+

d
1� f (t1�f3 � t1�f2 )

+ (�t�1 � ae�ct2 � dt�f2 �D)(t3 � t2)

+ (�t�1 �D)t2 � ��
1 + �

t1+�
1 �D(t� t3);

t3 < t � t4: (17)

The holding cost during the rest phase is:

C4h =h
�
� a
c

(e�ct3 � e�ct2) +
d

1� f (t1�f3 � t1�f2 )

+ (�t�1 � ae�ct2 � dt�f2 �D)(t3 � t2)

+ (�t�1 �D)t2 � ��
1 + �

t1+�
1

+Dt3
�

(t� t3)� 1
2
hD(t2 � t23): (18)

The longer the time of fatigue production, the more
time is needed to relieve the sfatigue. The rest time
depends on the production time of the fatigue phase
and the relationship between the rest time and fatigue
production time is t4 � t3 = �(t3 � t2), where � > 0
is a scale factor. After some time of rest, physical
energy of the workers recovers to a higher level and
the their productivity gats higher than that at the
end of the fatigue phase. This phenomenon is called
fatigue recovery. From Eq. (4), after some derivation,
the productivity in the relearning phase is:

P5(t) =
1

1� b
�

[�(t3 � t2)]"(1� b)
T0

� 1
1�b

(t� t4)
b

1�b ;

t4 < t: (19)

Let :

 =
1

1� b
�

[�(t3 � t2)]"(1� b)
T0

� 1
1�b

;

and:

� =
b

1� b :

Then, P5(t) = (t� t4)� .
Based on the boundary condition I4(t4)=I5(t4),

the inventory level changes with time as:

I5(t) =


1 + �
(t� t4)1+� �D(t� t4)� ��

1 + �
t1+�
1

� a
c
�
e�ct3 � e�ct2�+

d
1� f (t1�f3 � t1�f2 )

+ (�t�1 � ae�ct2 � dt�f2 �D)(t3 � t2)

�D(t4 � t3) + (�t�1 �D)t2; t4 < t: (20)

The holding cost during the relearning phase is:

C5h =
h(t� t4)2+�

(1 + �)(2 + �)
� 1

2
hD(t2 � t24)

+ h
�
Dt3 � a

c
�
e�ct3 � e�ct2�+

d
1� f

(t1�f3 � t1�f2 ) + (�t�1 �D)t2 � ��
1 + �

t1+�
1

+ (�t�1 � ae�ct2 � dt�f2 �D)(t3 � t2)
�

(t� t4): (21)

The production time of the relearning phase depends
on the rest time; the longer the rest time, the longer
is the production time in the relearning phase. The
relearning production time t � t4 is equal to ��(t3 �
t2), where � is a scale factor. From t4 � t3 =
�(t3 � t2), we derive t3 = t+(1+�)�t2

1+�+�� and t4 =
t+�t���t2�2��2t2�2�2�2t2

1+�+�� .
After the end of the relearning phase, the maxi-

mum inventory level S4 from Eq. (20) is:

S4 =


1 + �
(t� t4)1+� �Dt+Dt3 � a

c�
e�ct3 � e�ct2

�
+

d
1� f (t1�f3 � t1�f2 )

+ (�t�1 � ae�ct2 � dt�f2 �D)(t3 � t2)

+ (�t�1 �D)t2 � ��
1 + �

t1+�
1 ; (22)

when production stops, the time to consume the max-
imum inventory is S4=D. The inventory cost during
the depletion period is hS2

4=2D. The production time
and consumption time in a cycle (also known as the
production cycle) are T = t+ S4=D.

The average cost of a production cycle is:

ATC4(t)=
D

Dt+ S4

 
A+ lt+

5X
i=1

Cih+
hS2

4
2D

!
: (23)
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Due to the high nonlinearity of Eq. (23), achieving a
closed-form solution is not possible. Therefore, the
Newton iteration method is used to solve the optimal
solutions.

