
Scientia Iranica E (2020) 27(2), 829{845

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
http://scientiairanica.sharif.edu

An e�ective league championship algorithm for the
stochastic multi-period portfolio optimization problem

A. Husseinzadeh Kashan�, M. Eyvazi, and A. Abbasi-Pooya

Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.

Received 16 June 2017; received in revised form 6 August 2018; accepted 15 September 2018

KEYWORDS
Portfolio optimization;
Single- and multi-
period models;
League championship
algorithm.

Abstract. The Multi-Period Portfolio Optimization (MPPO) models have been intro-
duced to overcome the weaknesses of the single-period models via considering a dynamic
optimization system. However, considering the nonlinear nature of the problem and rapid
growth of the size complexity with increase in the number of periods and scenarios, this
study is devoted to developing a novel League Championship Algorithm (LCA) to maximize
the mean variance function of the portfolio subject to di�erent constraints. A Vector Auto-
Regression (VAR) model was developed to estimate the return on risky assets in di�erent
time periods and to simulate di�erent scenarios of the rate of return, accordingly. Besides,
we proved a valid upper bound of the objective function based on the idea of using surrogate
relaxation of constraints. Our computational results based on sample data collected from
S&P 500 and 10-year T. bond indices indicated that the quality of portfolios, in terms of
the mean variance measure, obtained by LCA was 10 to 20 percent better than that by
the commercial software. It seems promising that our method can be a suitable tool for
solving a variety of portfolio optimization problems.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

The problem of decision-making under uncertainty for
choosing asset classes is one of the important topics in
�nancial areas. Markowitz [1] was the �rst scholar who
conducted research on portfolio optimization models.
By combining optimization with probability theory, he
modeled investment with uncertainty. Taking account
of the return on investment as the average of returns
and the risk of investment as the variance was the
technique for mathematical modeling. Accordingly,
risk is considered by calculating the variance in the
mean variance models, as suggested by Yoshimoto [2],
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Best and Hlouskova [3], Liu et al. [4], and Corazza and
Favaretto [5], to mention a few examples. It is worth
mentioning that the above-mentioned studies work on
the assumption of single-period portfolio optimization,
which does not su�ciently model the real-world condi-
tions in investment. Since market conditions change
over time and investors decide on their wealth ac-
cordingly, single-period models need to be extended to
multi-period ones. In other words, wealth allocation to
asset classes in inconsistent �nancial markets with high
diversity requires employing multi-period stochastic
optimization models.

Multi-period models for portfolio optimization
adequately take account of uncertainty for e�ective
parameters like return on assets class and external cash

ow [6]. This is one of the important advantages of
Multi-Period Portfolio Optimization (MPPO) models
over single-period ones. The goal of the MPPO is
to minimize risk and maximize return. While maxi-
mizing return on investments in portfolios intervenes
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in making decisions on the percentage of the overall
portfolio value allocated to each portfolio component,
minimizing the risk of di�erent investment instruments
is also important at the same time to create or maintain
portfolios with the speci�ed risk-return characteris-
tics. The MPPO technique demonstrates the dynamic
aspect of models for achieving optimal solution and
e�cient frontier [6,7].

2. Literature review

As previously implied, single-period models form the
basis for multi-period ones. A recent study by Ertenlice
and Kalayci [8] has investigated the use of swarm
intelligence for portfolio optimization in single- and
multi-period optimization cases. As an example of
the single-period models, Yoshimoto [2] addressed the
portfolio optimization considering transaction cost and
its e�ect on the portfolio. Best and Hlouskova [3] pro-
posed a closed-form solution to the portfolio selection
problem for uncorrelated and bounded assets. Deng
et al. [9] developed a Particle Swarm Optimization
(PSO) algorithm for Cardinality-Constrained Portfolio
Optimization (CCPO) problem, which outperformed
Genetic Algorithm (GA), simulated annealing, and
Tabu search. Woodside-Oriakhi et al. [10] presented
metaheuristics based upon GA, simulated annealing,
and Tabu search for Markovitz's mean variance model
considering the discrete constraints of buy-in thresh-
olds and cardinality. A greedy randomized adaptive
search procedure has been developed in [11] for CCPO.
An arti�cial bee colony algorithm is also proposed
in [12] for CCPO.

There are a large number of models proposed
for MPPO. For instance, Bradley and Crane [13]
introduced a multi-period bond portfolio model and
a new approach to e�ciently solving problems with
decomposition algorithm of mathematical program-
ming. A stochastic linear programming formulation
of the short-term �nancial planning problem for a
�rm was modeled under uncertainty by Kallberg and
Ziemba [14]. Stochastic network optimization models
were described for investment planning under uncer-
tainty and the performance of the models in simu-
lations based on historical data was investigated by
Mulvey and Vladimirou [15]. Furthermore, a multi-
period mean variance portfolio selection model with
bankruptcy constraint under the framework of prob-
ability theory was developed for a stochastic market
by Wei and Ye [16]. Bertsimas and Pachamanova [17]
presented di�erent robust formulations for the MPPO
problems and considered transaction cost in their
models. Furthermore, they compared the performance
of robust formulations with the performance of the
traditional mean variance formulation. C�akmak and
�Ozekici [18] proposed an MPPO model that rebalanced

the portfolio according to time horizon and the changes
of market parameters. Li and Ng [19] formulated
an analytical expression for the multi-period mean
variance e�cient frontier. They also introduced an
algorithm for �nding the optimal portfolio policy. The
bankruptcy approach was used for executing optimal
portfolio policy by Zhu et al. [20]. Using the downside
risk criterion, P�nar [21] revisited the multi-period
portfolio model. The multi-period mean-semivariance-
entropy model based on possibility theory was formu-
lated by Zhang et al. [22]. Fang et al. [23] took a
fuzzy set based theory approach to the MPPO problem.
The multi-period portfolio model with di�erent rates
was also introduced for borrowing and lending in
fuzzy environment by Sadjadi et al. [24]. Zhang and
Zhang [25] considered a multi-period fuzzy portfolio
selection problem with absolute deviation as the risk
control of portfolio. The model included transaction
cost, borrowing constraints, threshold constraints, and
cardinality constraints. Additionally, discrete approx-
imate iteration method was applied to solving the
optimal portfolio. Yao et al. [26] presented multi-
period mean variance portfolio selection problem with
a stochastic interest rate in which the movement of the
interest rate followed the Vasicek model. In addition,
dynamic programming approach and Lagrange duality
theory were used to overcome increasing complexity.

