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Abstract. The objective of this work is to present a novel Multi-Criteria Group Decision-
Making (MCGDM) method under the Cubic Intuitionistic Fuzzy (CIF) environment by
integrating it with the extended TOPSIS method. In the existing studies, uncertainties,
which are present in the data, are handled with either Interval-Valued Intuitionistic Fuzzy
Sets (IVIFS) or Intuitionistic Fuzzy Set (IFS) information, which may lose some useful
information of alternatives. On the other hand, CIF Set (CIFS) handles the uncertainties
by considering both the IVIFS and IFS simultaneously. Thus, motivated by this, in the
present work, some series of distance measures between the pairs of CIFSs were presented,
and their various relationships were investigated. Further, under this environment, a group
decision-making method based on the proposed measure was presented by considering the
di�erent priority pairs of the decision-makers. A practical example was provided to verify
the developed approach and, demonstrate its practicality and feasibility, their results were
compared with those of the several existing approaches.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Multi-Criteria Group Decision-Making (MCGDM)
plays a pivotal role in our day-to-day living envi-
ronment. In this era characterized by cut-throat
competition, our target is to select the best alternative
from a set of alternatives, to be assessed against the
multiple in
uential criteria. However, selecting only
the best alternative does not compile up our problem,
but suitable ranking of the all the available options is
needed to be done so as to understand their nature
and, hence, proceed with further analysis. In such
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areas, Decision-Making (DM) approaches act as a boon
for the person who has to reach some conclusion by
keeping all the favorable and unfavorable conditions
in their mind. Traditionally, DM information was
assumed to be determinable and clear; however, these
properties have not been observed. In practice, due
to the increasing complexity of the socioeconomic
environment and the problem itself, inaccuracies and
cognitive limitations of the human mind can cause
decision-makers di�culty in utilizing crisp numbers to
express their information [1,2]. Thus, the traditional
MCGDM method is more limited in real applications.
To deal with it, the theory of Fuzzy Set (FS) [3]
or extended fuzzy sets, such as Intuitionistic Fuzzy
(IF) Set (IFS) [4] and Interval-Valued IFS (IVIFS) [5],
are the most successful ones, which characterize the
criterion values in terms of membership degrees. Un-
der these environments, various researchers presented
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di�erent kinds of algorithms based on aggregation op-
erator and information measures to solve the MCGDM
problems [6{16].

However, apart from that Technique for Or-
der Preference with respect to the Similarity to
the Ideal Solution (TOPSIS), developed by Hwang
and Yoon [17], there is a well-known Multi-Criteria
Decision-Making (MCDM) method. The aim of this
method is to choose the best alternative whose distance
from its positive ideal solution is the shortest. After
their existence, numerous attempts are made by the
researchers to apply the TOPSIS method under the
fuzzy and IFS environment. For instance, Szmidt and
Kacprzyk [18] de�ned the concept of distance measure
between the IFSs. Hung and Yang [19] presented
the similarity measures between the two di�erent IFSs
based on Hausdor� distance. Boran et al. [20] applied
the TOPSIS method to solve the problem of human
resource personnel selection. Dugenci [21] presented a
distance measure for IVIF set and their application to
MCDM with incomplete weight information. Garg [22]
presented a generalized improved score function for
IVIFSs and their TOPSIS-based method for solving
the DM problems. Mohammadi et al. [23] presented
a gray relational analysis and TOPSIS approach to
solving the DM problems. Garg et al. [24] presented
a generalized entropy measure of order � and degree �
under the IFS environment and applied it to solve the
DM problems. Biswas and Kumar [25] presented an
integrated TOPSIS approach for solving the DM prob-
lems with IVIFS environment. Vommi [26] presented a
TOPSIS method using statistical distances to solve DM
problems. Singh and Garg [27] developed the distance
measures between the type-2 IFS. Li [28] presented
a nonlinear programming methodology-based TOPSIS
method for solving Multi-Attribute Decision Making
(MADM) problems under IVIFS environment. Garg
and Arora [29] extended the Li [28] approach to the
interval-valued intuitionistic fuzzy soft set environ-
ment. Lu and Ye [30] developed logarithm similarity
measures to solve the problems under interval-valued
fuzzy set environment. Garg and Kumar [31] presented
new similarity measures for IFSs based on the connec-
tion number of the set pair analysis. Askarifar et al. [32]
presented an approach to studying the framework of
Iran's seashores using TOPSIS and best-worst MCDM
methods. In [33,34], the authors developed a group
DM method under IVIF environment by integrating
extended TOPSIS and linear programming methods.
Kumar and Garg [35,36] presented the TOPSIS ap-
proach for solving DM problems by using connection
number of the set pair analysis theory.

Since all these facilitate the uncertainties to a
great extent, still they cannot withstand the situa-
tions where the decision-maker has to consider the
falsity corresponding to the truth value ranging over

an interval. However, Cubic Fuzzy Set (CFS) cor-
roborated by Jun et al. [37] is an e�cient tool in
handling possible disagreement of the agreed interval
values, and vice versa. In this set, the degree of
agreement/disagreement corresponding to the truth
interval has been added to the analysis. Under this
environment, Khan et al. [38] and Mahmood et al. [39]
presented some aggregation operators under the cubic
and cubic-hesitant fuzzy set environments. Fahmi et
al. [40] worked on the grey relational analysis method
using cubic information and developed an approach to
solving the DM problems under CFS environment.

The CFSs take into account only the member-
ship intervals and do not place stress on the non-
membership portion of the data entities. However,
in the real world, it is regularly hard to express the
estimation of membership degree by an exact value
in a FS. In such cases, it might be easier to depict
vagueness and uncertainty in the real world using an
interval value and an exact value instead of unique
interval/exact values. Consequently, the hybrid form of
an interval value might be extremely valuable to depict
the uncertainties because of his/her reluctant judgment
in complex DM problems. For this reason, Kaur and
Garg [41,42] introduced the idea of the CIFS, which
was described by two parts simultaneously, where one
represents the membership degrees by an IVIF Number
(IVIFN) and the other represents the membership
degrees by IF Number (IFN). Henceforth, a CIFS is
the hybrid set joined by both an IVIFN and an IFN.
Clearly, the advantage of the CIFS is that it can contain
substantially more data to express the IVIFN and
IFN at the same time. For instance, suppose that a
manager has to evaluate the work of his teammates.
The teammate provides him with his self-analyzed
report, saying that he has completed 20%{30% and
simultaneously has not accomplished 50%{60% of the
work assigned to him. After analyzing his report by the
manager, he passes judgment under IFS environment
by saying that he disagrees with the completed work
by 20% and agrees to the incomplete work by 10%.
Then, in that case, CIFS is formulated as R-order given
by (h[0:20; 0:30]; [0:50; 0:60]i; h0:20; 0:10i). On the other
hand, if the manager agrees by 40% and disagrees to the
incomplete work by 50%, then P-order CIFS is formed
as (h[0:20; 0:30]; [0:50; 0:60]i; h0:40; 0:50i). Therefore,
this environment increases the level of precision by
enhancing the scope of the membership interval by
considering a FS membership value corresponding to it.
Hence, it is a useful tool for handling the imprecise and
ambiguous information during the DM process under
the uncertain environment.

