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Abstract. This paper studies the multi-project scheduling problem that involves multiple
projects with di�erent importance weights, prede�ned assigned due dates, activities with
uncertain durations, and renewable constrained resources. The resource sharing policy
is applied to share resources among projects. Due to the environmental rapid changes
and, also, the uniqueness of projects, the probability distribution function of uncertain
durations cannot be estimated with con�dence. Besides, the multi-project scheduling
problem with its large-scale investment dictates a conservative approach to deal with
the existing uncertainty. Therefore, the Robust Resource-Constrained Multi-Project
Scheduling Problem (RRCMPSP) is studied in this paper, while the maximum total
weighted tardiness of the projects should be minimized. A scenario-relaxation algorithm
is implemented, which results in optimal solutions for the RRCMPSP. The aim is to �nd
an optimal structure that contains all of the projects such that it transfers the resources
between the activities based on the resource sharing policy, while the maximum weighted
di�erences between the projects' �nish times and their assigned due dates will be minimum.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

The Resource-Constrained Project Scheduling Problem
(RCPSP) aims to minimize the project makespan while
considering precedence and resource constraints [1].
This problem is one of the most well-known problems
to which researchers have devoted considerable e�orts
over the past decade.

The RCPSP is applicable in many areas such
as make to order industries, construction, software
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development, etc. In modern enterprises in which
a large number of projects are set up to achieve
the product innovation, the key resource is mostly
manpower, which belongs to renewable resources. In
contrast to the importance of renewable resources and
its role in project management success, the renewable
resources have not attained su�cient consideration in
the literature [2]. As a brief de�nition, the renewable
resources are those resources such as manpower, ma-
chines, etc. that are constrained and that there is a
certain available capacity of this kind of resources in
each time period. By �nishing one activity, its required
renewable resources can be released and applied to
other activities. In this paper, the project scheduling
problem is investigated under the renewable resource-
constraint condition.

The Resource-Constrained Multi-Project Sched-
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uling Problem (RCMPSP) as the extension of the
RCPSP is considered as the simultaneous scheduling of
two or more projects, which demand the same scarce
sources [3]. Multi-project management is a major way
of doing business both in manufacturing and services,
and being a large-scale complex problem constitutes
an important research area [4]. According to the study
by Payne [5], up to 90% of all projects in the world are
executed in a multi-project management environment.
It is notable that the management of multiple
projects presents challenges that are fundamentally
di�erent from single project management [6]. Thus,
managing the multi-project problem is not simply an
aggregate of single project e�orts. In this paper, the
multi-project management problem is investigated.

During the project execution in an indeterminate
environment, the projects are subject to considerable
uncertainty. In other words, due to unavailable re-
sources, delays in the delivery of materials, absent em-
ployees, bad weather conditions, accidents, and many
other uncontrollable factors, some project activities
may last longer than expected, threatening the opera-
tional viability of the planned schedule [7]. Therefore,
the obtained results of the project scheduling model
with deterministic parameters are no longer valid. In
other words, when the project parameters take realized
values, the usability of any result of the deterministic
models is under question. Therefore, it is conceivable
that as the data takes values di�erent from the nominal
ones, several constraints may be violated and the
optimal solution found using the nominal data may no
longer be optimal or even feasible [8]. In this paper,
the uncertainty of the activities' duration is under
study.

There are several approaches to scheduling
projects under uncertainty. In order to select an
appropriate approach for dealing with uncertainty in
problems, �rst of all, we should investigate the na-
ture and characteristic of the studied problem. The
fundamental approaches to scheduling projects under
uncertainty are reactive scheduling, stochastic schedul-
ing, scheduling under fuzziness, proactive (robust)
scheduling, and sensitivity analysis [9].

Considering the uniqueness of each project in
the real world, it is not uncommon that its activ-
ities are seldom or even never have been executed
before. Therefore, these indeterminacies cannot be
treated as fuzziness, probability, roughness, ambiguity
or entropy. Instead, uncertainty theory can be a
useful tool [1]. Robust Optimization is an appropriate
approach that is totally compatible with the nature of
the project scheduling problem and is applied in this
paper. Robust optimization belongs to an important
methodology for dealing with optimization problems
with data uncertainty. In this type of the method, a
deterministic data set is de�ned within the uncertain

space, and the best solution, which is feasible for
any realization of the data uncertainty in the given
set, is computed through the solution of the robust
counterpart optimization problem [10].