Given the fact that the MPPO problem is a
nonlinear complex problem with many local optima
and time is a constraint for �nancial problems, heuris-
tic methods seem to be good tools for achieving a
trade-o� between the quality and the computational
time. Heuristic methods such as Tabu search [27,28],
GA [29], and PSO [30] are only some examples. Yan
et al [31] introduced a class of multi-period semi-
variance models and applied a novel hybrid GA and
PSO algorithm to solving this model type. Zhang et
al. [32] used possibilistic mean variance approach to
extending multi-period fuzzy portfolio selection prob-
lems. Moreover, they formulated a PSO algorithm
for these portfolio selection problems. Liu et al. [33]
investigated a multi-period portfolio selection problem
with bankruptcy control and a�ne recourse in fuzzy
investment environment and proposed a credibilistic
MPPO model. Furthermore, a hybrid PSO algorithm
was used for solving the model. Liu et al. [34] presented
a robust multi-period portfolio model based on the
robust theory and prospect theory. To solve the
model, an improved PSO algorithm was developed.
Wang et al. [35] studied MPPO problem with returns
considered as fuzzy random variables and proposed a
fuzzy simulation-based PSO algorithm for solving the
problem. Li et al. [36] considered an uncertain multi-
period portfolio selection problem with the in
uence
of transaction cost and bankruptcy. They solved the
problem using GA with penalty function. Discounted
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transaction costs in a fuzzy environment were consid-
ered in the multi-period portfolio selection problem.
After transforming the problem into a single-objective
equivalent, a di�erential evolution algorithm was used
to solve it.

This paper considers the stochastic optimization
model for multi-period asset class portfolio problem.
Asset class includes cash, stock, bond, and real state.
Sample data are collected from S&P 500 and 10-year
T. bond indices. To extract scenarios from historical
data, a Vector Auto-Regression (VAR) model is �rst
developed to predict the return on risky assets. An
upper bound for the optimal value of the mean variance
objective function is proposed by surrogate relaxation
of the constraint via aggregation over all scenarios. We
prove that the bound is valid. To solve the problem
instances of MPPO, a metaheuristic algorithm is de-
veloped based on the League Championship Algorithm
(LCA) and a penalty based method is used to handle
entropy constraints. Our computations reveal that the
proposed methodology has a considerable impact on
the quality of the constituted portfolios by improving
the mean variance objective function from 10 to 20
percent in comparison with the results provided by a
commercial solver.

Therefore, the contribution of this paper is three-
fold. First, an MPPO problem is formulated consider-
ing diversi�cation in portfolio and uncertainty about
returns on risky assets. To diversify portfolio con-
struction, the Shannon entropy measure is used as an
optimization constraint. To cope with the uncertainty,
a scenario-based approach is followed and a VAR model
is developed to predict and include the return on risky
assets in the optimization model. Via adopting a surro-
gate relaxation technique and mathematical properties,
an upper bound of the optimal objective function value
is also provided. To cope with the nonlinearity of the
problem and to solve it for larger complex instances, an
e�ective LCA is proposed. Statistical results show that
the LCA signi�cantly improves the results provided by
the LINGO commercial solver.

The remainder of the paper is organized as fol-
lows. In Section 2, we formulate an MPPO problem
with investment rebalancing in several discrete time
points (periods). Since there is uncertainty in the
MPPO problem, we also estimate return rate on risky
assets by the VAR model based on scenario tree in
Section 3. Section 4 is devoted to designing a method
to obtain an upper bound for the optimal value of the
objective function in our problem. In Section 5, we give
a brief introduction to LCA and apply it to the MPPO
problem in hand. Section 6 presents computational
experiments and the results of solving the problem
with LINGO/Quadratic Solver. Also, the proposed
algorithm is given in this section along with the analysis

of the gap between the results of the Quadratic Solver
and LCA. Finally, the paper is concluded in Section 7.

3. Multi-Period Portfolio Optimization
(MPPO) problem

The MPPO problem expresses stochastic optimization
with investment rebalancing in several discrete time
points the lengths between which are called periods. In
the MPPO problem, we must specify planning horizon
and asset investment classes. Planning horizon covers
� time periods introduced by T = f0; 1; � � � ; �g. T = 0
represents the present position and T = � is the
planning horizon. Present position is considered as the
starting point for scenario generation. Decisions are
made at the end of each time period. Asset investment
classes, introduced by the set A = f1; 2; � � � ; Eg,
include broad investment classes, e.g., stocks, bonds,
real state, and cash. Because asset classes must track
the market, in our case, S&P 500 index is representative
of stock and 10-year T. bond is for bond. Uncertainty
is modeled through a �nite number of scenarios each
representing a possible realization of all uncertain
parameters. The set of all scenarios is represented by
S. We will show how di�erent scenarios can be realized
using a VAR model. The mathematical model of the
MPPO problem can be presented as follows:

Maximize z = �Means(w� )� (1� �)Vars(w� ); (1)

s.t.:X
n2A

xsn;0 = w0 8 s 2 S; (2)

X
n2A

xsn;t = wst 8 s 2 S; t 2 T; (3)

�sn;t = rsn;t�1x
s
n;t�1 8 s 2 S; t 2 T; n 2 A; (4)

xsn;t = �sn;t + csn;t(1� 
n;t)� ysn;t
8 s 2 S; t 2 T; n 2 A; n 6= 1; (5)

xs1;t = �s1;t +
X

n2A;n6=1

ysn;t(1� 
n;t)�
X

n2A;n 6=1

csn;t;

8 s 2 S; t 2 T; (6)

�X
n2A

xsn;t
wst

ln
xsn;t
wst
�et 8 s2S; t 2T; n 2A: (7)

The set of parameters and decision variables used in
the mathematical model of the MPPO is de�ned as
follows:
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Parameters
rsn;t = 1 + lsn;t Where lsn;t is the rate of return on asset

n in time period t under scenario s
w0 Initial wealth at time 0

n;t Transaction costs incurred in

rebalancing risky asset n at the
beginning of time period t

et Minimum limit for diversi�cation
constraint at time t

Decision variables
xsn;t Amount of money for asset n in

time period t under scenario s after
rebalancing

�sn;t Amount of money in asset n at the
end of period t under scenario s before
rebalancing

wst Wealth at the beginning of time period
t under scenario s

csn;t Amount of asset n purchased for
rebalancing at time t under scenario s

ysn;t Amount of asset n sold for rebalancing
in time period t under scenario s

The objective function of Eq. (1) is in the form of mean
variance. In this function, Means(w� ) is the mean and
Vars(w� ) is the variance of the total wealth across all
scenarios in the �nal period, namely � . Parameter �
indicates the relative signi�cance of mean compared
to the variance component. There are other objective
functions such as mean variance skewness and Von
Neumann-Morgenstern expected utility of wealth that
can also be used.

