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Abstract. It is generally agreed that decomposing a project into several independent
subprojects can help to have a successful and e�ective project management. On the other
hand, this may lead to ine�cient use of some renewable resources and increase in the total
cost and time of project. This study deals with the bene�ts of horizontal partnering among
contractors assigned to subprojects through sharing renewable resources and proposes a
model based on cooperative game theory for the problem. The improvement of the Net
Present Value (NPV) of the project was considered as the bene�t of cooperation among
contractors. Therefore, a Mixed-Integer Non-Linear Programming (MINLP) model was
developed for the resource constrained project scheduling with the objective function of
maximizing the NPV of each coalition. Seven widely used cooperative game theory solution
methods were used to solve the NPV allocation problem and then, stability criteria were
utilized to �nd the best allocation scheme. An example is presented in the paper to more
comprehensively illustrate the problem.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Many stakeholders are involved in the implementation
of construction projects and it is generally accepted
that there is a strong link between project success and
e�ective relationship between stakeholders [1]. The
bene�ts of this relationship or collaboration will ulti-
mately lead to greater satisfaction of the stakeholders.
Contractors at di�erent levels of a construction project
are among these stakeholders. They carry out a large
portion of the work done in a project and may account
for up to 90% of its total value [2{4].

In recent years, cooperation between project
stakeholders, including the main contractors and
subcontractors, has been considered by various re-
searchers [5{7]. Phua and Rowlinson [8] perceived
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cooperation as a vital element of construction project
success. Chan et al. [9] evaluated the critical suc-
cess factors such as e�cient cooperation, e�ective
communication, and mutual trust between contracting
parties for running partnering construction projects.
Hartmann et al. [4], who dealt with the subcontractor
selection process for the main contractors in Singapore,
considered cooperation as one of the important selec-
tion criteria.

One of the problems that occur in cooperation is
how the bene�ts are divided among the parties. Thus,
the use of game theory in such situations that there
is a conict between rational parties is an e�cient
approach. In fact, using game theory, a win-win
solution can be found for all parties or players.

A limited number of studies have been conducted
about the application of game theory to the problem
of interaction between project stakeholders. Perng et
al. [10] studied the formwork subcontractors coopera-
tion by hiring open shop workers in a coalition, rather
than union workers, to earn more pro�t. They used
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Shapley value and nucleolus to divide pro�t among
subcontractors.

Asgari and Afshar [11] used a cooperative game
theory approach to modeling of subcontractors coop-
eration in time. They considered real cost of the
project based on time-cost and time-e�ciency func-
tions and showed that cooperation of subcontractors
could improve total real cost. Finally, the bene�ts of
coalition were distributed using the Shapely value and
nucleolus methods. Barough et al. [12] applied prisoner
dilemma and chicken game to solving the construction
project conicts between the involved parties. Tsai and
chi [13] showed the importance of cooperative learning
for achieving win-win outcomes between two parties.

Joint resource management is one of the areas of
cooperation among subcontractors in the construction
projects. Asgari et al. [14] suggested cooperative game
theory as an e�cient tool for analyzing joint resource
management in construction projects. In their study,
�rst, characteristic functions of subcontractors for all
possible coalitions were determined using a resource-
leveling model. Then, cooperation bene�ts were allo-
cated to the subcontractors using various cooperative
game theoretic solution methods. Finally, plurality rule
and propensity to disrupt methods were used to select
the most acceptable and stable allocation.

Samsami and Tavakolan [15] divided partner-
ship of subcontractors into two directions, namely
horizontal and vertical. They de�ned a model to
build and analyze joint resource management as a
horizontal partnership based on game theory. The
objective function of their model was to minimize
the net cost consisting of the cost of hiring a �xed
number of resources during the project and the cost
of repair/maintenance. They showed the overall payo�
of increase in coalition and used Shapely value method
to allocate bene�ts of joint resource management.

