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Abstract. The aim of this article is providing an analytical solution for stress and
deformation of human arteries. The artery is considered as a long homogeneous isotropic
cylinder. Hyperelastic, incompressible stress-strain behavior was applied by adopting
a classical Mooney-Rivlin material model. The elastic constants of the arteries were
calculated by using the reported results of biaxial test. The analysis was based on
both single- and double-layer arterial wall models, and radial and circumferential stress
distributions in the minimum and maximum blood pressures were calculated. Variations of
radii due to internal pressure within the arteries were found; they were in a good agreement
with the experimental results. The results containing the changes in diameter and thickness
together with the stress distribution for both single- and double-layer models are plotted.
It will be shown that the major di�erence between the single- and double-layer models is
in their stress distributions. The circumferential stress distribution for di�erent ages of
human is plotted, which shows that the stress increases with increase in the age due to
decrease in the exibility of the artery. It is also shown that, although the inner layer of
the artery is softer than its outer layer, the maximum stresses occur in the inner layer.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The structure and function of arteries change through-
out the lifetime of humans and animals [1]. Blood
vessel can be considered as a long cylinder of which the
internal pressure varies between a minimum and a max-
imum. The internal pressure is caused by systolic and
diastolic blood pressures due to contraction of the heart
muscle and blood ow through the arteries. Arteries
and veins in di�erent regions of body show di�erent
characteristics. Artery walls are mainly composed of
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three layers of tunica intima, tunica media, and tunica
adventitia (Figure 1) [2].

The inner layer is covered by a layer of endothelial
cells and it is very thin. These cells, through mechan-
ical and electrochemical connections with each other,
make an internal membrane for the blood vessels. In
fact, this membrane forms a boundary between the
blood and the vessel wall. Endothelial cells are formed
of collagen, �bronectin, and laminin [3-6].

The middle layer or the main wall of the arteries
includes muscle cells, elastin, and collagen �bers [3,5,6].
It has the greatest volume and is responsible for
most of the arterial properties, consisting of a three-
dimensional network of smooth muscle cells, elastin,
and bundles of collagen �brils (type I about 30% and
type III about 70%) [6-8]. Adventitia refers to the
outermost connective tissue covering organs, vessels,
or any other structure. The outermost layer of artery
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Figure 1. Cross-section of an artery and vein composed
of the endothelium, tunica intima, tunica media, and
tunica adventitia [2].

is called adventitia, because it is considered extraneous
to the artery. It consists of type I collagen, nerves,
�broblast (a cell capable of forming collagen �ber), and
some elastin �bers [9]. It is also believed that adventitia
has the greatest contribution to elastic modulus of
vessel wall [10].

Tests performed on live tissues are divided in two
categories, namely in vitro and in vivo. Garc�a-Herrera
et al. [11] characterized the human aorta under in-vitro
and in-vivo conditions. Carew et al. [12], by using in-
vitro experiments, showed that for most of the practical
purposes, arteries might be considered incompressible.
Karimi et al. [13] investigated the linear and nonlinear
mechanical properties of human artery using a series
of uniaxial tensile tests. Akhtar [14], by using in-
vitro experiments and tensile testing, studied the
biomechanical properties of arterial tissue. Vaishnav
et al. [15], by using in-vitro experiments, showed that
the wall tissue could be considered incompressible.
Using the results of in-vivo tests, Hudetz [7] developed
di�erent continuum models for anisotropic, incremen-
tal elastic, nonlinear viscoelastic, and time-dependent
active responses of arterial walls. In macroscopic
analyses, the whole artery wall can be considered
as a long, homogenous, isotropic, and incompressible
material [7,12,15-17]. The stability behavior of thoracic
aorta was investigated with two boundary conditions
by Rastgar-Agah et al. [18], representing two extreme
cases of in-vivo constraints.

A suitable mechanical model that is capable of
predicting the artery behavior can be useful in the
prevention and treatment of some artery diseases.
In addition, reliable artery behavior prediction is an
important step toward the production of some arti�cial
tissues. Taghizadeh et al. [19] examined di�erent strain

energy functions to express the mechanical behavior of
soft tissues. Von Maltzahn et al. [20-22] proposed a
two-layer cylindrical model to describe the nonlinear
properties of carotid arteries. Holzapfel and Ogden [23]
and Holzapfel and Weizsacker [24] considered a two-
layer, anisotropic mechanical model for arteries and
used the Neo-Hookian model to express the matrix
material.