Eq. (2) states that total assets of the investor
in time 0 are equal to the wealth at the beginning.
Eq. (3) guarantees that the total assets of investor in
time t are equal to the wealth at the beginning of time
period t under scenario s. Eq. (4) updates the wealth
accumulated at the end of period t under scenario s for
each asset n before rebalancing. Eq. (5) depicts the 
ow
balance for all assets in each time period and scenario.
Eq. (6) calculates the amount of money invested in
cash in time period t under scenario s after rebalancing.
Finally, Relation (7) represents the entropy constraints
used to diversify the portfolio.

4. Scenario generation using Vector
Auto-Regression (VAR) model

Uncertainty in MPPO problem is modeled by a sce-
nario tree. The important parameter that should
be estimated for the next periods is the return rate
on risky assets. There are two general methods for
modeling future asset returns [37]. The �rst one is
based on the economic parameters including interest
rate, in
ation, and market index. This method is

called rational expectations and employs conceptual
macroeconomic models. For example, market index
can be used to generate scenario for the next stock re-
turn [30]. The second method, which is called adaptive
expectations, depends only on the historical data of the
explanatory variables. This paper does not focus on
the evaluation of these methods. Considering the fact
that modeling future events based on macroeconomic
models is di�cult, the method employed in this paper
is based on the second approach.

A VAR model is used to construct scenario tree.
Let S represent the scenario set that is de�ned by
s 2 S := f1; 2; � � � ; Sg and each scenario have a
probability that is denoted by �s. Scenario generation
can have di�erent models. For instance, a scenario may
be generated by a binary tree that bifurcates in two
branches from each node. The tree that is used in our
model includes di�erent paths, as depicted in Figure 1,
with 6 scenarios and 6 periods.

The general equation of the VAR model is as
follows:

rt = H + E1rt�1 + E2rt�2 + � � �+ Eqrt�q + kt: (8)

We have:

E(rtjft�1)=H+E1rt�1+E2rt�2+� � �+Eqrt�q; (9)

in which rt is the vector of rate of returns on the
risky asset group. kt is the vector of random distur-
bances with zero mean and a known variance, which is
distributed independently in the time horizon. Also,
q is the number of lags used in the model. Fur-
thermore, E1; � � � ; Eq are time-independent constant
matrices predicted through statistical methods such as
maximum likelihood estimation and H is the vector of
intercepts from auto-regression. Rates of the return
on risky assets such as stocks and bonds are modeled
based on past returns. Residuals play the main role in
modeling the rate of return based on past data, because
they are used to model the disturbances of return in
time horizon. VAR models for stock and bond are
estimated using the data from 2001 to 2013 obtained
from Yahoo Finance as:

Figure 1. Scenario generation for 6 periods and 6 paths.
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r2;t =0:01133 + 0:1015rs2;t�1 � 0:25137rs2;t�2

+ 0:74185rs3;t�1 + 0:35271rs3;t�2 + zst ; (10)

rs3;t =0:12897 + 0:27529rs3;t�1 � 0:76651rs3;t�2

+ 0:06076rs2;t�1 + 0:17099rs2;t�2 + ust ; (11)

where rs2;t is the rate of stock return and rs3;t is the rate
of bond return under scenario s. Rate of cash return for
all of the periods is constant and equal to 0.12, and the
models are run for 4 and 7 periods. The autocorrelation
of residuals is checked for the assumption of the model.
The �rst lag coe�cients are statistically signi�cant at
the level of 10%. Uncertainty is characterized by zst
for stock and ust for bond. These random numbers
are generated using a normal distribution, since the
distribution of the residuals is normal. Eqs. (10) and
(11) are used in scenario generation with 2, 5, 10, 20,
and 50 paths for 4 and 7 periods. Each path from
T = 0 to T = � represents a scenario. Tables 1 and 2
show some realization of the scenarios generated by the
VAR model, speci�cally the rates of return on two risky
assets under 10 scenarios and 7 periods.

5. An upper bound for the optimal value of
the mean variance of the MPPO problem

The purpose of this section is to provide a method

to obtain an upper bound for the optimal value of
the mean variance (objective function) in the MPPO
problem. The idea for the proposed upper bound
method relies on the concept of surrogate constraints.
One way to relax tight constraints is to integrate them
into a set of constraints that are weaker. The result is a
linear programming problem that is called the relaxed
problem with surrogate/substitute constraints.

Starting with Eqs. (2)-(5) and summing up all
scenarios, then dividing by the number of scenarios
(i.e., jSj), we have:X

s

X
n

xsn;t=jSj = w0 8 t; (12)

X
s

X
n

xsn;t=jSj =
X
s

wst =jSj 8 t; (13)

X
s

xsn;t=jSj =
X
s

rsn;t�1x
s
n;t�1=jSj

+
X
s

csn;t(1�
sn;t)=jSj�
X
s

ysn;t=jSj

8 n; t: (14)

Let us de�ne the following equalities:X
s

xsn;0=jSj = �xn;0;
X
s

csn;t=jSj = �cn;t;

Table 1. Sample scenarios for the stock rate of return (10 scenarios, 7 periods).

Scenario
1 2 3 4 5 6 7 8 9 10

P
er

io
d

2013 1.322 1.322 1.322 1.322 1.322 1.322 1.322 1.322 1.322 1.322
2014 1.078 0.991 1.060 1.028 1.101 1.061 1.076 1.033 0.989 1.124
2015 1.037 1.012 1.227 1.218 1.085 1.115 1.016 1.160 1.186 1.119
2016 1.145 1.273 1.190 1.249 1.235 1.262 1.273 1.197 1.216 1.211
2017 1.105 1.266 0.997 1.054 1.150 1.155 1.222 1.053 1.187 1.089
2018 1.131 1.193 1.100 1.141 1.063 1.107 1.191 1.117 1.198 1.055
2019 1.254 1.182 1.258 1.305 1.288 1.087 1.107 1.274 1.085 1.270

Table 2. Sample scenarios for the bond rate of return (10 scenarios, 7 periods).