Previous research has shown that one of the
main restrictions on construction projects a�ecting
project cost and time is limited renewable resources,
such as labor and equipment [16{17]. So far, two
di�erent types of resource-restricted problems have
been considered: resource-smoothing (also known as
resource leveling) problems and resource-constrained
(also known as resource allocation) problems. The
project resource leveling problem has been proposed to
smooth resource usage and reduce resource uctuation
with determined project �nish time, while Resource-
Constrained Project Scheduling Problem (RCPSP)
focuses on optimizing project duration with limited
resources. In this study, the latter is considered and
resource-constrained scheduling is carried out with the
objective function of maximizing Net Present Value
(NPV) of the project.

The rest of this paper is organized as follows. Sec-
tion 2 de�nes the problem in two sub-sections of which

the �rst formulates the e�ect of cooperation among
contractors and the second reviews the mechanisms for
allocation of cooperative gains and the stability criteria
of di�erent allocation schemes. Section 3 is devoted to
solving an example and analysis of the results. Finally,
the conclusions are presented in Section 4.

2. Problem de�nition

This study investigates the bene�ts of cooperation
among contractors assigned to subprojects through
sharing renewable resources. Improvement in the
NPV of the project is considered as the bene�t of
cooperation and the problem is determining the share
of each contractor from this improvement. To solve the
problem, �rst, a coalition-based multi-mode RCPSP
with the objective function of �nding the best NPV
for each coalition among contractors is developed and
then, various solutions of cooperative games with
Transferable Utility (TU-cooperative games) are used
for the distribution of the NPV among contractors in
the grand coalition.

2.1. RCPSP of maximizing the NPV
Over the past decades, RCPSP has been extensively
addressed in numerous studies [18{21]. Whereas the
RCPSP attempts to minimize the total project dura-
tion or makespan, several alternative objectives exist,
such as minimization of the resource idle time, mini-
mization of earliness and tardiness, or maximization of
project NPV [22].

Yang et al. [23] presented an integer program-
ming algorithm for solving the limited-resource project
scheduling problem with the objective of maximizing
project NPV. Vanhoucke et al. [24] studied RCPSP
with discounted cash ows. They assumed that each
activity of the RCPSP had certain resource require-
ments and a known deterministic cash ow. They
developed a depth-�rst branch-and-bound algorithm,
which used a new fast recursive search algorithm for
the max-npv problem. Vanhoucke [25] developed a
scatter search procedure for maximizing the NPV of
a resource-constrained project with �xed activity cash
ow. Khoshjahan et al. [26] considered the RCPSP
with the objective of minimizing the NPV of the
earliness-tardiness penalty costs. They �rst modeled
the problem and then, proposed two meta-heuristics,
namely genetic algorithm and simulated annealing, to
solve it. Leyman and Vanhoucke [27] discussed the
single- and multi-mode Resource-Constrained Project
Scheduling Problems with Discounted Cash ows
(RCPSPDC and MRCPSPDC) and solved the model
with a proposed genetic algorithm metaheuristic.

In this study, maximizing the NPV is taken into
account as the objective function of the scheduling
problem to achieve an assignment of modes to activities
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as well as precedence and resource-feasible starting
times for all activities. In other words, this study
mathematically formulates the model for a Multi-
mode Resource Constrained Project Scheduling Prob-
lem with Discounted Cash ows (MRCPSPDC). In this
problem, it is assumed that:

� Each activity can be performed in several modes
and in each mode, it has a speci�c duration, cash
ow (positive or negative), and amount of renewable
resources;

� Cash ows are assumed to occur upon activity �nish
time;

� The project is decomposed into several subprojects

with due dates under bonus-penalty policies. Each
subproject assigned to a contractor is aimed at
maximizing their own NPV;

� Bonus (penalty) is allotted when the subproject is
�nished before (after) its pre-de�ned due date;

� Contractors can form a coalition and the scheduling
problem of all subprojects performed in the coalition
is an MRCPSPDC model.