Numerous biomechanical studies have idealized
the three-dimensional wall as a membrane (or two-
dimensional surface) [25-28].

Constitutive equations for the arterial wall can
further be categorized by the types of biological pro-
cesses. Deformations of live tissues are very large and
their mechanical behavior is nonlinear [29]. For math-
ematical modeling of arteries, they can be considered
as long single- or double-layer cylinders [20-24]. Sa�
Jahanshahi and Saidi [29] examined the mechanical
behavior of human arteries by a single-layer isotropic
model using biaxial stress test results.

In most studies of mechanical modeling, the
artery wall is assumed as a thin cylinder [22-24,30-33],
which is not an accurate assumption.

In this paper, a nonlinear elastic, thick, long
cylindrical shell model has been used to predict the
stress and deformation of human arteries under internal
pressure. Since the intima layer is so thin and it
does not have a considerable role in creating the
stresses, the artery has been modeled as a double-
layer cylindrical shell. Using a biaxial stress test, the
Mooney-Rivlin elastic constants for this model have
been calculated. Through an analytical solution, the
radial and circumferential stress distributions in the
minimum and maximum blood pressures have been
found. Numerical results containing the changes in
diameter and thickness together with the stress distri-
bution for both single- and double-layer models have
been plotted. The circumferential stress distributions
for di�erent human ages have been depicted, which
show that the stresses increase with increase in human
age.

2. Constitutive equations

The strain energy function, W , for a homogeneous
material depends only on the deformation gradient
tensor, FFF . If there is no internal constraint, such as
incompressibility, the nominal stress is work conjugate
to the deformation gradient and given simply by [7]:

SSS =
@W
@FFF

; (1)

where SSS is the nominal stress. For an incompressible
material, Eq. (1) will be written as:

SSS =
@W
@FFF
� pFFF�1; J = detFFF = 1; (2)
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where p is the Lagrange multiplier associated with the
compressibility constraint and J stands for Jacobian.
From Eq. (1), the Cauchy stress tensor, TTT , can be
written as:

TTT = JFFF�1 @W
@FFF

: (3)

For an incompressible material, the above equation is
modi�ed to:

TTT = FFF�1 @W
@FFF
� pIII; detFFF = 1: (4)

An important consequence of isotropy is that the
Cauchy stress, TTT , has the same eigenvectors as the left
stretch tensor, VVV . Thus, we can write:

TTT =
3X
i=1

tiv(i) 
 v(i); (5)

where ti represents the principal values of the Cauchy
stress tensor and the symbol 
 refers to the tensor
product. Then:

Jti = �i
@W
@�i

; i = 1; 2; 3; (6)

where �i represents the principal stretches. For an
incompressible material, Eq. (6) can be written as:

ti = �i
@W
@�i
� p; �1�2�3 = 1; i = 1; 2; 3: (7)

Using Eq. (7) and having the energy function, W ,
the principal stresses can be found for incompressible
materials.

3. Biaxial stress test

Biaxial mechanical tests are required to quantify me-
chanical properties of hyperelastic materials. Zem�anek
et al. [34] designed and produced an experimental rig
for biaxial testing of hyperelastic materials (elastomers
and soft tissues). The testing rig consisted of a bedplate
carrying two orthogonal ball screws equipped with force
gauges, two servo motors, and four carriages ensuring
symmetric biaxial deformation of the specimen as well
as a programmable CCD camera located on a support
stand [34]. They presented the procedure of biaxial
tension tests for aortic walls.