Scenario
1 2 3 4 5 6 7 8 9 10

P
er

io
d

2013 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909
2014 1.162 1.140 1.188 1.193 1.173 1.181 1.139 1.174 1.146 1.131
2015 1.113 1.157 1.145 1.142 1.132 1.133 1.170 1.151 1.121 1.188
2016 1.010 1.019 0.963 0.973 0.987 1.023 1.015 0.976 1.050 1.004
2017 1.053 1.094 1.073 1.061 1.058 1.067 1.066 1.077 1.059 1.035
2018 1.161 1.077 1.167 1.158 1.147 1.101 1.118 1.148 1.106 1.100
2019 1.088 1.061 1.072 1.058 1.069 1.093 1.075 1.033 1.080 1.119
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X
s

xsn;t=jSj = �xn;t;
X
s

wst =jSj = �wt;X
s

ysn;t=jSj = �yn;t:

As a result, we can rewrite Eqs. (12)-(14) as follows:X
n

�xn;0 = w0; (15)

X
n

�xn;t = wt 8 t; (16)

�xn;t =
X
s

rsn;t�1x
s
n;t�1=jSj+ �cn;t(1� 
n;t)� �yn;t

8 n; t: (17)

Lemma 1. Given
P
s
rsn;t�1xsn;t�1=jSj = �rn;t�1, the

following inequality is valid.X
s

rsn;t�1x
s
n;t�1=jSj �

q
�r2
n;t�1

q
�x2
n;t�1:

Proof. Based on the Cauchy-Schwarz inequality, we
have

P
i
xiyi � p

x2
i

p
y2
i . Starting from the �rst

expression in the right side of Eq. (17), we have:X
s

rsn;t�1x
s
n;t�1 �

sX
s

(r2
n;t�1)2

sX
s

(x2
n;t�1)2

)X
s

rsn;t�1x
s
n;t�1=jSj

�
sX

s

(r2
n;t�1)2=jSj

sX
s

(x2
n;t�1)2=jSj

�
q
r2
n;t�1

q
x2
n;t�1: (18)

Lemma 2.q
r2
n;t�1

q
x2
n;t�1 �

s�
1 +
jSj2

9

�
�rn;t�1�xn;t�1:

Proof. It has been proved by Jacobson [38] that for
xi > 0, the inequality Var(xi) � x2

max=9 holds. Such an
inequality ensures that x2 � �x2+x2

max=9. Furthermore,
it has been accepted that xmax � N �x, where N is the
number of observations. Therefore, we can write:

x2
n;t�1 � �x2

n;t�1 +
jSj2�x2

n;t�1

9

and:

r2
n;t�1 � �r2

n;t�1 +
jSj2�r2

n;t�1

9
:

Now, the required result is attainable.
Thus, the �nal form of Eq. (17) is reduced to

Inequality (19) as follows:

�xn;t �
s�

1 +
jSj2

9

�
�rn;t�1�xn;t�1 + �cn;t(1� 
n;t)

� �yn;t 8 t; n; n 6= 1: (19)

In a similar way, we can treat Eq. (6) to obtain the
following.

�x1;t �
s�

1 +
jSj2

9

�
�r1;t�1�x1;t�1

+
X
n;n 6=1

�yn;t(1� 
n;t)� X
n;n 6=1

�cn;t 8 t: (20)

Now, we obtain the objective function. Given that
�w� = Means(ws� ) is an upper bound for the objective
function, the optimal value of the objective function of
the following linear programming problem (Eqs. (21)-
(25)) gives an upper bound for the optimal value of the
mean variance function.

max z = � �w� ; (21)X
n

�xn;0 = w0; (22)

X
n

�xn;t = wt 8 t; (23)

�xn;t �
s�

1 +
jSj2

9

�
�rn;t�1�xn;t�1 + �cn;t(1� 
n;t)

� �yn;t 8 t; n 6= 1; (24)

�xn;t �
s�

1 +
jSj2

9

�
�rn;t�1�xn;t�1

+
X
n6=1

�yn;t(1� 
n;t)�X
n6=1

�cn;t 8 t: (25)

6. A League Championship Algorithm (LCA)
applied to the MPPO problem

This section is devoted to introducing the LCA along
with its application to the problem of MPPO. There
are some features of LCA that make it an appropriate
choice for the problem in this study. First, from a
theoretical perspective, the concept of LCA is easily
understandable and implementable. The algorithm
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also has few parameters, which is a feature that make
its use more desirable. On the other hand, from
the practical perspective, the constrained version of
LCA has been evaluated in terms of its performance
for 24 benchmark problems in [39]. Seven problems
were quadratic and LCA demonstrated outstanding
performance compared to other algorithms. Therefore,
the performance of this newly proposed algorithm is
worth investigating for the MPPO problem, which is
of quadratic nature.

6.1. LCA
The LCA is a population-based global optimization
algorithm proposed by Husseinzadeh Kashan [39-43],
which was inspired by sports leagues. In this section, a
brief introduction to LCA is presented along with the
required adjustments to make it suitable for solving the
MPPO problem.

The mapping between LCA and optimization
problem elements is as follows: Weeks represent it-
erations, the playing strength is expressed as �tness
value, team formation represents solution, changes in
its formation are like the generation of a new solution,
and the number of seasons represents the stopping
condition.

6.1.1. Rules of LCA
There are some idealized rules of the regular champi-
onship environment to imagine the arti�cial champi-
onship modeled by LCA. These rules are:

1. The result of a match is not predictable;
2. A team with higher playing strength has more

likelihood of winning against the other team;
3. From the viewpoints of both teams, the probability

that they would beat the rival is assumed the same;
4. The result of a match is only win or loss;
5. Teams only concentrate on the next match instead

of all future matches;
6. Any weakness in one team is the lack of a particular

strength in that team.

In LCA, team formation (solution) can be repre-
sented by a vector of size 1 � n (n is the number of
variables) of real numbers. Each element is related to
one of the players and shows the value of the variable
of the problem. Let f(X = (x1; x2; � � � ; xn)) be an n-
variable numerical function that should be minimized
over the decision space speci�ed as a subset of Rn.
Team formation (a potential solution) for team i in
week t can be represented by Xt

i = (xti1; xti2; � � � ; xtin)
with f(Xt

i ) stating the value of the function resulting
from Xt

i .