The MRCPSPDC model of coalition S 2 2N n �
is developed as follows.

The notations used in the model are summarized
in Table 1. Using the notations, the proposed mathe-
matical model is formulated as:

Table 1. Summary of notations

Indices:
i; j Activity
t; b Time interval
p Resource
l 2 f1; 2; :::; Lig Mode
s 2 f1; 2; :::; 2n � 1g Coalition
k Contractor or sub-project
Sets:
I Set of all activities s 2 f0; 1; :::;mg
R Set of renewable resources = f1; 2; :::; Pg
E Set of all intervals = f1; :::; Tg
N Grand coalition that includes all contractors = f1; 2; :::; ng
Mi Set of all modes of activity i = f1; :::; Lig
Acts Set of activities performed by coalition s = fijAik = 1; k 2 Csg
Cs s-th coalition of contractors (s-th subset of grand coalition N)
Parameters:
m Number of activities
Li Number of modes of activity i
T Time horizon of the project
n Number of contractors

Aik =

8<:1

0

If activity i is performed by contractor k
otherwise

P Number of renewable resources
dil Duration of activity i executed in mode l

predij =

8<:1

0

If activity i is the predecessor of activity j
otherwise

respkt Number of units of renewable resource p available to contractor k in time t
rpil Number of units of renewable resource p required by activity i executed in mode l
cfil Net cash ow associated with activity i in mode l
wk Penalty per time unit of delay of sub-project k
#k Bonus per time unit for early completion of sub-project k
cdk Due date of sub-project k
� Discount rate
Binary variables:

xilt =

8<:1

0

If activity i is performed in mode l and �nished at time t, 8i 2 I, 8l 2Mi, and 8t 2 E
otherwise

yk =

8<:1

0

If sub-project k is �nished after its due date (cdk)
otherwise

Continuous variables:
FTk Makespan or �nish time of sub-project k,8k 2 N
NPVs NPV of coalition s, 8s � N
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MRCPSPDC model:

maxNPVs =
X
k2Cs

� X
i2Acts

LiX
l=1

TX
t=1

cfilxilte��t

� wk(FTk � cdk)yke��FTk

+ #k(cdk � FTk)(1� yk)e��FTk
�
; (1)

subject to,

LiX
l=1

TX
t=1

xilt = 1 8i 2 Acts; (2)

predij
LiX
l=1

TX
t=1

txilt �
LjX
l=1

TX
t=1

(t� djl)xjlt

8i; j 2 Acts; (3)

LiX
l=1

TX
t=1

txiltAik � FTk 8k 2 Cs; 8i 2 Acts; (4)

X
i2Acts

LiX
l=1

rpil
t+dil�1X
b=t

xilt �
NX
k=1

respkt

8t 2 E; 8p 2 R; (5)

FTk(1� yk) � cdk 8k 2 Cs; (6)

cdkyk � FTk 8k 2 Cs; (7)

FTk � 0 8k 2 Cs; (8)

xiltf0; 1g 8i 2 Acts; 8t 2 E; 8l 2Mi; (9)

yk 2 f0; 1g 8k 2 Cs: (10)

Objective function (1) maximizes the NPV of the s-th
coalition based on a discount rate �. It consists of three
parts:

(a) The present values of cash ow for all the activities
performed by coalition s;

(b) The present values of tardiness penalties for all
contractors included in coalition s;

(c) The present values of earliness bonuses for all
contractors included in coalition s.

Eq. (2) states that every activity is assigned exactly one
mode and exactly one �nishing time. Constraint (3)
ensures the precedence relations between activities.
Inequality (4) ensures that the makespan of sub-
project k, FTk, is the maximum �nish time of all
of its activities. Constraint (5) enforces the resource

constraints at time interval t. Inequalities (6) and (7)
determine the earliness and tardiness of sub-project k,
respectively. Finally, Constraints (8){(10) denote the
domain of the variables.