The major advantage of robust optimization com-
pared to stochastic programming is that no assump-
tions regarding the underlying probability distribution
of the uncertain data are required [11]. It is also
true when comparing the robust optimization approach
with the fuzzy approach because there is no need for
RO to de�ne the membership function for the uncertain
parameter.

On the other hand, in this paper, the multi-
project scheduling problem is investigated that requires
time, cost, resources, etc. in a large-scale quantity.
Therefore, it seems that a conservative approach is
essential that can immunize the project scheduling
problem against data uncertainty. It is exactly the
characteristics of the robust optimization approach
that is applied for dealing with uncertainty in this
paper.

In this paper, the robust optimization approach is
applied to the multi-project scheduling problem under
resource constraint and uncertain activities' duration
to cover some shortcomings in the existing multi-
project models. The problem is represented in a two-
stage model in which the objective function is to
minimize the maximum total weighted tardiness of the
projects.

The structure of the paper is as follows: Sec-
tion 2 describes the related literature review. The
de�nitions of the problem are presented in detail in
Section 3. The proposed mathematical model and
the two-stage approach are explained in detail in
Section 4. Section 5 describes one simple numerical
example with its results to clarify the proposed model.
Computational experiments are explained in Section
6. Finally, the conclusion and further research are
presented in Section 7.

2. Related works

The related works about the multi-project scheduling
problem, the resource management policies, and the
project scheduling problem under uncertainty are men-
tioned in this section briey.

2.1. Multi-project scheduling problem
The RCMPSP comes from practical multi-project envi-
ronments, in which a number of projects concurrently
share limited resources in precedence or other con-
straints [12]. In fact, the single project management
rarely occurs today, and companies usually manage
more than one project simultaneously called \multi-
project management". The importance of multi-
project management has increased over the last decades
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and is still growing. In the middle of the last century,
project and multi-project management gained momen-
tum; the share of project work has increased since
then, and the penetration of �rms by corresponding
management methods has not stopped at the beginning
of this century [13]. The researchers concur that
the literature of the project management problem is
heavily biased towards the single project environment,
while there are few studies on the multi-project prob-
lem [14].

The main reason for the insigni�cant fruition
with regard to the topic of multi-project scheduling
compared with the single project one comes from its
high complexity, which is a�ected by many factors
such as the huge solution space, intense contending for
resources, various and conicting objectives, the inter-
project dependence and priority, the high level of un-
certainty, and so on [12]. Therefore, many researchers
have studied recently the multi-project problem to
overcome this identi�ed gap [15{18]. In addition, some
heuristic priority rules and metaheuristics have been
studied to solve the RCMPSP [19{22].

2.2. Resource sharing policy
In the literature of the multi-project problem, the
primary topic is the allocation of common resources
to simultaneous projects since the resource-based re-
lations de�ne the multi-project problem by joining
the individual projects together. The characteristics
of resource usage by the individual project in the
multi-project environment are described in accordance
with the resource management policy [4]. In the
multi-project problem, there are several projects that
are executed in parallel, and they use the common
resource pool for one resource type, at least. There are
several approaches to optimally allocating the resources
to the activities of multiple projects, such as the
resource sharing policy, the resource dedication policy,
etc. [16,17,19]. Regarding the existence of di�erent
existing policies, in this paper, the most common one,
i.e., resource sharing policy, is applied to determine how
to allocate the common resources to projects.

2.3. Project scheduling under uncertainty
There are many studies in which the deterministic envi-
ronment is considered for the project scheduling prob-
lem [15,16,18,19,23]. However, in the real world, un-
certainty during the project execution exists. In order
to consider uncertainty in problem modeling, di�erent
assumptions can be applied. In some researches, the
costs of activities are considered uncertain [24,25] while
studying the project scheduling problem. However, the
most often objective function in the project scheduling
problem is the optimization of the project duration [9].
Thus, the duration of activities with direct inuence on

the makespan of the project is studied as an uncertain
parameter in the following studies.

2.3.1. Stochastic project scheduling problem
The stochastic RCPSP or Stochastic RCPSP (SR-
CPSP) is the optimization problem that is solved when
the deterministic durations in RCPSP are replaced
by stochastic variables. While the goal in the classic
RCPSP is to �nd a schedule with a minimum schedule
length or makespan, the goal in SRCPSP is to minimize
the expected makespan [26]. For more information,
please refer to many studies that apply the stochastic
approach to uncertainty in the project scheduling
problem [27{29]. The serious challenging point for
stochastic RCPSP is that, according to the main
characteristic of the project, i.e., uniqueness, there
are di�culties accessing enough historical data to �t
a probability distribution for an uncertain parameter.
Therefore, applying the stochastic approach to the
project scheduling problem is susceptible to limitations
from the practical point of view.