6.1.2. Creating the league schedule
The �rst step is to schedule the games in each season.
In this paper, a single round-robin schedule is used. A

Figure 2. A sample single round-robin scheduling
algorithm.

sample of league scheduling is depicted in Figure 2 for
a sports league with 8 teams. In the �rst week (a), 1
plays against 8, 2 plays against 7, and so on. In the next
weeks (b), one team is �xed and other teams are rotated
clockwise to make a complete schedule. Assuming that
a sports league has L teams, the single round-robin
tournament needs L�(L�1)=2 matches, where (L�1)
is the number of matches, and L=2 matches will be held
in parallel. For a sports league with S seasons, there
are S � (L� 1) weeks of matches.

6.1.3. Deciding the outcome of a match
To specify the winner and the loser, tournament selec-
tion can be used. Based on the idealized rule 1, we may
write:

f(Xt
i )� f�

f(Xt
j)� f� =

ptj
pti
; (26)

where Xt
i (Xt

j) is the formation of team i (team j) in
week t, f(Xt

i )(f(Xt
j)) is the playing strength of team

i (team j), pti(ptj) is the probability that team i (team
j) would beat team j (team i) in week t, and f� is a
bound for the optimal value of the objective function.

Additionally, from idealized rule 3, we have:

pti + ptj = 1: (27)

From Eqs. (26) and (27), we obtain:

pti =
f(Xt

j)� f�
f(Xt

j) + f(Xt
i )� 2f� : (28)

In order to decide the winner and the loser, a uniformly
distributed random number in [0, 1] is generated. Two
cases can occur:

1. If this random number is less than or equal to pti,
team i wins and team j loses;

2. If this random number is greater than pti, team j
wins and team i loses.

6.1.4. Setting up new team formation
In each iteration, there should be a mechanism to
move a set of solutions (population) by changing the
con�guration of each solution (team). Assessment of
weaknesses and strengths of a team is the �rst step for
setting up new formation. Furthermore, changes in the
formation of each team are based on the result of the
team which will be encountered in week t+1. This task
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is conducted based on SWOT analysis. Let us de�ne
the following three indices:
l The team that will play against team i

(i = 1; � � � ; L) in week t+ 1
j The team that played against team i

(i = 1; � � � ; L) in week t
k The team that played against team l

in week t
The SWOT analysis is conducted according to

the SWOT matrix presented in Figure 3. In order to
determine the formation of team i for playing against
team l, if both i and l have won their previous matches,
the S/T strategy (the �rst column in Figure 3) for team
i is to focus on its own strengths (or weaknesses of j)
and strengths of l (or weaknesses of k). Other cases
can be interpreted similarly.

Based on the strategy adopted, we may write the
equation for updating the solution. Xt

k �Xt
i is de�ned

as the di�erence between the arrangements of team i
and team k focusing on the strengths of team k, while
Xt
i �Xt

k represents focusing on the weaknesses of team
k. Knowing that each team, such as i, plays based
on its best formation Bti = (bti1; bti2; � � � ; btin) and being
aware of the results of match analysis, we may write 4
strategies for new team formation:

1. If i has won and l has also won, then the new
formation is generated by:

xt+1
id =btid + ytid(w1r1id(xtid � xtkd)

+ w1r2id(xtid � xtjd)) 8 d = 1; � � � ; n:
(29)

2. If i has won and l has lost, then the new formation
is generated by:

xt+1
id =btid + ytid(w2r1id(xtkd � xtid)

+ w1r2id(xtid � xtjd)) 8 d = 1; � � � ; n:
(30)

3. If i has lost and l has won, then the new formation
is generated by:

xt+1
id =btid + ytid(w1r1id(xtid � xtkd)

+ w2r2id(xtjd � xtid)) 8 d = 1; � � � ; n:
(31)

4. If i has lost and l has also lost, then the new
formation is generated by:

xt+1
id =btid + ytid(w2r1id(xtkd � xtid)

+ w2r2id(xtjd � xtid)) 8 d = 1; � � � ; n:
(32)

In the above equations, d is the dimension index;
r1id and r2id are uniform random numbers in [0,1];
and w1 and w2 are coe�cients used to scale the
contributions of \retreat" and \approach" components,
respectively. Also, in Eqs. (29) to (32), ytid is a binary
change variable, which indicates whether xt+1

id di�ers
from btid or not. Only ytid = 1 allows for di�erence.

Based on the above-mentioned concepts, the

owchart of LCA is depicted in Figure 4. The
�rst step is to initialize control parameters and a
random population of individuals (teams). Then, a
league schedule is generated based on single round-
robin algorithm. The winning and losing teams of
each match are determined through the tournament
selection presented in Section 6.1.3. The algorithm
then moves to the next set of solutions by using the
match analysis of SWOT matrix. This procedure is
continued until a stopping criterion is met.

6.2. Application of LCA to MPPO problem
When LCA is used to solve the mathematical model
(MPPO model), the objective function must be de�ned
and solution represented �rst. In this study, we
use the classical return-risk function as the objective
function. Due to the uncertain nature of the multi-
period problem, we need to form a scenario tree. After

Figure 3. SWOT matrix for setting up a new formation.
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Figure 4. Flowchart of League Championship Algorithm (LCA).

Figure 5. Solution representation for the Multi-Period Portfolio Optimization (MPPO) problem.

construction of the scenario tree, we will introduce the
parameters required to solve the MPPO model. As
previously mentioned, scenario tree has been used only
for prediction of one parameter, i.e., rate of return on
risky assets (lsn;t). Probabilities of all scenarios ("s) are
assumed to be equal for each problem. For example, if
the MPPO model has 5 scenarios, "s is equal to 0.2 for
each scenario. Additionally, the value of transaction
cost (
n;t) is available directly from the market. With
lsn;t, "s, and 
n;t as parameters of the MPPO problem,
we can apply LCA to �nding a solution that optimizes
the objective function.