Based on above model, cooperation among con-
tractors via joint resource management can increase
their gain (NPV) by using the renewable resources
e�ciently. A TU-cooperative game (N; �) with the
set of players N including all contractors and the
characteristic function � equal to NPV can be used
to determine the share of each contractor in the grand
coalition.

2.2. Cooperative game theory
Game theory is \the study of mathematical models
of conict and cooperation between intelligent ratio-
nal decision-makers" [28,29] and is divided into two
branches: cooperative and non-cooperative. A game
is cooperative (or coalitional) if the players are able to
form binding commitments (or coalitions) externally
enforced. A game is non-cooperative if players cannot
form alliances or if all agreements need to be self-
enforcing [29].

One of the problems in cooperative game theory
is how to distribute the payo� of coalition among the
members or players [28].

Cooperative games can be Transferable-Utility
(TU) games or Non-Transferable-Utility (NTU) games.
TU-cooperative games are used to model situations
in which the players in a coalition can compare and
transfer part of their utilities with each other. In
the situations of NTU-cooperative games, it is not
always possible for the players to compare or transfer
utilities.

The rest of this section introduces the basic no-
tation, de�nitions, and notions of the TU-cooperative
game theory.

2.2.1. Basic de�nitions and concepts
De�nition 1. A TU-game is an ordered pair (N; �)
consisting of the player set N (with n players) and the
characteristic function � : 2N ! R with �(�) = 0. For
each coalition S � N , The real number �(S) denotes
the maximal worth the members in S can obtain or the
cost savings they can make if they cooperate [30,31].

De�nition 2. Let x 2 Rn be a payo� vector, where
xi represents the value allocated to player i 2 N in the
grand coalition. A payo� vector x 2 Rn is called an
imputation for the game (N; �) if it satis�es e�ciency
an individual rationality conditions, i.e.:

(i)
X
i2N

xi = �(N); (11)

(ii) xi � �(i): (12)
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The set of imputations of the game (N; �) is denoted
by I(�) [31].

De�nition 3. The core C(�) of the game (N; �) is
the set:

C(�)=fx 2 I(�)jX
i2S

xi � �(S); 8S 2 2Nn�g; (13)

or the Core of the game (N; �), C(�), is a set of
imputations that satisfy:

(i)
X
i2N

xi = �(N); (14)

(ii)
X
i2S

xi � �(S); 8S 2 2Nn�: (15)

If x 2 C(�), no player has an incentive for deviation to
form a di�erent coalition [31].

2.2.2. Solution concepts for cooperative TU-games
Shapely value
The solution concept of Shapely value was introduced
by Shapley in 1953 [32].

De�nition 4. Given a cooperative game (N; �), the
Shapley value �i(�), which is the expected payo� of
player i 2 N , is de�ned by:

�i(�)=
X
S:i=2S

jSj!(n�1�jSj)!
n!

�(S [ fig)��(S)): (16)

� -value
Tijs de�ned the solution concept of � -value for each
quasi-balanced game in 1981 [33].

De�nition 5. For a quasi-balanced game (N; �), the
� -value �(�) is de�ned by:

�(�) := �m(N; �) + (1� �)M(N; �); (17)

where m(N; �) and M(N; �) are the lower vector and
upper vector of the game (N; �), respectively, and � 2
[0; 1] is uniquely obtained from [31,33]:X
i2N

�i(�) = �(N):

Average lexicographic value
The Average Lexicographic value or AL-value is de-
�ned for balanced cooperative games, which are games
with a non-empty core [31,34].

Given a balanced game (N; �) and an ordering �
of the players in N , the lexicographic maximum of the
core C(�) of � with respect to is denoted by L�(�). It is
the unique point in C(�) with the following properties:

(L�(�))�(1) = maxfx�(1)jx 2 C(�)g;
(L�(�))�(2) = maxfx�(2)jx 2 C(�) with

x�(1) = (L�(�))�(1)g;
� � �
(L�(�))�(n) = maxfx�(n)jx 2 C(�)

with x�(i) = (L�(�))�(i);

i = 1; 2; : : : ; n� 1g: (18)

Note that L�(�) is an extreme point of C(�) for each
� 2 �(N).