2.3.2. Fuzzy project scheduling problem
The fuzzy project scheduling approach is based on
the concept of fuzzy activity duration, produces fuzzy
schedules, and requires the membership function of
the uncertain activity duration [30]. In this approach,
the duration of the activities is estimated by experts,
and the project manager deals with imprecise and
vague judgment. For more information about fuzzy
RCPSP, please refer to [31{34]. Therefore, similar
to the determination of the distribution function for
activities' duration in the stochastic approach, there
are some challenges for project managers to determine
the membership function for fuzzy activity durations.

Thus, �tting distribution function with its pa-
rameters or de�ning fuzzy membership function for
the activities' duration has challenges from a practical
point of view. In other words, this can seriously limit
the application of these two approaches to the project
scheduling problem.

2.3.3. Robust project scheduling problem
The robust optimization approach can immunize the
project scheduling problem against uncertainty. There
are only three studies that apply this approach to
the RCPSP with uncertain duration in the single
project problem, as will be mentioned in the following.
Chakrabortty et al. [35] studied the RCPSP in which
the activity durations were represented by random vari-
ables with di�erent probability distribution functions.
They proposed a robust optimization-based approach
that produced reasonably good solutions under any
likely input data scenario. Their proposed approach
guarantees the feasibility of solutions and produces
high-quality solutions. Bruni et al. [7] proposed an
adaptive robust optimization model to derive the re-
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source allocation decisions that minimized the worst-
case makespan under general polyhedral uncertainty
sets, assuming that the activity durations were subject
to interval uncertainty. Moreover, a general decomposi-
tion approach was proposed by them to solve the robust
counterpart of the RCPSP, further tailored to address
the uncertainty set with the protection factor. Artigues
et al. [36] proposed models for project scheduling when
there was considerable uncertainty in the activity du-
rations. They developed and implemented a scenario-
relaxation algorithm and a scenario-relaxation-based
heuristic. The �rst algorithm produces optimal solu-
tions, but requires excessive running times even for
medium-sized instances; the second algorithm produces
high-quality solutions for medium-sized instances and
outperforms two benchmark heuristics.

The above-mentioned studies have been done in
the area of the single project scheduling problem.
According to the large-scale multi-project scheduling
problem, the e�ect of uncertainty can be more de-
structive. In the multi-project scheduling problem,
some projects are related to each other by the common
resources, and the investment of time, cost, resources,
etc. is done on a large scale. Therefore, the ap-
plication of the robust optimization approach as a
more conservative approach that can immunize the
problem against uncertainty is totally necessary. To
the best of our knowledge, there is no research on the
application of the robust optimization approach in the
multi-project scheduling area. In the present paper,
the robust optimization approach is applied to the
multi-project scheduling problem under the resource
constraint and uncertain duration of activities. In
this research, the resource sharing policy is considered.
Each project has a determined due date. In addition,
the importance weight of the projects is di�erent. The
aim is to obtain an optimized structure for all of
the projects in such a way that the maximum total
weighted tardiness of the projects will be minimum. In
this study, the development of the existing models can
be demonstrated in two ways according to Figure 1.

3. Problem statement

The RCMPSP with uncertain activity durations is
studied in this paper. The considered multi-project
problem contains de�ned projects, G = 1; 2; :::; q. All
of the projects are shown by activity-on-node network,
Graph = (V;E), in which the nodes demonstrate
the activities of projects and the arcs represent the
precedence relations between activities, E. The set
of activities for each project is indicated by V =
f0; 1; :::; n + 1g. For each activity i 2 V of project
g, there is a set Pig � R+ containing the possible
values for the duration of activity i of project g (R+
is the set of non-negative real numbers). Therefore,
in the discrete set of Pig =

�
pig1; pig2; pig3; :::; pigjPij

	
,

the minimum and maximum durations for activity i of
project g are Pmin

ig � min
Pig

Pigc and Pmax
ig � max

Pig
Pigc,

respectively. The durations of activities 0 and n + 1
are considered zero: P0g = Pn+1;g = f0g ;8g. It is no-
ticeable that when pig 2 Pig, pg = (p0g; p1g; :::; pn+1;g)
shows one possible scenario for the activities' duration
of project g. When jPigj = 1;8i 2 V; 8g 2 G, the
problem converts to the deterministic RCPSP.