6.2.1. Solution representation
To run the algorithm, we introduce a new decision
variable denoted by ksn;t. It is the proportion of asset
wealth invested in the asset after rebalancing under
several scenarios over the planning horizon equal to
xsn;t=wst . This percentage in each node must be one
hundred percent for three used assets in this problem.
If the amount of ksn;t in each node is not equal to

one hundred percent, we must normalize ksn;t through
Eq. (33).

ksn;t = ksn;t=
3X

n=1

ksn;t: (33)

The amounts of purchase and sell are two other
decision variables in the implementation of LCA.
Therefore, three sets of decision variables are used in
each node for each asset and regarding n assets, we
have 3�n decision variables in total in each node.

Accordingly, the solution (team in LCA) is repre-
sented by a vector comprising of three sets of variables:
ksn;t, csn;t, ysn;t, namely the amount of money for asset
n, the amount of asset n purchased, and the amount of
asset n sold, respectively (Figure 5).

The number of nodes in this algorithm is equal
to:

no. of nodes = [(number of periods� 1)

�number of scenarios] + 1;
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and the total number of variables is [9� number of
nodes], which shows problem dimensions.

6.2.2. Introduction to the diversi�cation constraint in
LCA by penalty function

LCA was originally introduced for solving uncon-
strained continuous problems. This algorithm can
be used for solving portfolio diversi�cation without
constraints by adopting a solution representation that
takes account of other restrictions. However, when
diversi�cation constraint (7) is applied, we need a
technique to overcome the limitations of LCA as well.
For this purpose, the penalty function method is used
in this paper.

The search space of the constrained optimization
problems consists of two types of points: feasible and
infeasible. Feasible points satisfy all constraints, while
in infeasible points, at least one of the constraints
is violated. Penalty function technique solves the
constrained optimization problem through a series of
optimization problems without constraints. If the
penalty is too large, minimizing algorithms usually fall
into the trap of local minimum. On the other hand,
if the penalty is too small, the algorithm can hardly
detect feasible optimal solutions. Penalty functions
commonly fall into two main groups: static and
dynamic. Static penalty functions use �xed penalty
values, while dynamic penalty functions adjust penalty
values in the course of search. The objective function
with penalty function (F (x)) is de�ned as follows:

F (x) = f(x) + h(k)H(x); x 2 S � Rn; (34)

where f(x) is the objective function of the problem,
h(k) is the penalty value adjusted dynamically, k is
the current iteration of the algorithm, and H(x) is a
penalty function that can be de�ned as follows:

H(x) =
mX
i=1

�(qi(x))qi(x)
(qi(x)); (35)

where qi(x) = maxf0; gi(x)g, i = 1; � � � ;m is a function
of constraints violation; �(qi(x)) is periodic assignment
function; 
(qi(x)) is the power of penalty function;
gi(x) is the amount of violation in the ith constraint
and h(:), �(:), and 
(:) are dependent functions.

7. Computational experiments and results

In this section, the values of the parameter used
for solving the problem are presented. Numerical
experiments and their analyses are also presented for
demonstrating e�ciency of the proposed algorithm.

7.1. Parameter setting
Prior to the implementation of the LCA and optimiza-
tion solver, historical data for the rates of return on

risky assets have been extracted from 2001 to 2013
in yearly intervals. As already stated, S&P 500 index
and 10-year T. bond are representatives of stock and
bond. The other asset is called cash. Thus, we have
three assets in total in this study. Also, the tested
periods are 4 and 7 and the tested scenarios are 2, 5,
10, 20, and 50. Moreover, the rate of return on risky
assets is predicted by VAR model and for cash, it is
considered constant and equal to 0.12. Lower bound of
diversi�cation constraint is equal to ln(0; n) and it is
considered equal to 0.6 in this study. Transaction cost
is equal to 0.005 for stock and 0.001 for bond. These
values are �xed for stock and bond in all periods and
initial investment is intended to be equal to 10$.

Furthermore, in LCA, the league size is set equal
to 16, probability of success equal to 0.001, and the
number of iterations for each problem equal to 12000.
w1 and w2 are also generated every time randomly
between [0, 2]. These values are chosen according to a
pilot study of various instances. The parameter values
that result in the best results have been selected for
running the numerical experiments.

7.2. Numerical experiments
The value of rsn;t has been estimated by using VAR
model. For the sake of brevity, we only report in
Tables 1 and 2 the results of rsn;t for 10 scenarios and 7
periods. LCA and LINGO/Quadratic Solver have been
run to maximize the objective functions corresponding
to a series of �s for each multi-period problem (QS
will be used hereafter instead of LINGO/Quadratic
Solver for the sake of brevity). In order to compare
the performances of LCA and QS in statistical terms,
Wilcoxon signed rank test has been conducted with
0.05 level of signi�cance. It is worth noting that the
output of QS is the same for 10 runs. The results
reported in the column \p-value" show the probability
that the medians of the two paired samples (objective
values of LCA and QS) are equal. Entries in which the
di�erence is signi�cant are underlined.

7.2.1. The MPPO problem without diversi�cation
constraint

Tables 3-5 contain the results for problem sets with
� = 0:1, 0.5, and 0.9 each having 10 problem instances.
The �rst section in Tables 3-5 reports the problem
number and the numbers of periods and scenarios.
The second part reports the objective function and
run time of QS for each problem instance. The third
section reports the best, the worst, and the average
objective function values obtained as well as their
standard deviations; also, in this section, the average
run times of the LCA algorithm for the problems with
di�erent periods and scenarios are presented without
considering the diversi�cation constraint. It should be
noted that LCA has been executed 10 times for each
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Table 3. Results for the solutions of League Championship Algorithm (LCA) and LINGO/Quadratic Solver (QS) without
diversi�cation constraint (� = 0:1).

Problem
instance

Period Scenario

QS LCA

p-value
Objective Time

(s)
Best Worst Average St.

dev.

Avg.
time
(s)

1 4 2 1.43887 0 1.74576 1.74576 1.74576 0 102 p<0:001
2 4 5 1.44721 0 1.75326 1.75323 1.75326 0.00002 159 p<0:001
3 4 10 1.45778 0 1.76002 1.76002 1.76002 0 291 p<0:001
4 4 20 1.46445 0 1.72431 1.72372 1.72401 0.00041 495 0:001<p<0:05
5 4 50 1.42680 0 1.70120 1.67211 1.68666 0.02057 1235 0:001<p<0:05
6 7 2 2.13763 0 2.70884 2.70881 2.70884 0.00002 159 p<0:001
7 7 5 2.14596 0 2.51742 2.51742 2.51742 0 275 p<0:001
8 7 10 2.15985 0 2.53098 2.53008 2.53053 0.00063 493 p<0:001
9 7 20 2.09303 0 2.58762 2.56560 2.57661 0.01557 934 p<0:001
10 7 50 1.99217 1 2.20304 2.19539 2.19922 0.00540 2299 0:02<p<0:05

Table 4. Results for the solutions of League Championship Algorithm (LCA) and LINGO/Quadratic Solver (QS) without
diversi�cation constraint (� = 0:5).