Keeping the advantages of the CIFS, this paper
studies the MCGDM problem under CIF setting and
proposes a methodology that utilizes extended TOPSIS
method where each of the elements is characterized by
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CIF Numbers (CIFNs). CIFNs combine the advantages
of both IVIFNs and IFNs. Furthermore, some new
weighted and generalized weighted distance measures
are proposed in order to signify the level of resemblance
between two CIF values based upon the decision values
and both the CIF-Positive Ideal Alternative (CIF-PIA)
and CIF-Negative Ideal Alternative (CIF-NIA). Sev-
eral desirable properties of the proposed distance and
weighted distance measures are investigated. Multiple
decision-makers have been included in the DM process
that highlights the impetus of di�erent perspectives,
making the proposed approach more realistic for an
MCGDM process. The presented approach is illus-
trated with a numerical example to verify its feasibility
and e�ectiveness. Finally, the computed results ob-
tained by the presented approach are compared with
the results of several existing approaches to show the
superiority of the former.

The rest of the paper is organized as follows.
In Section 2, some basic concepts related to IFSs,
IVIFSs, and CIFSs are reviewed. In Section 3, some
normalized generalized distance measures are de�ned
for a pair of di�erent CIFNs. Section 4 presents an
extended TOPSIS group DM approach for solving the
DM problems under the CIFS environment, where
each element of the set is characterized by CIFNs.
In Section 5, an illustrative example is presented to
discuss the functionality of the proposed approach and
compare their results with those of some of the existing
approaches. Finally, Section 6 summarizes this study.

2. Preliminaries

In this section, some basic concepts of IFSs, IVIFSs,
CFSs, and CIFSs over the universal set X are pre-
sented.

De�nition 2.1 [4,11]. An IFS in a set X is an ordered
pair de�ned as follows:

A = f(x; �A(x); #A(x)) j x 2 Xg; (1)

where �A and #A are the mappings from X to [0,1],
such that 0 � �A(x) � 1, 0 � #A(x) � 1, and 0 �
�A(x) + #A(x) � 1 for all x 2 X. This pair is denoted
as A = h�A; #Ai and called as an IFN.

After that, Atanassov and Gargov [5] extend its
concept to interval-valued numbers and, hence, de�ned
an IVIFS as follows:

A=fhx; [�LA(x); �UA (x)]; [#LA(x); #UA(x)]i j x 2 Xg;
(2)

where 0 � �LA(x) � �UA (x) � 1, 0 � #LA(x) � #UA(x) �
1, and �UA (x) + #UA(x) � 1 for all x. This pair is often
called the IVIFN.

De�nition 2.2. Let A = h�A; #Ai and B = h�B ; #Bi

be two IFNs. Then, the following expressions are
de�ned [4,11]:

(i) A � B if �A(x) � �B(x) and #A(x) � #B(x) for
all x in X;

(ii) A = B if and only if A � B and B � A;
(iii) Ac = fx; h#A(x); �A(x)i j x 2 Uig;
(iv) A \ B = fx; hinf(�A(x); �B(x)); sup(#A(x); #B

(x))i j x 2 Ug;
(v) A [ B = fx; hsup(�A(x); �B(x)); inf(#A(x); #B

(x))i j x 2 Ug.
De�nition 2.3 [37]. A cubic set A de�ned in X is
given by:

A = f(x;AF (x); �F (x)) j x 2 Xg; (3)

where AF (x) = [AL(x); AU (x)] and �F (x) represent
the interval-valued FS and FS in x 2 X, respectively.
These pairs are denoted as A = hAF ; �F i and called as
cubic fuzzy numbers.

De�nition 2.4 [37]. For Ai = hAi; �ii where i 2 �,
we have:

(i) P-union: [ P
i2�
Ai =


 [i2� Ai;_i2��i
�
;

(ii) P-intersection: \ P
i2�
Ai =


 \i2� Ai;^i2��i
�
;

(iii) R-union: [ R
i2�
Ai =


 [i2� Ai;^i2��i
�
;

(iv) R-intersection: \ R
i2�
Ai =


 \i2� Ai;_i2��i
�
.

De�nition 2.5 [41,42]. A CIFS A de�ned over the
universal set X is an ordered pair, which is de�ned as
follows:

A = fhx;A(x); �(x)i j x 2 Xg; (4)

where A = fx; 
 [�LA(x); �UA (x)]; [#LA(x); #UA(x)]
�
; j x 2

Xg represents the IVIFS de�ned on X while:

�(x) = fx; h�A(x); #A(x)i j x 2 Xg
represents an IFS such that:

0 � �LA(x) � �UA (x) � 1;

0 � #LA(x) � #UA(x) � 1; and

0 � �UA (x) + #UA(x) � 1:

Moreover, 0 � �A(x); #A(x) � 1 and �A(x)+#A(x) � 1.
For the sake of simplicity, we denote these pairs as A =�
A; �

�
, where A = h[�LA; �UA ]; [#LA; #UA]i and � = h�A; #Ai

and called as CIFN.

De�nition 2.6 [41,42]. Let Ai =
�


[�Li ; �Ui ]; [#Li ;
#Ui ]
�
;


�i; #ii�, i = 1; 2 be two CIFNs in X. Then, we

de�ne:
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(i) (Equality) A1 = A2 , [�L1 ; �U1 ] = [�L2 ; �U2 ],
[#L1 ; #U1 ] = [#L2 ; #U2 ], �1 = �2 and #1 = #2;

(ii) (P-order) A1 �P A2 if [�L1 ; �U1 ] � [�L2 ; �U2 ],
[#L1 ; #U1 ] � [#L2 ; #U2 ], �1 � �2 and #1 � #2;

(iii) (R-order) A1 �R A2 if [�L1 ; �U1 ] � [�L2 ; �U2 ],
[#L1 ; #U1 ] � [#L2 ; #U2 ], �1 � �2 and #1 � #2.

3. Distance measures for CIFS

In this section, some new distance measures for the
non-zero CIFN over the �nite universal set X =
fx1; x2; : : : ; xng are proposed. For it, �(X) is consid-
ered to be a family of CIFSs over the set X.

De�nition 3.1. A real-valued function d : �(X) �
�(X) ! [0; 1] is called the distance measure if it
satis�es the following properties for A;B; C 2 �(X):

(P1) 0 � d(A;B) � 1;

(P2) d(A;B) = 0 if and only if A = B;

(P3) d(A;B) = d(B;A);

(P4) If A � B � C, then d(A;B) � d(A; C) and
d(B; C) � d(A; C),

where �(�) represents the set of all CIFSs.