De�nition 6. For a balanced game (N; �), the aver-
age lexicographic value AL(�) is de�ned by the average
of all the lexicographically maximal vectors of the core
C(�), i.e.:

AL(�) =
1
n!

X
�2�(N)

L�(�): (19)

The equal split-o� set
Equal split-o� set is introduced as a solution concept
for cooperative games based on egalitarian considera-
tions [35].

Given a game (N; �), in the �rst step, one of
the coalitions with maximal average worth, say T1, is
formed, i.e.:

T1 2 arg max
S22N

�k(S)
jSj ; (20)

and the worth of �(T1) is equally divided among the
players in T1.

In step 2, one of the coalitions in N n T1 with
maximal average marginal, say T2, is formed, and the
value �(T1 [ T2)� �(T1) is equally divided among the
players in T2.

Similarly, in step k, Tk is formed, i.e.:

Tk 2 arg max

S22
Nnk�1S

i=1
Ti

�
�
k�1S
i=1

Ti
S
s
�
� �

�
k�1S
i=1

Ti
�

jSj ;
(21)

and the value of �
�
k�1S
i=1

Ti
S
s
�
��

�
k�1S
i=1

Ti
�

is equally

divided among the players in Tk. This process contin-
ues until a partition of N of the form hT1; : : : ; Tki for
some 1 � k � n is reached [31].

Nucleolus
The nucleolus was �rst introduced by Schmeidler
(1969) as a solution concept in cooperative game
theory [36].
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Consider a game (N; �) and a payo� vector x 2
Rn. The excess of the coalition S 2 2Nn� associated
with x is de�ned as e(S; x) = �(S) � P

i2S
xi, which is

the gain that players in coalition S can obtain if they
withdraw the grand coalition N under payo� x and
instead, take the payo� �(S). In other words, e(S; x)
represents a measure of dissatisfaction of coalition S in
the grand coalition.

The nucleolus tries to �nd an imputation inside
the core, x 2 C(�), that lexicographically minimizes
the vector of non-increasing ordered excesses of coali-
tions e(S; x); S 2 2Nn�. The nucleolus of the game
(N; �) can be reached by solving a sequence of Linear
Programs (LPs) de�ned recursively as follows:

(LP1)

8>>>><>>>>:
min"

subject to

8>><>>:
� (S)� P

i2S
xi � " 8S 2 2Nn�P

i2N
xi = � (N)

"; xi 2 R; i 2 N
(22)

(LPk)

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

min "

subject to

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

� (S)� P
i2S

xi = "0

8S 2 S1
...
� (S)� P

i2S
xi = "k�1

8S 2 Sk�1nSk�2
� (S)� P

i2S
xi � "

8S 2 2NnSk�1P
i2N

xi = � (N)

"; xi 2 R; i 2 N

(23)

where "k�1 is the optimal objective value for LPk�1
and Sk�1 is the set of coalitions for which the excess
has been �xed in a previous LP in the sequence [37{
40]. Fromen [41] introduced an algorithm for solving
this sequence of LPs.

Per-capita excess
The per-capita nucleolus represents a measure of dis-
satisfaction per capita of a coalition. It is determined
by replacing:

e(S; x) = �(S)�X
i2S

xi;

with:

�e(S; x) =
�(S)�Pi2S xi

jSj ;

in the optimization programs of the nucleolus [30].