Problem
instance

Period Scenario

QS LCA

p-value
Objective Time

(s)
Best Worst Average St.

dev.

Avg.
time
(s)

1 4 2 7.305492 0 8.78439 8.78439 8.78439 0 102 0:001<p<0:05
2 4 5 7.367428 0 8.91260 8.91260 8.91260 0 164 0:001<p<0:05
3 4 10 7.456014 0 8.91795 8.91791 8.91793 0.00002 280 0:001<p<0:05
4 4 20 7.499922 0 8.79990 8.79824 8.79907 0.00117 503 0:001<p<0:05
5 4 50 7.488729 0 8.78739 8.76413 8.77576 0.01644 1169 0:001<p<0:05
6 7 2 10.79928 0 13.59977 13.59977 13.59977 0 152 p<0:001
7 7 5 11.11813 0 12.94266 12.94123 12.94194 0.00101 345 p<0:001
8 7 10 11.33397 0 13.10980 13.10856 13.10918 0.00087 484 p<0:001
9 7 20 11.20750 0 14.09058 13.72032 13.90545 0.26181 1114 p<0:001
10 7 50 10.95789 1 12.53980 12.47203 12.50591 0.04792 2298 p<0:001

Table 5. Results for the solutions of League Championship Algorithm (LCA) and LINGO/Quadratic Solver (QS) without
diversi�cation constraint (� = 0:9).

Problem
instance

Period Scenario

QS LCA

p-value
Objective Time

(s)
Best Worst Average St.

dev.

Avg.
time
(s)

1 4 2 13.58976 0 15.91781 15.91781 15.91781 0 91 0:001<p<0:05
2 4 5 13.56771 0 16.17535 16.17535 16.17535 0 171 0:001<p<0:05
3 4 10 14.04425 0 16.26282 16.26227 16.26255 0.00038 285 0:001<p<0:05
4 4 20 14.05894 0 16.02792 16.02672 16.02732 0.00084 520 0:001<p<0:05
5 4 50 13.97634 0 15.96406 15.94856 15.95631 0.01096 1214 0:001<p<0:05
6 7 2 20.76308 0 25.37959 25.37959 25.37959 0 147 p<0:001
7 7 5 21.20740 0 25.27803 25.27791 25.27797 0.00008 292 p<0:001
8 7 10 21.67977 0 25.27948 25.25263 25.56605 0.01898 511 p<0:001
9 7 20 21.48841 0 26.56687 26.48416 26.52551 0.05848 929 p<0:001
10 7 50 21.50172 1 23.99405 23.86318 23.92862 0.09253 2292 0:001<p<0:05
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problem instance to obtain the average performance in
terms of the objective function and run time.

By means of Tables 3-5, the QS and LCA results
can be compared in terms of the objective function
obtained and the run time. Speci�cally, it can be
observed that the best, the worst, and the average
objective function values obtained by the LCA are
better than those by the QS in all problem instances.
This shows the superior performance of LCA. However,
the run time of QS, which is less than one second, is
considerably low in comparison with the run time of
LCA, which ranges between 1.5 and 39 minutes. The
column containing LCA times also shows that in a
�xed number of periods, the run time is sensitive to
the number of scenarios. The p-values for instances

show that the di�erence is statistically signi�cant most
of the times (29 instances out of 30 for all values of �).

7.3. Analysis of the results of LCA and QS
In this section, the gap between the results of QS and
LCA is analyzed using Eq. (36):

Gap =
obj. value of LCA� obj. value of QS

obj. value of LCA
: (36)

7.3.1. The MPPO problem with diversi�cation
constraint

Tables 6-8 report the results for the MMPO prob-
lems by considering the diversi�cation constraint as
described previously. As can be seen in all tables,
results of LCA are better than those of QS in terms of

Table 6. Results for the solutions of League Championship Algorithm (LCA) and LINGO/Quadratic Solver (QS) with
diversi�cation constraint (� = 0:1).

Problem
instance

Period Scenario

QS LCA

p-valueObjective Time
(s)

Best Worst Average St.
dev.

Avg.
time
(s)

1 4 2 1.400343 0 1.62622 1.62617 1.62619 0.00003 122 p<0:001
2 4 5 1.408662 0 1.62981 1.62960 1.62971 0.00014 203 p<0:001
3 4 10 1.416495 0 1.62291 1.62237 1.62264 0.00038 349 p<0:001
4 4 20 1.419273 5 1.59788 1.59347 1.59568 0.00311 465 0:001<p<0:05
5 4 50 1.392164 14 1.56867 1.56821 1.56844 0.00032 1342 0:001<p<0:05
6 7 2 1.998293 0 2.3705 2.37037 2.37044 0.00009 142 p<0:001
7 7 5 2.006627 0 2.22721 2.22280 2.22500 0.00311 270 p<0:001
8 7 10 2.020516 0 2.23442 2.21470 2.22456 0.01394 466 p<0:001
9 7 20 1.966331 4 2.28229 2.27927 2.228078 0.00213 911 p<0:001
10 7 50 1.883260 29 2.07195 2.05836 2.06516 0.00961 2201 0:02<p<0:05

Table 7. Results for the solutions of League Championship Algorithm (LCA) and LINGO/Quadratic Solver (QS) with
diversi�cation constraint (� = 0:5).

Problem
instance

Period Scenario

QS LCA

p-valueObjective Time
(s)

Best Worst Average St.
dev.