De�nition 3.2. Let A =
�h[�LA(x), �UA (x)], [#LA(x),

#UA(x)]i, h[�A(x), #A(x)]i� and B =
�h[�LB(x), �UB (x)],

[#LB(x), #UB(x)]i, h[�B(x), #B(x)]i� be two CIFNs.
Then, for q � 1, the following distance measures are
de�ned:

(i) Distance measures are de�ned by Eq. (5) as shown
in Box I;

(ii) Normalized distance measures are de�ned by
Eq. (6) as shown in Box II.

Next, we con�rm that the above-de�ned measures
are valid distance measures.

Theorem 3.1. The measure, d0q, between two CIFSs,
A and B, satis�es the properties (P1){(P4), as de�ned
in De�nition 3.1.

Proof. In order to prove that the measure de�ned
in Eq. (5) is a valid distance measure, we shall prove
that it satis�es the properties (P1){(P4), as de�ned in
De�nition 3.1, for a collection of CIFNs:

A=
�h[�LA(x); �UA (x)]; [#LA(x); #UA(x)]i;h[�A(x); #A(x)]i�;

and:
B=

�h[�LB(x); �UB (x)]; [#LB(x); #UB(x)]i;h[�B(x); #B(x)]i�:
For any real number q � 1 and a collection of CIFSs A
and B, we have:

(P1) By the de�nition of d0q, we have d0q(A;B) � 0;
thus, for arbitrary CIFSs A and B, it is enough
to show that d0q(A;B) � 1. Since A and B are
two CIFSs, we have:

0 � �LA(xi); �UA (xi); #LA(xi); #UA(xi) � 1;

0 � �A(xi); #A(xi) � 1;

0 � �LB(xi); �UB (xi); #LB(xi); #UB(xi) � 1;

0 � �B(xi); #B(xi) � 1:

This implies that:

0 � j�LA(xi)� �LB(xi)jq � 1;

0 � j�UA (xi)� �UB (xi)jq � 1;

0 � j#LA(xi)� #LB(xi)jq � 1

0 � j#UA(xi)� #UB(xi)jq � 1:

d00q (A;B) =

 
1
6

nX
i=1

8<: j�LA(xi)� �LB(xi)jq + j�UA (xi)� �UB (xi)jq + j#LA(xi)� #LB(xi)jq

+ j#UA(xi)� #UB(xi)jq + j�A(xi)� �B(xi)jq + j#A(xi)� #B(xi)jq

9=;!1=q

: (5)

Box I

d0q(A;B) =

 
1

6n

nX
i=1

8<: j�LA(xi)� �LB(xi)jq + j�UA (xi)� �UB (xi)jq + j#LA(xi)� #LB(xi)jq

+ j#UA(xi)� #UB(xi)jq + j�A(xi)� �B(xi)jq + j#A(xi)� #B(xi)jq

9=;!1=q

: (6)

Box II
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Similarly:

0 � j�A(xi)� �B(xi)jq � 1;

0 � j#A(xi)� #B(xi)jq � 1:

Thus, it follows that 0 � d0q(A;B) � 1.
(P2) For any two CIFSs A and B,

d0q(A;B) = 0

, 1
6n

nX
i=1

�
j�LA(xi)��LB(xi)jq+j�UA (xi)

��UB (xi)jq + j#LA(xi)� #LB(xi)jq + j#UA(xi)

�#UB(xi)jq + j�A(xi)� �B(xi)jq + j#A(xi)

�#B(xi)jq
�

= 0

,j �LA(xi)� �LB(xi) jq= 0; j �UA (xi)

��UB (xi) jq= 0; j #LA(xi)� #LB(xi) jq= 0;

j #UA(xi)� #UB(xi) jq= 0; j �A(xi)

��B(xi) jq= 0 and j #A(xi)� #B(xi) jq= 0;

for all i

, �LA(xi) = �LB(xi); �UA (xi)

= �UB (xi); #LA(xi) = #LB(xi); #UA(xi) = #UB(xi);

�A(xi) = �B(xi); and #A(xi) = #B(xi);

for all i

, A = B:
(P3) For any two real numbers a and b, we have ja�

bj = jb� aj. Thus, we have d0q(A;B) = d0q(B;A).
(P4) If A � B � C are R-order CIFNs then for all i,

we have:

[�LA(xi); �UA (xi)] � [�LB(xi); �UB (xi)]

� [�LC(xi); �UC (xi)];

[#LA(xi); #UA(xi)] � [#LB(xi); #UB(xi)]

� [#LC(xi); #UC(xi)];

�A(xi) � �B(xi) � �C(xi);

and:

#A(xi) � #B(xi) � #C(xi):

Therefore:

j�LA(xi)� �LB(xi)jq � j�LA(xi)� �LC(xi)jq;
j�UA (xi)� �UB (xi)jq � j�UA (xi)� �UC (xi)jq;
j#LA(xi)� #LB(xi)jq � j#LA(xi)� #LC(xi)jq;
j#UA(xi)� #UB(xi)jq � j#UA(xi)� #UC(xi)jq;
j�A(xi)� �B(xi)jq � j�A(xi)� �C(xi)jq;
j#A(xi)� #B(xi)jq � j#A(xi)� #C(xi)jq:

Thus:

d0q(A; C) =

"
1

6n

nX
i=1

�
j�LA(xi)� �LC(xi)jq

+j�UA (xi)��UC (xi)jq+j#LA(xi)�#LC(xi)jq

+j#UA(xi)�#UC(xi)jq+j�A(xi)��C(xi)jq

+j#A(xi)� #C(xi)jq
�#1=q

�
"

1
6n

nX
i=1

�
j�LA(xi)� �LB(xi)jq

+j�UA (xi)��UB (xi)jq+j#LA(xi)�#LB(xi)jq

+j#UA(xi)�#UB(xi)jq+j�A(xi)��B(xi)jq

+j#A(xi)� #B(xi)jq
�#1=q

:

Hence, d0q(A; C) � d0q(A;B). Thus, d0q(A; C) �
d0q(B; C). Similarly, we can prove it for P-order
CIFNs.

Hence, d0q(q � 1) is a valid distance measure.

Theorem 3.2. The measure, d00q , satis�es the inequal-
ity d00q � n1=q.

Proof. For any real number q � 1 and for two CIFSs,
A and B, we have j�LA(xi) � �LB(xi)jq � 1, j�UA (xi) �
�UB (xi)jq � 1, and so on. Therefore, we get:
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d00q (A;B) =

 
1
6

nX
i=1

�
j�LA(xi)� �LB(xi)jq

+j�UA (xi)� �UB (xi)jq + j#LA(xi)� #LB(xi)jq

+j#UA(xi)� #UB(xi)jq + j�A(xi)� �B(xi)jq

+j#A(xi)� #B(xi)jq
�!1=q

�
 

1
6

nX
i=1

(1 + 1 + 1 + 1 + 1 + 1)

!1=q

� n1=q:

Hence, the result is found.

Theorem 3.3. The measures d00q and d0q satisfy the
inequality d0q � q

p
d01 and d00q � q

p
d001 .