A pure homogeneous deformation, in general
form, can be written as [23]:

x1 = �1X1; x2 = �2X2; x3 = �3X3: (8)

The deformation gradient tensor will then be found as:

FFF =

24�1 0 0
0 �2 0
0 0 �3

35 : (9)

Imposing the incompressibility on Eq. (9) gives:

FFF =

24�1 0 0
0 �2 0
0 0 ��1

1 ��1
2

35 ;
BBB = FFFFFFT =

24�2
1 0 0

0 �2
2 0

0 0 ��2
1 ��2

2

35 ; (10)

where BBB stands for the left Cauchy-Green deformation
tensor. The invariants of BBB, according to the principal
stretches, are considered as:

I1 = �2
1 + �2

2 + �2
3; I2 = �2

2�
2
3 + �2

3�
2
1 + �2

1�
2
2;

I3 = �2
1�

2
2�

2
3: (11)

Enforcing the compressibility condition, Eq. (11) can
be rewritten as:

I1 = �2
1 + �2

2 + ��2
1 ��2

2 ;

I2 = ��2
1 + ��2

2 + �2
1�

2
2; I3 = 1: (12)

The strain energy function cW is de�ned as:cW (�1; �2) = W (�1; �2; ��1
1 ��1

2 ): (13)

Omitting p from Eq. (7), we can write:

t1 � t3 = �1
@cW
@�1

; t2 � t3 = �2
@cW
@�2

: (14)

For biaxial test, we have t3 = 0; thus, in this case, the
above equations slightly reduce to:

t1 = �1
@cW
@�1

; t2 = �2
@cW
@�2

: (15)

Let us de�ne W1 = @cW
@I1 and W2 = @cW

@I2 . Thus, we can
write:

W (I1; I2) � cW (�1; �2): (16)

Eq. (15) then reduces to:

t1 =�1

�
@cW
@I1

@I1
@�1

+
@cW
@I2

@I2
@�1

�
= 2(�2

1 � ��2
1 ��2

2 )

(W1 + �2
2W2): (17)

Similarly, t2 can be found as:

t2 = 2(�2
2 � ��2

1 ��2
2 )(W1 + �2

1W2): (18)
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Solving these equations for W1 and W2 yields:

W1 =
�2

1t1
2(�2

1 � �2
2)(�2

1 � �2
3)
� �2

2t2
2(�2

1 � �2
2)(�2

2 � �2
3)
;

W2 =
t2

2(�2
1 � �2

2)(�2
2 � �2

3)
� t1

2(�2
1 � �2

2)(�2
1 � �2

3)
:(19)

For a Mooney-Rivlin material, the Helmholtz free
energy function is [21]:

W = c1(I1 � 3) + c2(I2 � 3): (20)

By comparing Eqs. (16) and (20), we have:

W1 = c1; W2 = c2: (21)

It means that by a biaxial test, the Mooney-Rivlin
material constants can be speci�ed. In this research,
the material constants c1 and c2 are found using biaxial
test results reported by Mohan and Melvin [35] and
Eq. (19).

4. Mechanical analyses of artery

The artery wall is considered as a homogenous and
isotropic cylinder under ination and tension. For such
a cylinder, the deformations �eld can be considered
as [36]:

r = r(R); � = �; z = Z=D; (22)

where r, �, and z are the cylindrical coordinate system
in the current con�guration and �z = 1=D is stretch
along the cylinder. For deformation �eld (22), the
components of the deformation gradient tensor are
given by:

FFF =

24r0 0 0
0 r=R 0
0 0 1=D

35 ; (23)

where r0 = dr=dR. By satisfying the incompressibility
condition, detFFF = 1, we have:

rr0 = RD: (24)

Solving Eq. (24) yields:

r2 = DR2 +A; (25)

where A is an unknown constant, which has to be
determined.

For a nonlinear elastic material, the constitutive
equation is [37]:

TTT = �pIII + c1BBB + c2BBB�1; (26)

where TTT is the Cauchy stress tensor, p is an unknown

constant that appears in incompressibility condition, III
is the identity tensor, and the constants c1 and c2 are
the Mooney-Rivlin material constants, which can be
determined using the biaxial test. For deformation �eld
(22), the normal components of Cauchy stress tensor
can be written as:

Trr = �p+ c1
D2R2

r2 + c2
r2

D2R2 ; (27)

T�� = �p+ c1
r2

R2 + c2
R2

r2 ; (28)

Tzz = �p+ c1
1
D2 + c2D2: (29)

In Eqs. (25) and (27)-(29), if constants p, D, and A
are known, the stress distribution is completely known
and the problem is completely solved. The equilibrium
equation in r-direction is:

dTrr
dr

+
1
r

(Trr � T��) = 0: (30)

For a single-layer cylinder, the boundary conditions can
be written as:

Trr(rin) = �Pin; Trr(rou) = �Pou; (31)

Fa = 2�
rouZ
rin

Tzzrdr; (32)

where Pin and Pou are the inner and outer pressures
of the cylinder and Fa is the axial force. Solving
Eq. (30), using boundary conditions (31), and changing
the internal radius to radius, we have:

Trr(r) =� Pin � c1
rZ

rin

(
D2R2

r3 � r
R2 )dr

� c2
rZ

rin

(
r

D2R2 � R2

r3 )dr: (33)

By integrating and performing some mathematical
operations, Eq. (33) can be written as:

Trr(r) =� Pin �
�
c1D � c2

D

�
�
ln(r) +

1
2
A
r2 � 1

2
ln(r2 �A)

�r
rin
: (34)

By letting r = rou in Eq. (34) and assuming that
the external pressure is equal to zero, the following
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relationship between two constants A and D can be
found:

0=�Pin�(c1D � c2
D

)
�
ln(r)+

1
2
A
r2� 1

2
ln(r2�A)

�rou

rin
:
(35)

In addition, by comparing Eq. (35) and (27), the
unknown constant p can be found in terms of the
unknown constants A and D as follows:

p = + Pin + c1D
�
r2
ou �A
r2
ou

�
+
c2
D

�
r2
ou

r2
ou �A

�
+
�
c1D � c2

D

��
ln(r)+

1
2
A
r2� 1

2
ln(r2�A)

�rou

rin
:
(36)

Furthermore, using the boundary condition (32), we
have:

Fa = 2�
rous
rin

�
�p+ c1

1
D2 + c2D2

�
rdr: (37)

Substituting p from Eq. (36) into (37) and integrating
them yield:

Fa = �2664�Pin�c1D
�
r2
ou�A
r2
ou

�
� c2
D

�
r2
ou

r2
ou�A

�
�
�
c1D� c2

D

�
��

ln(r) + 1
2
A
r2 � 1

2 ln
�
r2 �A

��rou

rin
+ c1 1

D2 + c2D2

3775
(r2

ou � r2
in): (38)

By solving Eqs. (35) and (38), the constants A and D
will be found and �nally, the stress distribution will be
fully determined.

As previously mentioned, the arterial wall consists
of two main layers, namely media and adventitia. Thus,
in order to have a more accurate model of the artery, it
is considered as a double-layer cylinder. The boundary
conditions for this model are:

Trr(rin) = �Pin; Trr(rou) = �Pou; (39)

Fa = 2�
� r1Z
rin

Tzzrdr +
rinZ
r1

Tzzrdr
�
; (40)

where r1 is the inner radius of the adventitia (which is
equal to the outer radius of the media). By satisfying
the boundary conditions (39) in Eq. (27), we can write:

Trr(r1) =� Pin �
�
c1mDm � c2m

Dm

�
�

ln(r) +
1
2
Am
r2 � 1

2
ln(r2 �Am)

�r1
rin
; (41)

0 =� Pou = �Trr (r1)�
�
c1aDa � c2a

Da

�
�
ln (r) +

1
2
Aa
r2 � 1

2
ln
�
r2 �Aa��rou

r1
; (42)

where the indices m and a stand for media and
adventitia, respectively, and Am, Aa, Da, and Dm are
four unknown constants, which should be determined
from the boundary conditions. Eliminating Trr(r1)
from Eqs. (41) and (42), we obtain:

�Pou =�
�
� Pin �

�
c1mDm � c2m

Dm

��
ln(r)

+
1
2
Am
r2 � 1

2
ln
�
r2 �Am

��r1
rin

�
�
�
c1aDa � c2a

Da

��
ln(r)

+
1
2
Am
r2 � 1

2
ln(r2 �Am)

�rou

r1
: (43)

This is a relationship between the constants Am, Aa,
Da, and Dm. By adopting the same procedure as the
previous one, for a double-layer model, we can write:

pm = + Pin + c1mDm

�
r2
1 �Am
r2
1

�
+
c2m
Dm

�
r2
1

r2
1 �Am

�
+
�
c1mDm � c2m

Dm

��
ln(r) +

1
2
Am
r2

� 1
2

ln(r2 �Am)
�r1
rin
; (44)

pa = + Pou + c1aDa

�
r2
ou �Aa
r2
ou

�
+
c2a
Da

�
r2
ou

r2
ou �Aa

�
+
�
c1aDa � c2a

Da

��
ln(r) +

1
2
Aa
r2

� 1
2

ln(r2 �Aa)
�rou

r1
: (45)