4. Solution algorithm

For the complex nonlinear models developed in the
previous section, we adopt the Newton Raphson iter-
ation method in solving the problem. In the Newton
Raphson iteration method, two Taylor expansions of
the objective function are utilized to minimize the func-
tion. The �rst few terms of the Taylor series are used
to derive the roots of equations. It is an approximation
method for linearizing nonlinear equations. This will
enable us to derive a square convergence near the single
root of the equation. The method is to obtain t�3 in
Case 4.

Set : f(X) = ATC(t3);

The solution steps are as follows:

Step 1. Given the initial value X0, set the allowable
error " (" = 0:0001 in this case);

Step 2. Calculate Xn = Xn�1 � f(Xn�1)
f 0(Xn�1) ;

Step 3. If jXn �Xn�1j < ", then go to Step 4; If
jXn �Xn�1j � ", then go to Step 2;
Step 4. t� = X� = Xn.

In Case 4, the manufacturer should stop production at
moment t�3, where:

t�3 =
t� + (1 + �)�t2

1 + � + ��
:

The rest time is �(t�3 � t2); the reproduction time is t�4,
where:

t�4 =
t� + �t� � ��t2 � 2��2t2 � 2�2�2t2

1 + � + ��
;

and the relearning Production time is ��(t�3 � t2). The
same procedure is used to derive t� in Case 3.

5. Numerical example and sensitivity analysis

5.1. Setting parameters
A numerical example is provided to validate the pro-
posed model. The following basic data are used: A =
100, D = 12, l = 10, h = 0:2, T0 = 0:04, b = 0:54,
a = 50, c = 1:3, d = 180, f = 1:28, " = 0:04, � = 2:04,
and � = 0:9.

5.2. Optimal solution
Case 1. From Proposition 1, we have t� = 0:7705;
the optimal average cost is ATC1(t�) = 21:47; the
maximum inventory is S�1 = 105; the maximum output
is Q�1 = 115; the non-production time for a period is
8.7921; and the total time per cycle is 9.5626;

Case 2. When production time in the learning phase
is t1 = 0:50, the optimal production time is t� = 0:8592;
production time in the stable phase is 0.3592; and the
optimal average cost is 21.52.

Case 3. Given t1 = 0:50 and t2 = 0:75, through
the algorithm solving procedure, the optimal total
production time is obtained as t� = 0:8708; the fatigue
phase production time is 0.1208; the maximum yield
is Q�3 = 114; the maximum inventory is S�3 = 104;
and the optimal average cost is 21.53. Because of the
fatigue e�ect, the average cost in Case 3 is more than
that in Case 2.

Case 4. Given t1 = 0:50 and t2 = 0:75, by the New-
ton Raphson method, we derive t�3 = 0:8491. It means
that production should stop at the moment 0.8491,
followed by a rest. The rest time is 0.2022. After
the end of the rest time, production with relearning
restarts. The relearning production time is 0.182. The
optimal average cost of the system is 21.62. Production
time during the fatigue phase is 0.0991, which is less
than 0.1208 in Case 3.

5.3. Sensitivity analysis and managerial
implications

5.3.1. The inuence of the learning factor b and the
initial production time T0 in Case 1

Figure 6 shows that when the learning coe�cient is
less than a critical value, it increases as the optimal
production time decreases. When the learning coe�-
cient is greater than a critical value, it increases as the
optimal production time increases. The inuence of the
learning coe�cient on the maximum yield is consistent
with the optimal production time (Proposition 2). The
greater value of T0 means the lower initial productivity;
thus, it takes a longer time to produce a certain product
with the required quantity. With increase in the initial

Figure 6. Impact of b and T0 on the production time.
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Figure 7. Impact of b and T0 on the optimal cost.

production time, the optimal production time increases
linearly (see Figure 6).