Proof. For any real number q � 1 and for two CIFSs
A and B, we have j�LA(xi)��LB(xi)jq � j�LA(xi)��LB(xi)j,j�UA (xi) � �UB (xi)jq � j�UA (xi) � �UB (xi)j, and so on.
Therefore, we get:

d0q(A;B) =

 
1

6n

nX
i=1

�
j�LA(xi)� �LB(xi)jq

+j�UA (xi)� �UB (xi)jq + j#LA(xi)� #LB(xi)jq

+j#UA(xi)� #UB(xi)jq + j�A(xi)� �B(xi)jq

+j#A(xi)� #B(xi)jq
�!1=q

�
 

1
6n

nX
i=1

�
j�LA(xi)� �LB(xi)j

+j�UA (xi)� �UB (xi)j+ j#LA(xi)� #LB(xi)j
+j#UA(xi)� #UB(xi)j+ j�A(xi)� �B(xi)j

+j#A(xi)� #B(xi)j
�!1=q

� (d01(A;B))1=q:

Similarly, we can prove that d00q � q
p
d001 .

Theorem 3.4. The measures d00q and d0q satisfy the
equation d00q = n1=qd0q.

Proof. They easily follow from the de�nitions of d0q
and d00q .

Remark 3.1. From the proposed measure, it has been
observed that:

(i) When q = 1, Eq. (6) reduces to the normalized
hamming distance measure, and

(ii) When q = 2, Eq. (6) reduces to the normalized
Euclidean distance measure.

As in practical situations, many times, we have
to deal with such situations in which various CIFSs
may have weights assigned to them. Therefore, taking
weights !i (i = 1; 2; : : : ; n) into account, where each

!i > 0 and
nP
i=1

!i = 1, the generalized weighted

distances between two CIFSs A and B are de�ned by
Eq. (7) as shown in Box III.

Theorem 3.5. The weighted distance measure dq,
(1 � q <1), de�ned in Eq. (7), satis�es the following
properties:

(P1) 0 � dq(A;B) � 1;
(P2) dq(A;B) = 0, A = B;
(P3) dq(A;B) = dq(B;A);
(P4) If A � B � C then dq(A;B) � dq(A; C) and

dq(B; C) � dq(A; C).
Proof. The proof is similar to Theorem 3.1; hence, it
is omitted here.

Theorem 3.6. The measures d0q, d00q , and dq satisfy
the following inequalities:

(i) d0q � d00q � q
p
d001 ;

(ii) dq � d00q � q
p
d001 .

Proof. Since !i > 0 and
nP
i=1

!i = 1, we follow the

results from their de�nitions.

Remark 3.2. From this weighted measure, it has been
observed that:

dq(A;B) =

 
1
6

nX
i=1

!i

8<: j�LA(xi)� �LB(xi)jq + j�UA (xi)� �UB (xi)jq + j#LA(xi)� #LB(xi)jq

+ j#UA(xi)� #UB(xi)jq + j�A(xi)� �B(xi)jq + j#A(xi)� #B(xi)jq

9=;!1=q

: (7)

Box III



402 H. Garg and G. Kaur/Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 396{410

(i) If q = 1, then Eq. (7) reduces to the weighted
Hamming distance;

(ii) If q = 2, then Eq. (7) is called the weighted
Euclidean distance;

(iii) In particular, when !i = 1=n, for i = 1; 2; : : : ; n,
then Eq. (7) reduces to Eq. (6).

4. An extended TOPSIS approach based on
the proposed distance

In this section, a TOPSIS approach is presented under
the CIFNs environment for solving MCGDM problems
based on the proposed distance measure.

4.1. Description of the problem
Assume that there is a set of m alternatives, A =
fA1; A2; : : : ; Amg, that are evaluated under the set of n
di�erent criteria, C = fC1; C2; : : : ; Cng, such that their
rating values are summarized in the form of CIFNs
�ij = (Aij ; �ij), where Aij = h[�Lij ; �Uij ]; [#Lij ; #Uij ]i
represent the IVIFNs and �ij = h�ij ; #iji represent the
IFNs. Here, the components [�Lij ; �Uij ] and #ij represent
the degree up to which the given alternative Ai satis�es
the criterion Cj , whereas the components [#Lij ; #Uij ] and
�ij indicate the dissatisfaction degree of alternative
Ai regarding the criterion Cj . Thus, the overall
representation of these rating values can be framed
into the CIFN environment and, hence, the collective
decision matrix is summarized as D = (�ij)m�n.

4.2. Computation of CIF-PIA and CIF-NIA
Since all of the rating values of the alternatives are
CIFNs, the CIF-PIA; and CIF-NIA on the alternative
Ai (i = 1; 2; : : : ;m) may be chosen as 1, and 0
respectively. Thus, rating values of CIF-PIA and CIF-
NIA are expressed as follows:

�+ =
�h[1; 1]; [0; 0]i; h0; 1i�1�n;

and:

�� =
�h[0; 0]; [1; 1]i; h1; 0i�1�n:

From these, it has been seen that �+ and �� comple-
ment each other.

However, if we take the �xed a priori CIF-
PIA and CIF-NIA reference points, then the overall
performance value and, hence, the ranking order of
the alternatives could not change if the alternatives are
changed. Instead, the decision-maker wants to de�ne
these reference points as follows:

�+
j =

�h[gL+
j ; gU+

j ]; [hL+
j ; hU+

j ]i; hr+
j ; s

+
j i� ; (8)

and:
��j =

�h[gL�j ; gU�j ]; [hL�j ; hU�j ]i; hr�j ; s�j i� ; (9)

where:
gL+
j = max

j
f�Lijg; gU+

j = max
j
f�Uij )g;

hL+
j = min

j
f#Lij)g; hU+

j = min
j
f#Uij)g;

r+
j = min

j
f�ij)g; s+

j = max
j
f#ij)g;

gL�j = min
j
f�Lij)g; gU�j = min

j
f�Uij )g;

hL�j = max
j
f#Lij)g; hU�j = max

j
f#Uij)g;

r�j = max
j
f�ij)g; s�j = min

j
f#ij)g;

for all i:

4.3. Computation of distance measures
between the alternatives

By considering the importance of the criteria in terms
of weight vector ! = (!1; !2; : : : ; !n)T along with CIF-
PIA (�+) and CIF-NIA (��), the weighted distances
between the alternatives Ai and �+, as well as ��, are
computed by Eqs. (10) and (11) as shown in Box IV;
q � 1 is a real number.