Now, by applying the boundary conditions, Eq. (40)
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will be:

Fa =2�
� r1Z
rin

�
� pm + c1m

1
D2
m

+ c2mD2
m

�
rdr

+
rouZ
r1

�
� pa + c1a

1
D2
a

+ c2aD2
a

�
rdr
�
: (46)

Substituting Eqs. (44) and (45) into Eq. (46) and
integrating them yield Eq. (47) as shown in Box I.
On the other hand, the non-slip condition requires:

Da = Dm = D�; (48)

Aa = Am = A�: (49)

Finally, by solving Eqs. (43) and (47), simultaneously,
and using Eqs. (48) and (49), the constants A� and
D� can be obtained and the problem will be solved
completely.

5. Results

First, using the experimental results of biaxial stress
test carried out by Mohan and Melvin [35], the
Mooney-Rivlin material constants for a single-layer
artery at di�erent ages, based on Eqs. (19), are cal-
culated and presented in Table 1. All the numerical
results are presented based on these material constants.

To show the accuracy of our analytical solution,
in Figure 2, the results for changes in the inner radius

Table 1. Mooney-Rivlin constants of the arteries in
di�erent ages.

Age
(year)

c2

(Pa)
c1

(Pa)
A

(mm2)
D

(mm/mm)
25 -3147 10396 30.718 0.729
49 -3421 11128 27.090 0.736
60 -5082 19400 24.361 0.742
87 -6175 22725 22.536 0.749

Figure 2. Comparison of the changes in the inner radius
based on the results for the internal pressure by the
presented model and the experimental results obtained by
the tests of Von Maltzahn et al. [20].

versus the internal pressure have been presented and
compared with the experimental results published by
Von Maltzahn et al. [20].

From this �gure, it can be found out that the
results are in good agreement and therefore, our ana-
lytical solution is accurate.

Based on the single-layer model, the results for
radial and circumferential stress distributions have
been plotted in Figures 3 and 4, respectively.

The non-dimensional variation of the radial stress
has been plotted based on the non-dimensional internal
radius in Figure 3. The maximum blood pressure (or
diastolic pressure) and the minimum blood pressure (or
systolic pressure) are considered to be 75 and 150 mm
Hg, respectively. The non-dimensional circumferential
stress distribution versus the non-dimensional internal
radius is depicted in Figure 4.

In order to �nd much more accurate results, a
double-layer model is assumed. The Mooney-Rivlin
material constants for media and adventitia layers of
the artery at di�erent ages are calculated and presented
in Table 2.

fa = �

8>><>>:
0BB@�

2664 Pin + c1mDm

�
r2
1�Am
r2
1

�
+ c2m

Dm

�
r2
1

r2
1�Am

�
+�

c1mDm � c2m
Dm

��
ln(r) + 1

2
Am
r2 � 1

2 ln(r2 �Am)
�r1
rin

3775+ c1m 1
D2
m

+ c2mD2
m

1CCA (r2
1 � r2

in)

+

0BB@�
2664 Pou + c1aDa

�
r2
ou�Aa
r2
ou

�
+ c2a

Da

�
r2
ou

r2
ou�Aa

�
+�

c1aDa � c2a
Da

��
ln(r) + 1

2
Aa
r2 � 1

2 ln(r2 �Aa)
�rin
r1

3775+ c1a 1
D2
a

+ c2aD2
a

1CCA (r2
ou � r2

1)

9>>=>>; : (47)

Box I
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Table 2. Mooney-Rivlin constants for media and adventitia in di�erent ages.

Age
(year)

c1m

(Pa)
c2m

(Pa)
c1a

(Pa)
c2a

(Pa)
A�

(mm2)
D�

(mm/mm)
25 16030 -4823 8150 -2467 30.604 0.745
49 19513 -5043 9725 -2849 29.156 0.751
60 27831 -7419 16421 -4446 26.982 0.772
87 30110 -8774 18725 -5014 24.732 0.785

Figure 3. Non-dimensional radial stress distribution for
systolic and diastolic blood pressures.