Nash-Harsanyi (N-H) solution
The Nash-Harsanyi (N-H) solution concept maximizes
the product of the di�erence between the allocated util-
ities (income or NPV in this paper) from cooperation in

grand coalition and the non-cooperation case, subject
to core conditions, by equating the utility gains of all
players [36,39]. Given a cooperative game (N; �), the
optimization model of the N-H solution is as follows:

max
Y
8i2N

(xi � �(i));

subject to,

�(S)�X
i2S

xi � 0 8S 2 2Nn�;
X
i2N

xi = �(N);

xi 2 R; i 2 N: (24)

2.2.3. Solution stability criteria
Based on the mathematical calculations of the core,
all the solutions in it are potentially acceptable for
all players in the grand coalition. However, in prac-
tice, many of these allocations may seem unfair from
the viewpoint of some of the players and they have
incentive for leaving the grand coalition and forming
partial coalitions or act individually. This makes
grand coalition unstable. Therefore, for the sake of
stability, the concept of \fairness" in allocation should
be considered.

On the other hand, players, knowing that they
can gain more in the core, may bargain or threaten the
grand coalition to leave. Thus, an additional concept
of stability, namely \propensity to disrupt," should be
considered.

Fairness index
The Shapley-Shubik power index was suggested by
Shapley and Shubik [42] to measure power in voting
game. Loehman et al. [43] used an index similar to
the Shapley-Shubik power index to measure power in a
cooperative game. This index was used in several later
studies to evaluate the fairness of a given allocation
among all players [37,40,44].

The power index (�i) compares the gain of player
i 2 N with the gains of coalition. The power index
(�i) is:

�i =
xi � � (i)P

i2N (xi � � (i))
; i 2 N ;

X
i2N

�i = 1; (25)

where xi is the solution allocation for player i 2 N and
�(i) is the worth of player i.

The power index of each player is calculated
separately. If power is distributed almost evenly among
the players, then the coalition is more likely to be
stable. Based on the concept of power index, the
Fairness Index (FI) can be de�ned as:

FI =
��
��
; 0 � FI � 1; (26)
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where FI indicates the Fairness Index. �� is the
standard deviation and �� represents the average value.
The greater the value of FI, the larger the instability
of the solution [37,40,44].

Propensity to Disrupt (DP)
Propensity to Disrupt (DP ), as another measure of so-
lution stability, was introduced by Gately in 1974 [45].
DPi is de�ned as the ratio of how much the other
players would lose if player i 2 N does not cooperate
in the grand coalition to how much the player would
lose in this situation, i.e.:

DPi =
P
j2Nnfig xj � � (N n fig)

xi � � (i)
; i 2 N; (27)

where xi is the solution allocation for player i 2 N ;
� (N n fig) is the worth of coalition N n fig; and � (i)
is the worth of player i. DP can be de�ned for the
solution as:

DP = max
i2N (DPi): (28)

The greater the value of DP , the larger the instability
of the solution. Decision makers must determine
an acceptance upper limit for DP and eliminate any
imputation not inside the limit [37,45].

3. Case study

3.1. Description
The proposed approach is illustrated with an example.
Consider a construction project including three similar
sub-projects with three contractors in charge. The
due date of all sub-projects is at the end of time
unit 25 with delay penalty and earliness bonus of 30
and 20$ per time unit, respectively. The discount
rate is assumed 2%. Each activity has two possible
execution modes. Table 2 presents the list of activities,
corresponding precedence relations between them and
their durations, required resources, and cash ow with
respect to each mode.

Number of units of each renewable resource avail-
able to each contractor at di�erent time intervals is
shown in Figure 1 and 2.

Figure 1. Number of units of renewable resource 1
available to each contractor at each time interval.

Table 2. The list of activities, corresponding precedence relations between them and their durations, required resources,
and cash ows with respect to each mode.