Based on these weighted distances, the relative
closeness coe�cient of alternative Ai (i = 1; 2; : : : ; n)
with respect to CIF-PIA �+ is given as follows:

Ci =
dq(Ai; ��)

dq(Ai; ��) + dq(Ai; �+)
; dq(Ai; �+) 6= 0:

(12)

Further, it has been seen that, 0 � dq(Ai; ��) �
dq(Ai; ��) + dq(Ai; �+) and hence 0 � Ci � 1.

dq(Ai; �+) =

0@1
6

nX
j=1

!j

8<:
��gL+
j � �Lij��q +

��gU+
j � �Uij ��q +

��#Lij � hL+
j
��q

+
��#Uij � hU+

j
��q +

���ij � r+
j
��q +

��s+
j � #ij

��q
9=;
1A 1

q

; (10)

dq(Ai; ��) =

0@1
6

nX
j=1

!j

8<:
���Lij � gL�j ��q +

���Uij � gU�j ��q +
��hL+
j � #Lij��q

+
��hU+
j � #Uij��q +

��r�j � �ij��q +
��#ij � s�j ��q

9=;
1A 1

q

: (11)

Box IV
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4.4. The proposed group DM TOPSIS
approach

Based on the above analysis, an approach for solving
the group DM problems under the CIFN environ-
ment has been presented. In doing so, consider that
there are `K' decision makers fD(1); D(2); : : : ; D(K)g
which are evaluating the given set of `m' alterna-
tives Ai(i = 1; 2; : : : ;m) under the set of `n' criteria
Cj(j = 1; 2; : : : ; n). These decision makers give their
preferences in terms of:

CIFNs(�ij)(k) =
�
�

(�Lij)
(k); (�Uij )

(k)�;�
(#Lij)

(k); (#Uij)
(k)��;
(�ij)(k); (#ij)(k)��;

where k = 1; 2; : : : ;K. Further, assume that !(k) =
(!(k)

1 ; !(k)
2 ; : : : ; !(k)

n )T such that each !(k)
j > 0 and

nP
j=1

!(k)
j = 1 be the weight vectors of the criteria.

Moreover, in order to overcome the diverse judgements
by di�erent experts, their opinion is prioritized in
accordance with the weight vector � =

�
�1; �2; : : : ; �K

�
such that �k > 0 and

KP
k=1

�k = 1. Then, the following

steps of the proposed approach are summarized as
follows:

Step 1: Arrange the rating values of the alternative
given by each decision-maker in the matrix form as
follows:

C1 C2 ::: Cn

D(k) =

A1
A2
...
Am

0BBBB@
�(k)

11 �(k)
12 ::: �(k)

1n

�(k)
21 �(k)

22 ::: �(k)
2n

...
...

. . .
...

�(k)
m1 �(k)

m2 ::: �(k)
mn

1CCCCA :

Step 2: For each decision maker D(k); k =
1; 2; : : : ;K, compute CIF-PIA and CIF-NIA corre-
sponding to alternative Ai; i = 1; 2; : : : ;m by using
Eqs. (8) and (9), respectively, and are de�ned as
follows:

(�+)(k)=
��h

(gL+
j )(k);(gU+

j )(k)
i
;
h
(hL+
j )(k); (hU+

j )(k)
i�
;Dh

(r+
j )(k); (s+

j )(k)
iE�

; (13)

and:

(��)(k)=
��h

(gL�j )(k);(gU�j )(k)
i
;
h
(hL�j )(k); (hU�j )(k)

i�
;Dh

(r�j )(k); (s�j )(k)
iE�

; (14)

where:

(gL+
j )(k) = max

j
f(�Lij)(k)g;

(gU+
j )(k) = max

j
f(�Uij )(k)g;

(hL+
j )(k) = min

j
f(#Lij)(k)g;

(hU+
j )(k) = min

j
f(#Uij)(k)g;

(r+
j )(k) = min

j
f(�ij)(k)g;

(s+
j )(k) = max

j
f(#ij)(k)g;

(gL�j )(k) = min
j
f(�Lij)(k)g;

(gU�j )(k) = min
j
f(�Uij )(k)g;

(hL�j )(k) = max
j
f(#Lij)(k)g;

(hU�j )(k) = max
j
f(#Uij)(k)g;

(r�j )(k) = max
j
f(�ij)(k)g;

(s�j )(k) = min
j
f(#ij)(k)g:

Step 3: For each decision maker, compute
the separation measures between the alternatives
Ai from its CIF-PIA and CIF-NIA, denoted by
dq
�
(Ai)(k); (�+)(k)� and dq

�
(Ai)(k); (��)(k)�, re-

spectively;
Step 4: For each decision-maker, the relative close-
ness coe�cient is determined as follows:

C(k)
i =

dq
�
(Ai)(k); (��)(k)�

dq
�
(Ai)(k); (�+)(k)

�
+dq

�
(Ai)(k); (��)(k)

� ;
k = 1; 2; : : : ;K: (15)

where dq
�
(Ai)(k); (�+)(k)� 6= 0.

Step 5: Since each decision-maker may have ob-
tained di�erent rankings towards the alternatives,
the overall �nding of the best alternative remains
unclear. In order to overcome these variable rank-
ings, di�erent values of the experts are aggregated
by assigning a priority value, � = (�1; �2; : : : ; �K)T

to each expert such that �k > 0 and
KP
k=1

�k = 1.

The separation measures of each expert are aggre-
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gated by using these weight vectors, and the overall
measurement values of the alternative are obtained
as follows:

D+
i =

KX
k=1

�k dq
�

(Ai)(k); (�+)(k)
�
;

D�i =
KX
k=1

�k dq
�

(Ai)(k); (��)(k)
�
: (16)

Step 6: Based on these values, D+
i and D�i ,

the closeness coe�cient for an alternative Ai (i =
1; 2; : : : ;m) is determined as follows:

Ci =
D�i

D+
i +D�i

; D+
i 6= 0: (17)

Step 7: Rank the alternative(s) based on the
descending values of Ci's.

5. Illustrative example

In order to demonstrate the above-mentioned ap-
proach, an illustrative example is taken as follows.

5.1. Case study
A multinational company has started its recruitment
process to select the best candidate for the new project.

To do so, a company has published a noti�cation in the
newspaper and, based on it, di�erent candidates have
applied for it. Then, four candidates Ai; i = 1; 2; 3; 4
are to be selected for the interview. To evaluate the
candidates, the company manager has invited four
decision-makers D(1), D(2), D(3), and D(4) and given
them responsibilities to �nd the best candidate for
the company. The panel has decided to evaluate the
candidates Ai; i = 1; 2; 3; 4 on the basis of four criteria
namely C1 : `Educational quali�cation'; C2 : `Technical
knowledge'; C3 : `Communication skills'; C4 : `Work
experience'. In doing so, they �rstly conducted Group
Discussions (GDs) with all the candidates and the
results for each candidate are formulated by a panel
in the form of IVIFNs. Among the pool of applicants
appearing for GD, four candidates were shortlisted for
personal interview, and the results for this stage of the
recruitment process are recorded in the form of IFNs.
Then, the following steps of the proposed approach are
executed in order to �nd the best candidate(s) for the
required post:

Step 1: The rating values of each decision-maker in
the evaluation of the given alternatives are summa-
rized in Table 1. In this table, rating values under
both the recruitment stages are clubbed, which are
the previously obtained IVIFNs (from GD sessions)