As illustrated in Figure 7, with increase in learn-
ing coe�cient, the optimal total average cost shows an
inverted U character type feature, i.e., the cost �rst
increases and then, decreases. Only when the learning
coe�cient is bigger than a critical value, the e�ect of
learning on cost reduction is obvious. On the other
hand, with increase in the initial production time T0,
the optimal average total cost decreases linearly.

In Figures 6 and 7, we can see that the impact
of learning coe�cient b on the production time and
cost is reverse. Similar condition exists with the initial
production time T0.

Observation 1. The role of learning coe�cient in
reducing the production time and the total cost is
reversed. It is necessary to choose the right learning
coe�cient to balance the optimal production time and
optimal cost.

5.3.2. The impact of t1 on the total production time
and the average cost in Case 2

Figures 8 and 9 show the impact of t1 on total
production time and the average cost in Case 2.

In Figure 8, the blue colored line is the optimal
total production time (t�) and red colored line is the
stable production time (t� � t1). It is shown that with
increase in learning production time (t1), both the total
optimal production time and the stable production
time decrease. When the learning production time
approaches 0.7705, the stable production time tends
to be zero in the stable phase and the total production
time approaches 0.7705.

Figure 9 shows the inuence of the learning
production time on the optimal average cost. It is
shown that with increase in learning production time,
the cost curve becomes an S type curve. When t1 <
0:32, with increase in learning production time, the

Figure 8. Impact of t1 on production time.

Figure 9. Impact of t1 on ATC2(t).

maximum inventory increases; thus, optimal average
cost of the system increases. When t1 > 0:32, with
increase in the learning production time, the optimal
average cost decreases.

Obsevation 2: If production process involves only
learning and stable phases, the e�ect of prolonging
learning production time on the reduction in cost is
obvious; thus, prolonging production time is bene�cial.

5.3.3. The inuence of t1; t2 on the total production
time and the average cost in Case 3

The impact of t1; t2 on the total production time and
average cost is illustrated in Figures 10 and 11 for
the situation in which production goes beyond the
production and stable phases and ends in the fatigue
phase in Case 3.

In Figure 10, it is shown that when t1 < 0:36,
the increase in t1 prolongs fatigue production time;
thus, the total production time increase. When t1 >



930 K. Fu et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 918{934

Figure 10. Impact of t1, and t2 on the total production
time.

Figure 11. Impact of t1, and t2 on ATC3(t�).

0:36, the increase in t1 shortens the fatigue production
time; thus, the total production time decreases. When
the learning production time is given (in the case of
t1 = 0:50), the e�ect of t2 on total production time
is similar to that of t1. When t2 < 0:62, the increase
in stable production time prolongs fatigue production
time; thus, the total production time increases. When
t2 > 0:62, the increase in stable production time
shortens the fatigue production time; thus, the total
production time decreases.

In Figure 11, we can observe that the impacts of
t1, and t2 are similar. Prolonging the stable production
time results in higher productivity in a longer time,
hence the average productivity will be higher. As a
result, the average cost decreases quickly. Based on
Figure 11, when t1 > 0:4 or t2 > 0:7, with increase in
the learning production time or the stable production
time, the average cost remains almost unchanged. This
means that the longer the learning time and the stable

production time, the higher the productivity and the
lower the production cost.

Based on the above analysis, Observation 3 holds.

Observation 3. When production goes beyond the
learning and stable phases, prolonging of the learning
or stable production time can reduce the average cost.

5.3.4. Inuence of productivity coe�cients a, c, d,
and f on the fatigue phase in Case 3

In Case 3, since production goes through the learning,
stable, and fatigue phases, the productivity in the
fatigue phase also a�ects the result. The impact of
the productivity coe�cient on the fatigue phase is
discussed in the following. First, the e�ects of the
fatigue related parameters a, d, and f on the total
production time and cost are analyzed. In Figures 12
and 13, we can see that the total production time and
the average cost are not sensitive to a. With increase

Figure 12. Impact of a; d, and f on t�.