Mode

1 2

Subcontractor Activity Precedence Duration Required
resource Cash ow Duration

Required
resource Cash ow

1 2 1 2

1

1 { 5 1 3 {320 3 2 4 {306

2 1 4 2 4 {508 3 4 6 {564

3 1 10 0 1 {330 6 0 0 {346

4 2,3 6 3 0 {280 4 5 3 {300

5 3 10 5 2 {780 8 6 5 {792

6 4,5 6 1 3 4596 4 2 4 4550

2

7 { 5 1 3 {320 3 2 4 {306

8 7 4 2 4 {508 3 4 6 {564

9 7 10 0 1 {330 6 0 0 {346

10 8,9 6 3 0 {280 4 5 3 {300

11 9 10 5 2 {780 8 6 5 {792

12 10,11 6 1 3 4596 4 2 4 4550

3

13 { 5 1 3 {320 3 2 4 {306

14 13 4 2 4 {508 3 4 6 {564

15 13 10 0 1 {330 6 0 0 {346

16 14,15 6 3 0 {280 4 5 3 {300

17 15 10 5 2 {780 8 6 5 {792

18 16,17 6 1 3 4596 4 2 4 4550
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Figure 2. Number of units of renewable resource 2
available to each contractor at each time interval.

3.2. NPVs for various degrees of cooperation
Based on the above information, the proposed math-
ematical models of all possible coalitions including
non-cooperation (act alone), partial cooperation (sub-
set coalition), and the grand coalition are solved by
branch-and-reduce optimization navigator (BARON)
under GAMS. The results consist of the best NPV
found for each coalition, the �nish time of each activity,
and the makespan of each sub-project (Table 3).

As shown in Table 3, if no coalition is created
or the contractors perform the subprojects separately,
the NPV of the project will be 3266.41$; if the subset
coalitions of (1,2), (1,3), and (2,3) are formed, the
NPV of the project will be 3423.014$, 3381.122$, and

3400.969$, respectively; and if the project is performed
by grand coalition, the NPV will be 3553.879$.

The resulting Gantt charts for all 5 possible
combinations of coalitions are shown in Figure 3. In
this �gure, the color of the bars for all activities of one
coalition is the same.

3.3. The core of the cooperation game
The allocation of the NPV to all the three contractors
cannot migrate outside the core, x 2 C(�). The core
of the game C(�) is shown in Figure 4, representing all
possible payo� allocations.

3.4. NPV allocation schemes based on the
solutions

By applying the introduced 7 methods of cooperative
game theory to the case study, the NPV assignment
strategy for each method is deduced and summarized
in Table 4. Apparently, the sum of the allocated
values for each contractor is equal to the total NPV
(3553.879$) through grand coalition. Meanwhile, all of
the allocation schemes satisfy the core requirements as
shown in Table 4.

3.5. Stability for di�erent allocation schemes
In the following, in order to investigate the stability of
di�erent allocation schemes presented in Section 2.2.3,

Table 3. Net Present Value (NPV) and makespan of each sub-project for various degrees of cooperation.

Scenario Coalition NPV($) of
coalition

Combinations NPV($) of
project

Makespan
Sub-project

1
Sub-project

2
Sub-project

3

Act
alone

1 1064.13
3266.41

24 { {
2 1069.923 f(1),(2),(3)g { 24 {
3 1132.357 { { 25

Subset
coalition

1,2 2290.657 f(1,2),(3)g 3423.014 21 26 {
1,2 2290.657 f(1,2),(3)g 3423.014 21 26 {
1,3 2311.199 f(1,3),(2)g 3381.122 27 { 21
2,3 2336.839 f(1),(2,3)g 3400.969 { 25 22

Grand coalition 1,2,3 3553.879 f(1,3, 2)g 3553.879 28 21 21

Table 4. Net Present Value (NPV) assignment using di�erent schemes.

Solution

scheme

NPV allocation ($)
In core

x1 x2 x3

Shapely value 1160.319 1176.036 1217.524 Yes

� -Value 1159.952 1179.562 1214.365 Yes

Average lexicographic value 1174.702 1177.999 1201.179 Yes

Equal split-o� set 1184.626 1184.626 1184.626 Yes

Nucleolus 1,160.686 1,186.326 1,206.868 Yes

Per-capita excess 1,160.686 1,186.326 1,206.868 Yes

N-H solution 1159.946 1165.749 1228.184 Yes
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Figure 3. Gantt charts for all possible combinations of coalitions.

the values of DP and Shapley-Shubik Power Index are
calculated.