Table 1. Rating values of each decision-maker in terms of CIFNs

D
ec

is
io

n
m

a
k
er

C
a
n
d
id

a
te

s
&

w
ei

g
h
ts

C1 C2 C3 C4

D(1)

A1
�h[0.15,0.30], [0.35,0.40]i,h0.20,0.65i� �h[0.13,0.25],[0.40,0.45]i,h0.30,0.60i� �h[0.30,0.45],[0.25,0.30]i,h 0.55,0.33i� �h[0.10,0.30],[0.25,0.35]i,h0.11,0.20i�

A2
�h[0.10,0.15],[0.35,0.40]i, h0.40,0.17 i� �h[0.15,0.22],[0.27,0.30]i,h 0.15,0.29i� �h[0.40,0.45],[0.21,0.33]i,h0.16,0.35i� �h[0.50,0.60],[0.15,0.20]i,h0.35,0.19i�

A3
�h[0.14,0.25],[0.35,0.65]i,h0.10,0.40 i� �h[0.35,0.45],[0.15,0.20]i,h0.30,0.50i� �h[0.45,0.55],[0.15,0.25]i,h0.20,0.80i� �h[0.30,0.50],[0.10,0.30]i,h0.20,0.35i�

A4
�h[0.30,0.35],[0.25,0.45]i,h0.20,.30 i� �h[0.20,0.55],[0.40,0.45]i,h0.20,0.45i� �h[0.15,0.25],[0.20,0.35]i,h0.60,0.20i� �h[0.10,0.29],[0.40,0.50]i,h0.30,0.40i�

Weights 0.17 0.30 0.13 0.40

D(2)

A1
�h[0.10,0.30],[0.35,0.45]i,h0.60,0.10i� �h[0.15,0.20],[0.25,0.29]i,h0.18,0.66i� �h[0.44,0.50],[0.20,0.30]i,h0.18,0.35i� �h[0.10,0.30],[0.25,0.35]i,h0.11,0.20i�

A2
�h[0.20,0.30],[0.40,0.50]i,h0.10,0.40 i� �h[0.30,0.40],[0.10,0.60]i,h0.20,0.40i� �h[0.40,0.50],[0.20,0.30]i,h0.60,0.30i� �h[0.10,0.50],[0.20,0.30]i,h0.40,0.30i�

A3
�h[0.10,0.20],[0.30,0.60]i,h0.40,0.20 i� �h[0.25,0.30],[0.45,0.50]i,h0.60,0.30i� �h[0.30,0.45],[0.20,0.25]i,h0.10 0.80i� �h[0.40,0.50],[0.10,0.30]i,h0.30,0.70i�

A4
�h[0.15,0.45],[0.25,0.30]i,h0.40,0.60 i� �h[0.20,0.25],[0.30,0.35]i,h0.15,0.20i� �h[0.45,0.60],[0.20,0.25]i,h0.29,0.60i� �h[0.16,0.20],[0.25,0.30]i,h0.15,0.30i�

Weights 0.20 0.25 0.15 0.40

D(3)

A1
�h[0.20,0.30],[0.25,0.40]i,h0.15,0.20i� �h[0.30,0.35],[0.40,0.45]i,h0.40,0.30i� �h[0.32,0.40],[0.35,0.45]i,h0.30,0.50i� �h[0.15,0.18],[0.19,0.30]i,h0.30,0.60i�

A2
�h[0.30,0.50],[0.20,0.40]i,h0.10,0.30 i� �h[0.40,0.50],[0.10,0.30]i,h0.20, 0.10i� �h[0.40,0.45],[0.30,0.35]i,h0.60,0.20i� �h[0.10,0.30],[0.20,0.50]i,h0.40,0.30i�

A3
�h[0.25,0.32],[0.40,0.45]i,h0.20,0.30 i� �h[0.30,0.35],[0.38,0.49]i,h0.20,0.62i� �h[0.37,0.42],[0.20,0.29]i,h0.30,0.10i� �h[0.20,0.35],[0.30,0.60]i,h0.20,0.42i�

A4
�h[0.40,0.44],[0.50,0.52]i,h0.30,0.20 i� �h[0.40,0.45],[0.35,0.40]i,h0.30,0.10i� �h[0.10,0.18],[0.15,0.30]i,h0.40,0.50i� �h[0.30,0.40],[0.50,0.55]i,h0.30,0.70i�

Weights 0.18 0.12 0.25 0.45

D(4)

A1
�h[0.30,0.40],[0.20,0.30]i,h0.40,0.60i� �h[0.18,0.30],[0.19,0.34]i,h0.40,0.32i� �h[0.30,0.38],[0.40,0.45]i,h0.30,0.40i� �h[0.30,0.60],[0.20,0.40]i,h0.40,0.20i�

A2
�h[0.10,0.30],[0.20,0.50]i,h0.20,0.10 i� �h[0.25,0.29],[0.32,0.45]i,h0.60,0.10i� �h[0.40,0.45],[0.47,0.50]i,h0.30,0.25i� �h[0.10,0.15],[0.20,0.25]i,h0.30,0.50i�

A3
�h[0.20,0.31],[0.35,0.42]i,h0.30,0.10 i� �h[0.30,0.40],[0.52,0.59]i,h0.30,0.40i� �h[0.18,0.36],[0.20,0.25]i,h0.20,0.40i� �h[0.30,0.35],[0.40,0.45]i,h0.20,0.70i�

A4
�h[0.10,0.15],[0.30,0.40]i,h0.20,0.10 i� �h[0.20,0.30],[0.40,0.50]i,h0.20,0.50i� �h[0.23,0.32],[0.40,0.45]i,h0.30,0.60i� �h[0.16,0.32],[0.17,0.34]i,h0.30,0.40i�

Weights 0.35 0.40 0.12 0.13
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Table 2. Positive and negative ideals for each decision-maker.
Decision PIA C1 C2 C3 C4
maker NIA

D(1) �+
1
�h[0.30,0.35],[0.25,0.40]i,h0.10,0.65i� �h[0.35,0.55],[0.15,0.20]i,h0.15,0.60i� �h[0.45,0.55],[0.15,0.25]i,h0.16,0.80i� �h[0.50,0.60],[0.10,0.20]i,h0.11,0.40i�

��1
�h[0.10,0.15],[0.35,0.65]i,h0.40,0 .17i� �h[0.13,0.22],[0.40,0.45]i,h0.30,0.29i� �h[0.15,0.25],[0.25,0.35]i,h0.60,0.20i� �h[0.10,0.29],[0.40,0.50]i,h0.35,0.19i�

D(2) �+
2
�h[0.20,0.45],[0.25,0.30]i,h0.10,0.60i� �h[0.30,0.40],[0.10,0.29]i,h0.15,0.66i� �h[0.45,0.60],[0.20,0.25]i,h0.10,0.80i� �h[0.40,0.50],[0.10,0.30]i,h0.11,0.70i�

��2
�h[0.10,0.20],[0.40,0.60]i, h0.60,0.10i� �h[0.15,0.20],[0.45,0.60]i,h0.60,0.20i� �h[0.30,0.45],[0.20,0.30]i,h0.60,0.30i� �h[0.10,0.20],[0.25,0.35]i,h0.40,0.20i�

D(3) �+
3
�h[0.40,0.50],[0.20,0.40]i,h0.10,0.30i� �h[0.40,0.50],[0.10,0.30]i,h0.20,0.62i� �h[0.40,0.45],[0.15,0.29]i,h0.30,0.50i� �h[0.30,0.40],[0.19,0.30]i,h0.20,0.70i�

��3
�h[0.20,0.30],[0.50,0.52]i,h0.30,0.20i� �h[0.30,0.35],[0.40,0.49]i,h0.40,0.10i� �h[0.10,0.18],[0.35,0.45]i,h0.60,0.10i� �h[0.10,0.18],[0.50,0.60]i,h0.40,0.30i�

D(4) �+
4
�h[0.30,0.40],[0.20,0.30]i,h0.20,0.60i� �h[0.30,0.40],[0.19,0.34]i,h0.20,0.50i� �h[0.40,0.45],[0.20,0.25]i,h0.20,0.60i� �h[0.30,0.60],[0.17,0.25]i,h0.20,0.70i�

��4
�h[0.10,0.15],[0.35,0.50]i,h0.40,0.10i� �h[0.18,0.29],[0.52,0.59]i,h0.60,0.10i� �h[0.18,0.32],[0.47,0.50]i,h0.30,0.20i� �h[0.10,0.15],[0.40,0.45]i,h0.40,0.20i�

Table 3. Separation measures from ideal solutions corresponding to each decision-maker

Alternatives D(1) D(2) D(3) D(4)

D(1+)
i D(1�)

i D(2+)
i D(2�)

i D(3+)
i D(3�)

i D(4+)
i D(4�)

i

A1 0.2167 0.1539 0.2344 0.1852 0.1361 0.1998 0.1359 0.2214

A2 0.1921 0.1977 0.2166 0.1889 0.1899 0.1625 0.2378 0.1203

A3 0.1082 0.2258 0.1966 0.2173 0.1658 0.1689 0.1909 0.1609

A4 0.2451 0.1262 0.1970 0.1983 0.1780 0.1819 0.1868 0.1803

Table 4. Closeness coe�cients and ranking order with respect to each decision-maker

D(1) D(2) D(3) D(4)

Alternatives C(1)
i Ranking C(2)

i Ranking C(3)
i Ranking C(4)

i Ranking

A1 0.4152 3 0.4414 4 0.5948 1 0.6196 1

A2 0.5071 2 0.4659 3 0.4612 4 0.3359 4

A3 0.6761 1 0.5250 1 0.5047 3 0.4696 3

A4 0.3398 4 0.5016 2 0.5054 2 0.4912 2

and IFNs (from the personal interview round) in the
form of CIFNs;

Step 2: By using Eqs. (13) and (14), the ideal
alternatives namely CIF-PIA and CIF-NIA, are de-
termined for each decision-maker. The corresponding
values are summarized in Table 2;

Step 3: Without loss of generality, we choose q = 2
and compute the distance measure values by using
Eq. (7) for each decision-maker; the obtained results
are summarized in Table 3;

Step 4: Utilize Eq. (15) to compute the closeness
coe�cients with respect to each decision-maker. The
results and the corresponding ranking order of the
alternatives are summarized in Table 4, and observed

that A3 is the best candidate for the decision-makers
D(1) and D(2) while A1 for the other decision-makers;
Step 5: To overcome the ambiguity about the
best alternatives with respect to the decision-makers,
aggregate the ideal distance measurement values, as
given in Table 3, of every decision-maker by using
Eq. (16) corresponding to the �ve di�erent priority
pairs (�1; �2; �3; �4) of decision-makers. The results
are summarized in the fourth and �fth columns of
Table 5;
Step 6: For each priority pair, the values of Ci's
are computed by using Eq. (17), and their results are
summarized in the sixth column of Table 5;
Step 7: Based on the values of Ci's, the ranking
order of the alternatives is summarized in the last
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Table 5. Aggregated closeness coe�cient and ranking for each candidate

Weights Candidates Distance measures Ci Ranking Selected
� D+

i D�i candidate

Case 1

D(1) 0.20 A1 0.1817 0.1884 0.5090 2

A3
D(2) 0.30 A2 0.2031 0.1732 0.4603 4
D(3) 0.40 A3 0.1660 0.1948 0.5399 1
D(4) 0.10 A4 0.1980 0.1755 0.4699 3

Case 2

D(1) 0.20 A1 0.1718 0.1963 0.5333 1

A1
D(2) 0.20 A2 0.2148 0.1579 0.4237 4
D(3) 0.20 A3 0.1705 0.1900 0.5271 2
D(4) 0.40 A4 0.1988 0.1734 0.4660 3

Case 3

D(1) 0.13 A1 0.1612 0.2007 0.5545 1

A1
D(2) 0.15 A2 0.2143 0.1533 0.4170 4
D(3) 0.30 A3 0.1735 0.1836 0.5142 2
D(4) 0.42 A4 0.1933 0.1765 0.4773 3

Case 4

D(1) 0.35 A1 0.1957 0.1827 0.4828 2

A3
D(2) 0.32 A2 0.2074 0.1761 0.4592 3
D(3) 0.16 A3 0.1598 0.2043 0.5612 1
D(4) 0.17 A4 0.2091 0.1674 0.4446 4

Case 5

D(1) 0.42 A1 0.2053 0.1774 0.4635 3

A3
D(2) 0.36 A2 0.2052 0.1826 0.4708 2
D(3) 0.12 A3 0.1552 0.2102 0.5753 1
D(4) 0.10 A4 0.2139 0.1643 0.4343 4

Table 6. Rating values of the worse alternative, A01, for each decision-maker
Decision C1 C2 C3 C4
maker

D(1) �h[0.15,0.20],[0.30,0.45]i,h0.25,0.50 i� �h[0.13,0.20],[0.40,0.48]i,h0.35,0.50i� �h[0.30,0.35],[0.25,0.35]i,h0.60,0.30i� �h[0.10,0.20],[0.20,0.35]i,h0.15,0.10i�
D(2) �h[0.10,0.15],[0.30,0.45]i,h0.62,0.05 i� �h[0.15,0.18],[0.25,0.35]i,h0.20,0.50i� �h[0.44,0.48],[0.20,0.35]i,h0.20,0.30i� �h[0.10,0.25],[0.20,0.39]i,h0.20,0.10i�
D(3) �h[0.20,0.25],[0.25,0.42]i,h0.20,0.15 i� �h[0.32,0.35],[0.40,0.50]i,h0.44,0.20i� �h[0.32,0.38],[0.35,0.50]i,h0.40,0.20i� �h[0.15,0.17],[0.19,0.32]i,h0.35,0.50i�
D(4) �h[0.30,0.35],[0.20,0.35]i,h0.50,0.40 i� �h[0.18,0.25],[0.19,0.39]i,h0.50,0.30i� �h[0.30,0.35],[0.40,0.50]i,h0.40,0.20i� �h[0.30,0.50],[0.20,0.45]i,h0.45,0.15i�

column of Table 5. From this table, we can see that
concerning the di�erent pairs, the best alternative is
either A1 or A3.