Figure 13. Impact of a; d, and f on ATC3(t�).
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in d or f , the production time tends to increase linearly
and the average cost increases almost exponentially.

The larger values of f mean higher fatigue level,
leading to a faster decrease in productivity. In order
to meet the demand, we may need to prolong the
production time. As a result, this further increases
fatigue level and cost.

Observation 4. When production goes beyond fa-
tigue phase, fatigue leads to faster decrease in pro-
ductivity, resulting in prolonged production time and
decrease in productivity. This productivity degeneration
will cause increase in total cost.

From this observation, we can deduce that when
fatigue of the workers reaches a certain level, the labor
productivity decreases rapidly. Therefore, it becomes
unwise to continue production and proper rest for
fatigue recovery is necessary.

In addition, the inuence of the fatigue related
parameter c on the total production time and cost
is analyzed. Figure 14 shows the e�ect of c on the
production time (t�) and Figure 15 shows the e�ect of

Figure 14. Impact of c on t�.

Figure 15. Impact of c on ATC3(t�).

c on the average cost (ATC3(t�)). Both of them have
an inverted shape. When c is smaller, production time
and the average cost increase with increase in c. When
c is bigger than a certain value, both the production
time and the average cost decrease.

5.3.5. The inuence of � on fatigue production time
and average cost in Case 4

In Case 4, production goes through �ve phases: learn-
ing phase, stable phase, fatigue phase, rest phase,
and relearning phase. The scale factor � reects the
relationship between rest time and fatigue production
time, which also impacts the result. We analyze the
e�ect of � on the fatigue production time and the
average cost. The result of the analysis is given in
Figures 16 and 17.

Figure 16 illustrates the relationship between �
and the fatigue production time (t�3�t2), and Figure 17
illustrates the impact of � on the average cost ATC4(t�)
when " = 0:02; 0:04, and 0.06.

According to Figure 16, regardless of the value of

Figure 16. Impact of � on t� � t2.

Figure 17. Impact of � on ATC4(t�).
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", the fatigue production time decreases as � increases.
This is because increasing means an increased fatigue
level, which requires a longer rest time. As illustration
in Figure 17, with increase in �, the optimal average
cost initially increases and then, decreases. This
implies that a short rest time is not bene�cial for
reducing cost. One should have su�cient rest time in
order to reduce cost and increase economic value. In
the results, we also observe that for larger " values, all
curves in Figures 16 and 17 are low. This is because
larger � means a better recovery after rest, leading to
higher productivity after the relearning. As a result,
the fatigue production time becomes shorter and the
average cost gets lower.

Based on this observation, an appropriate fatigue
recovery time is very important to improve the e�-
ciency of production.

6. Conclusions

In a labor-intensive manufacturing industry, human
factor plays an important role in operations decisions.
This study dealt with the problem of behavioral eco-
nomic value of leaning and fatigue recovery in a pro-
duction inventory decision. Based on a real case study,
we developed a new Economic Production Quantity
(EPQ) model considering learning, fatigue, and fatigue
recovery e�ects. The optimal production time and
fatigue recovery time were determined to minimize the
average cost of the production system. Newton Raph-
son method was used to derive the optimal solutions.
The main conclusions of our study are as follows:

1. Learning e�ect plays an important role in the early
phase of production. The presence of fatigue will
decrease the e�ciency of the production system by
lowering productivity;

2. An appropriate fatigue recovery is necessary for
reducing cost and increase productivity. When the
rest time is shorter than required, fatigue cannot be
alleviated. With increase in the optimal rest time,
the average total cost will decrease;

3. It is not always appropriate to cut the fatigue
production time. Proper prolonging of the fatigue
phase production time can reduce the cost.

Although human factor in operations management
has been researched for a long time, modeling the
behavioral value of learning and fatigue e�ects on
production inventory decision is lacking. Our study
has investigated the behavioral value of learning and
fatigue e�ects on production inventory decision using a
real-life example. For further research, we can consider
multiple products and multi-stage production systems
in the models.
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