Avg.
time
(s)

1 4 2 7.112826 0 8.14475 8.14404 8.14439 0.00050 120 0:001<p<0:05
2 4 5 7.155470 0 8.18213 8.17792 8.18003 0.00297 206 0:001<p<0:05
3 4 10 7.230205 1 8.19920 8.19749 8.19835 0.00120 340 0:001<p<0:05
4 4 20 7.257485 2 8.13284 8.10920 8.120102 0.01671 452 0:001<p<0:05
5 4 50 7.242559 11 8.09869 8.08431 8.09150 0.01016 1420 0:001<p<0:05
6 7 2 10.10258 0 11.91485 11.90585 11.91035 0.00636 136 0:001<p<0:05
7 7 5 10.38395 0 11.51199 11.50032 11.50616 0.00825 271 0:001<p<0:05
8 7 10 10.54530 0 11.56264 11.62272 11.59268 0.04248 493 0:001<p<0:05
9 7 20 10.42279 4 12.13665 12.06563 12.10114 0.05021 909 p<0:001
10 7 50 10.26006 79 11.34594 11.34288 11.34441 0.00216 2210 0:001<p<0:05
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Table 8. Results for the solutions of League Championship Algorithm (LCA) and LINGO/Quadratic Solver (QS) with
diversi�cation constraint (� = 0:9).

Problem
instance

Period Scenario

QS LCA

p-value
Objective Time

(s)
Best Worst Average St.

dev.

Avg.
time
(s)

1 4 2 13.10515 0 14.6628 14.6618 14.66230 0.00070 121 0:001<p<0:05
2 4 5 13.07473 0 14.78895 14.78712 14.78803 0.00129 205 0:001<p<0:05
3 4 10 13.47653 0 14.93468 14.93047 14.93257 0.00297 333 0:001<p<0:05
4 4 20 13.48377 1 14.789 14.77685 14.78293 0.00859 466 0:001<p<0:05
5 4 50 13.39829 9 14.71673 14.71132 14.71403 0.00383 1450 0:001<p<0:05
6 7 2 19.17639 0 22.34525 22.34504 22.34515 0.00015 138 p<0:001
7 7 5 19.50183 0 22.07479 22.05991 22.06735 0.01052 285 p<0:001
8 7 10 19.85209 0 22.08005 22.05852 22.06929 0.01522 494 p<0:001
9 7 20 19.66106 3 22.81577 22.78076 22.79827 0.02475 897 p<0:001
10 7 50 19.67796 29 21.54311 21.53436 21.53874 0.00618 2240 p<0:001

Figure 6. Gap of solutions of League Championship
Algorithm (LCA) and LINGO/Quadratic Solver (QS)
output without diversi�cation constraint for 4 periods.

objective function values obtained for all periods and
scenarios. The run time of QS is less than 1.5 minutes
while the run time of LCA ranges between 2 and 38
minutes. As expected, the run time increases when
the number of scenarios increases for a �xed number of
periods. In terms of the objective function values, the
di�erence between LCA and QS is signi�cant in most of
the instances (29 instances out of 30 for all values of �).

Due to the nonlinearities in the MPPO problem,
the solutions to the original problem with and without
the diversi�cation constraint (Shannon entropy) are
local. As a result, the solution to the problem that is
solved by LCA meta-heuristic algorithm may possibly
be better than the result of QS. Figures 6 and 7
show the gap between the results of QS and LCA
without diversi�cation constraint for 4-period and 7-

Figure 7. Gap of solutions of League Championship
Algorithm (LCA) and LINGO/Quadratic Solver (QS)
output without diversi�cation constraint for 7 periods.

period cases, respectively, under 2, 5, 10, 20, and 50
scenarios. For the case of 4 periods (Figure 6), gaps
vary between 12 and 18 percent and there are similar
trends for di�erent values of �.

For the case of 7 periods (Figure 7), the gap
is relatively wider and between 9 and 21 percent for
di�erent scenarios and �s.

Moreover, Figures 8 and 9 report similar results
for the problem with diversi�cation constraint. Fig-
ure 8 shows the gap for the 4-period case, which is
between 8 to 14 percent for all scenarios and �s. The
gap for the 7-period case is between 8 to 16 percent, as
Figure 9 demonstrates.

As Figures 7-9 demonstrate, all of the results of
LCA are better than the output of QS in terms of the
objective function values (between 8 to 20 percent).



842 A. Husseinzadeh Kashan et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 829{845

Figure 8. Gap of solutions of League Championship
Algorithm (LCA) and LINGO/Quadratic Solver (QS)
output with diversi�cation constraint for 4 periods.

Figure 9. Gap of solutions of League Championship
Algorithm (LCA) and LINGO/Quadratic Solver (QS)
output with diversi�cation constraint for 7 periods.

In order to observe the behavior of LCA in both
cases of with and without diversi�cation constraint,
the convergence diagram is illustrated in Figure 10 for
instance 1 with � = 0:9 in 1000 iterations.

8. Conclusions and future research

In this paper, Vector Auto-Regression (VAR) has been
used to model the return on risky assets. VAR works
based on historical data. Alternatively, other methods
use economic indicators such as in
ation, interest rates,
and market indices. It is important to note that
using economic indicators depends on the knowledge
about the future of the economy and economic variables
under study. As we know, the future of the market is
complex to predict due to the impact of macroeconomic

Figure 10. Convergence diagrams for instance 1: (a)
Without and (b) with diversi�cation constraint.

variables. Therefore, based on historical data from
2000 to 2013 for stocks and bonds, return on risky
assets was modeled. Scenarios made for the stocks and
bonds were 2, 5, 10, 20, and 50 with periods of 4 and
7 years. After scenario generation, the upper-bound
model was developed, which had a single scenario
and was convenient to solve in comparison with the
mathematical model of the problem. MPPO model
was solved using LINGO/Quadratic Solver (QS) and
a new meta-heuristic called LCA. Applying this algo-
rithm to multi-period optimization problem was due to
nonlinear and complicated nature of the problem. The
results of LCA for 4 and 7 periods and all scenarios were
better than the output of QS (between 8 to 20 percent)
in terms of the objective function values obtained.
The di�erence in the objective functions obtained was
statistically signi�cant in most of the instances. This
proved the e�ectiveness of the LCA proposed for the
problem.

The current research sought to maximize mean
variance objective function. There are other objective
functions such as mean variance skewness and Von
Neumann-Morgenstern expected utility of wealth that
can be optimized instead. Additionally, the e�ciency
of other recently proposed meta-heuristic algorithms
such as OIO [44,45] may be investigated in the future



A. Husseinzadeh Kashan et al./Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 829{845 843

research. The extension of our model to the continuous
time case is also worth analyzing, considering the fact
that many investors change their portfolios continu-
ously rather than at discrete points in time. Taking
account of liquidity, which is one of the main concerns
for investors in making a portfolio decision, is another
issue to investigate.
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