5.2. Validity test
The following test criteria are presented by Wang and
Triantaphyllou [9] to validate the approach:

Test Criterion 1: If we replace the rating values of
non-optimal alternative with a worse alternative, then
the best alternative should not change, provided the
relative weighted criteria remain unchanged;

Test Criterion 2: Method should possess a transitive
nature;

Test Criterion 3: When a given problem is de-

composed into smaller ones and the same MCDM
method is applied, then the combined ranking of the
alternatives should be identical to the ranking of the
un-decomposed one.

Below, we have validated these test criteria by our
proposed method.

5.2.1. Validity test by Test Criterion 1
Without loss of generality, we have considered Case 5
of the above-discussed analysis (similarly for the other
cases as given in Table 5), where the priority level
of the decision-makers has been taken as 0.42, 0.36,
0.12, 0.10, respectively. The original ranking order for
the case is A3 � A2 � A1 � A4. Now, in order to
validate it with respect to Criterion 1, the following
decision-makers, given in Table 6, are obtained from
the original matrices after replacing the non-optimal
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Table 7. Comparison analysis with some of the existing approaches

Existing Aggregated closeness coe�cients
Ranking

approaches C1 C2 C3 C4
Fahmi et al. [40] 0:4350 0:5103 0:5618 0:4693 A3 � A2 � A4 � A1

Lu and Ye [30] 0:5293 0:4911 0:4829 0:5171 A3 � A2 � A4 � A1

Biswas and Kumar [25] 0:5471 0:5729 0:5867 0:5553 A3 � A2 � A4 � A1

Gupta et al. [34] 0:5648 0:5021 0:4453 0:5356 A3 � A2 � A4 � A1

Dugenci [21] 0:3510 0:5396 0:5803 0:4187 A3 � A2 � A4 � A1

Wang and Chen [33] 0:5300 0:4917 0:4865 0:5161 A3 � A2 � A4 � A1

alternative (A1) with an arbitrary worst alternative
(A
0
1).

Then, by applying the proposed approach to this
data closeness coe�cients, Ci's, of each candidate,
Ai(i = 1; 2; 3; 4), are obtained as 0:3601, 0:5246, 0:5465,
and 0:4111. Thus, the ranking order of the candidate
is A3 � A2 � A4 � A

0
1, which shows that the best

alternative remains the same, i.e. A3.

5.2.2. Validity test by Test Criteria 2 and 3
Under this test, if the given problem is decomposed
into sub-problems, namely fA2; A3; A1g, fA2; A3; A4g,
and fA3; A1; A4g, and the same procedure steps of
the approach are applied, then we get the ranking
orders of these sub-problems as A3 � A1 � A2,
A3 � A2 � A4, and A3 � A1 � A4, respectively.
Therefore, by combining these, we obtain the overall
ranking order of the alternative asA3 � A1 � A2 � A4,
which is the same as that of the original ranking order;
hence, it characterizes the transitive property. Thus,
the proposed approach is valid under test Criteria 2
and 3.

5.3. Comparative studies
In order to compare the serformances of the pro-
posed approach with respect to the existing ap-
proaches [21,25,30,33,34,40] under the CFSs, IVIFSs,
IFSs, and interval-valued FSs environments, an anal-
ysis has been conducted. To apply these existing
approaches to the considered data, �rst, the rating
values of CIFNs are converted into these numbers
by taking the rating corresponding to IFNs as zero.
Further, without loss of generality, a case is considered
by taking the weight vector of the decision-makers as
� = (0:42; 0:36; 0:12; 0:10)T and, hence, the existing
approaches are applied to the considered data. The
results computed by these di�erent approaches are

summarized in Table 7, and it is concluded that the
ranking order of the given alternatives is A3 � A2 �
A4 � A1; hence, the best alternative is A3 that is in
agreement with the proposed approach results given in
Table 5, validating the stability of our approach.

According to the result of comparing these exist-
ing approaches with general intuitionistic sets (IVIFSs
or IFSs), the proposed DM method under the CIFS
environment contains much more evaluation infor-
mation on the alternatives by considering both the
IVIFSs and IFSs simultaneously, while the existing
approaches contain either IFS or IVIFS information.
Therefore, the approaches under the IVIFSs or IFSs
may lose some useful information, either IVIFNs or
IFNs, of alternatives which may a�ect the decision
results. Furthermore, it is noted from the study that
the computational procedure of the proposed approach
is di�erent from the existing approaches under the
di�erent environment; however, the proposed result in
this paper is more rational to reality in the decision pro-
cess due to the consideration of the consistent priority
degree between the pairs of the arguments and between
di�erent experts. Moreover, the corresponding studies
under the IVIFS or IFS environment can be considered
as the special case of the proposed operators. Finally,
the existing DM methods under IVIFSs or IFSs cannot
deal with the DM problem by CIFS. Therefore, the
proposed approach is more generalized and suitable to
capture the real-life fuzziness more accurately than the
existing ones.

In addition some characteristics of the proposed
method are compared with those of the aforementioned
methods, as listed in Table 8.

6. Conclusion

CIFS is one of the successful extensions of the IFS in
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Table 8. The comparative characteristics of di�erent methods.

Whether 
exible to Whether considering Whether describing Whether having the

express a wider range more than one hybrid information characteristic of

Methods of information decision-maker at the same level generalization

Lu and Ye [30] X � � �
Wang and Chen [33] X � � �
Gupta et al. [34] X X � �
Dugenci [21] X X � �
Biswas and Kumar [25] X � � �
Fahmi et al. [40] X X � �
The proposed method X X X X

which a degree of the disagreement (in the form of IFS
values) corresponding to the agreed interval region (in
form of IVIFS) was used to represent the data. Consid-
ering its advantages, this study presents an extended
TOPSIS approach to solve the group Decision Making
(DM) problems under the CIFS environment. To
this end, some generalized distance measures between
the pairs of the CIF numbers were proposed. The
prominent characteristic of these distance measures
was also studied. Then, based on these measures, an
extended TOPSIS group DM approach was presented
for solving MCGDM problem under CIFS environ-
ment. The proposed approach was illustrated with a
numerical example, and their results were compared
with some of the existing approaches. In addition, the
characteristics of the proposed approach comparable
to those of the existing approaches were summarized.
From this study, it was obtained that the several
approaches under CFSs, IVIFSs, and/or IFSs were the
special cases of the proposed approach. Thus, the
proposed approach is more generalized and suitable to
capture the real-life fuzziness more accurately than the
existing ones. In the future, the result of this paper can
be extended to the Pythagorean fuzzy environment and
other uncertain and fuzzy environments [12,35,43{45].
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