Table 5 shows the DP value for each contractor
using the 7 allocation methods. It can be observed
that the calculated DP value for the third contractor
employing the equal split-o� set method is 1.504. Ac-
cording to Eq. (28) and as mentioned in Section 2.2.3,
the smaller the value of DP , the greater the incentive
of the player to join the coalition and vice versa.
Therefore, one player will disrupt the coalition only

when the DP value is less than 1. Therefore, the third
contractor will refuse to accept the allocation strategy
based on the equal split-o� set method. Therefore, it
can be concluded that the equal split-o� set method is
unstable.

Table 6 shows the power index within each scheme
by utilizing Eq. (25), based on which the FI can be
calculated by Eq. (26). As mentioned before, the
greater the value of FI, the lower the fairness of the
allocation strategy. Thus, it can be concluded that,
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Table 5. Propensity to disrupt (DP ) of di�erent schemes.

Solution scheme
NPV allocation ($)

DP1 DP2 DP3 DP
Shapely value 0.590 0.628 0.537 0.628
� -value 0.596 0.576 0.596 0.596
Average lexicographic value 0.383 0.598 0.902 0.902
Equal split-o� set 0.269 0.506 1.504 1.504
Nucleolus 0.584 0.484 0.756 0.756
Per-capita excess 0.584 0.484 0.756 0.756
N-H solution 0.596 0.803 0.366 0.803

Table 6. Fairness evaluation of each scheme.

Solution scheme
The Shapley-Shubik

power index
Fairness index

(FI�)
�1 �2 �3

Shapely value 0.321 0.377 0.302 0.095
� -value 0.333 0.381 0.285 0.118
Average lexicographic value 0.385 0.376 0.239 0.200
Nucleolus 0.336 0.405 0.259 0.179
Per-capita excess 0.336 0.405 0.259 0.179
N-H solution 0.333 0.333 0.333 0.000

Figure 4. The core space of the game representing all
possible payo� allocations.

although all of the values are within a reasonable range
(0 � FI� � 1), based on Eq. (26), the scheme with the
highest fairness is the N-H solution with the lowest FI.

Therefore, in summary, the best allocation scheme
can be deduced by the N-H solution method, which can
meet both of the stability criteria, simultaneously.

With the N-H solution method, the utilities
or NPVs 1159.946$, 1165.749$, and 1228.184$ are
allocated to contractors 1, 2, and 3, respectively.
Accordingly, the share of contractors 1, 2, and 3
in the grand coalition is 32.6%, 32.8%, and 34.6%,
respectively.

4. Conclusions

One of the constraints on construction projects, which
leads to increase in time and cost, is the limitation of
renewable resources (e.g., labor or equipment). Sharing
this resources is one of the areas of cooperation among
the contractors of the project, which can lead to
decrease in total time and cost and improve NPV. In
this study, various solution methods of the cooperative
game theory were used to solve the problem of deter-
mining the share of the participating contractors from
this improvement.

In order to model this problem, a Multi-
mode Resource-Constrained Project Scheduling Prob-
lem with Discounted Cash ows (MRCPSPDC) for
each coalition was taken into account and a Mixed-
Integer Nonlinear Programming (MINLP) model was
developed. The suggested model can be used by
partnering contractors to manage renewable resources
more e�ciently on a cooperative basis. In other words,
partnering makes the feasible solution space of the
problem larger and it can improve the solution.

Therefore, in the solution procedure, �rst, the
suggested model was solved for all coalitions and then,
the bene�t (NPV) allocation problem was solved by 7
widely used cooperative game theory solution methods,
namely Shapely value, � -value, average lexicographic
value, equal split-o� set, nucleolus, per-capita excess,
and N-H solution. Eventually, the best allocation
scheme based on the stability criteria of Shapley-
Shubik power index and DP value was identi�ed.
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