Figure 4. Non-dimensional circumferential stress
distribution for systolic and diastolic blood pressures.

The non-dimensional results for radial stress dis-
tribution based on the single- and double-layer model
are depicted in Figure 5.

The results for non-dimensional circumferential
stress distribution based on the double-layer model are
depicted in Figure 6.

Variation of dimensionless inner radius is plotted
versus the blood pressure in Figure 7.

The changes in outer radius are considerable, but

Figure 5. Non-dimensional radial stress distribution for
systolic and diastolic blood pressures of both single- and
double-layer models.

Figure 6. Non-dimensional circumferential stress
distribution for systolic and diastolic blood pressures of
the two-layer model.

smaller than those in the inner radius. This reveals that
the thickness of the arteries decreases by increasing the
internal pressure, as shown in Figure 8. It is clear that
the change in thickness occurs due to incompressibility
behavior of the artery.

In Table 3, the dimensionless inner radius changes
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Table 3. Comparison of the changes in dimensionless inner radius based on the internal pressures of the single- and
double-layer models.

Pin (kPa)
rin/Rin rou=Rou

Single-
layer

Double-
layer

Di�erence
(%)

Single-
layer

Double-
layer

Di�erence
(%)

0 1 1 0 1 1 0
5 1.6048 1.6241 0.012 1.4763 1.4922 0.011
10 1.8418 1.8657 0.013 1.6827 1.7056 0.012
15 2.0141 2.0423 0.014 1.8362 1.8614 0.013
20 2.1379 2.1699 0.015 1.9458 1.9741 0.014

Figure 7. Dimensionless inner radius versus internal
pressure.

Figure 8. Thickness changes versus internal pressure.

versus the internal pressure based on single- and
double-layer models are compared.

It is observable that the results are very close
to each other; therefore, the results of the single-layer
model for inner radius changes are accurate.

In Table 4, the radial and circumferential stresses
based on single- and double-layer models are compared.

Table 4. Comparison of the stresses of the single- and
double-layer models.

r (mm)

Trr (kPa) T�� (MPa)
Single-
layer

Double-
layer

Single-
layer

Double-
layer

5.42 20.2175 20.2176 2.1150 1.6651

5.52 6.5791 6.7383 0.5725 0.4507

5.62 4.3555 4.8140 0.3386 0.2666

5.72 3.1097 3.7360 0.2441 0.1922

5.82 2.2310 2.9756 0.1929 0.1519

5.92 1.5476 2.3058 0.1609 0.3709

6.02 0.9861 1.4693 0.1389 0.2798

6.12 0.5087 0.7578 0.1230 0.2086

Figure 9. Circumferential stress distribution based on
the radii for di�erent ages.

Based on the double-layer model, the circumfer-
ential stress distribution along the radius at di�erent
ages for the internal pressure of 150 mm Hg is drawn
in Figure 9.
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6. Conclusions

This study revealed that the radial stress distribution
was highly non-linear and varied between the blood
pressure in the inner wall and zero at the outer wall.
Also, it was found that the surfaces near the inner
lining of artery had a more signi�cant role in creating
stress than the outer surfaces. As mentioned, the inner
lining of the arteries was composed of the muscle cells,
elastin �bers, and collagen; and the external layer was
composed of collagen type I, nerve cells, and elastin
�bers. Muscle cells had much greater elastic properties
than collagen [3], which justi�ed the resulting stress
distribution. Moreover, it was concluded that the
circumferential stresses close to the inner surface were
very large and tapered o� very rapidly.

By comparing the magnitudes of circumferential
and radial stresses, it was found that the major stresses
in mechanical analysis of arteries were circumferential,
which were almost 100 times larger than the radial
stresses.

Moreover, the internal radius expanded to more
than twice its initial value, due to the internal pressure
of about 15 kPa (112 mm Hg), which showed that the
deformation was too large.

As the di�erences in stresses based on single- and
double-layer models were noticeable, it was concluded
that the single-layer model could not suitably predict
the radial and circumferential stresses.

Finally, the circumferential stress in the arteries
increased with increase in the age. For this reason, the
exibility of the artery was reduced.
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