As mentioned before, the precedence relationship
between activities is shown by the binary relation of
E � V � V . The activity i of project g can be started
after all its predecessors are �nished. The projects
apply the resource sharing policy. It means that they
utilize common resources from the resource pool. There
are bigk 2 N units of resource k required by activity i 2
V of project g during its execution. In each project, the
required resources in any type for dummy activities of 0
and n+1 are zero: b0gk = bn+1;g;k = 0; 8g 2 G; 8k 2 R.

A set of activities F � V is one \Forbidden Set"
of a precedence relation A if it is an anti-chain of A
and at least for one type of resource k 2 R:

P
i2F

bik >

bk. Therefore, these sets can give rise to resource
conicts during project execution. A subset-minimal
forbidden set is called a \Minimal Forbidden Set" or
mfs. The set of mfss for precedence relation A is

Figure 1. The model development.
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written as F (A) [36]. Any of the resource conicts can
be removed by adding extra precedence relationships
to the primary precedence graph for postponing some
activities such that the makespan can be determined
by applying an Early Start policy (ES-policy) on
an extended graph. Therefore, the extra precedence
relationships X � (V � V )nE should be found in such
a way that the extended graph, Graph0(V; (E [ X)),
is acyclic and F (T (E [ X)) = � [7]. According
to Balas [37], the set X containing pairs of activities
that lead to one feasible ES-policy can be called a
su�cient selection. After de�ning one selection and
adding the extra precedence relationship X to the
primary precedence graph E, the resource constraints
can be ignored according to the precedence relationship
in the EUX, and the makespan can be obtained by
calculating the critical path problem on the extended
graph, Graph0(V; (E [X)) [7].

The binary decision variable, xigjg0 , is introduced
in this paper to show the precedence relationship
between the activities. According to the characteristics
of the multi-project scheduling problem, one activ-
ity and its predecessor activities are not essentially
within the same project, and it is possible that one
activity becomes the predecessor of another activity
from a di�erent project. Therefore, the precedence
relationship between the two projects is introduced
in this paper based on two reasons. The �rst reason
is that, in many real-world multi-project scheduling
problems, the precedence relationship exists between
the activities of two projects. For example, consider
two projects in an area with low population density:
(1) construction of the residential complex and (2)
installation of the town gas station. In this example,
the high-pressure equipment installation activity in the
second project is the predecessor of the installation and
testing of the town gas system of the residential com-
plex in the �rst project. In the cases with no precedence
relationship between two projects, the special case may
occur with g = g0 in the xigjg0 notation.

The second reason is relevant to the applied cal-
culation method. According to the minimal forbidden
set, any of the resource conicts can be removed by
adding extra precedence relationships (X) to postpone
some activities. Based on the resource sharing policy
in the multi-project scheduling problem, the activities
of di�erent projects utilize common resources from the
resource pool. Therefore, the extra precedence rela-
tionships (X) can be also created between two activities
from di�erent projects. Therefore, the variable xigjg0
should present both of the projects between which the
extra precedence relationship (X) exists.

In the Graph0(V; (E [ X)), the start time of
activity i of project g, si;g(X; p), is the longest path
from the scheduling time horizon 0 to activity i of
project g. Thus, one should check the paths originating

from the start activities of all projects (not only the
start activity of the project g containing i) while
calculating si;g(X; p).

The resource ows between the activities are
demonstrated by the transshipment networks [36],
which can be called (resource) ow network. The
number of resource types k transferred from the end of
activity i of project g to the start of activity j of project
g0 is represented by ow f(i; g; j; g0; k) � figjg0k 2 N.
It is notable that, for each resource type, a separate
ow network will be created. The resource ow should
satisfy the conservation constraints and, also, the lower
and upper bounds on the ow for intermediate (not
start or end) nodes [36].

There are several selections for the same schedule.
Bruni et al. [7] presented a numerical example for two
di�erent selections in the project with 5 activities.
They illustrated that when the activities' durations
were deterministic, the project makespan would be the
same for two di�erent selections. However, accord-
ing to the uncertainty condition, when the delays of
the activities are also considered, di�erent selections
cause di�erent makespan. This example shows the
importance of proper resource allocation policy under
uncertainty. They also stated that, in some cases,
especially in the multi-project scheduling problem, the
resources cannot be easily transferred between the
activities; hence, the decisions about resource transfers
should be made with greater care and sensitivity.
As mentioned earlier, to the best of our knowledge,
there has been no research on the investigation of this
problem in the multi-project scheduling environment.

In this paper, the Robust Resource-Constrained
Multi-Project Scheduling Problem (RRCMPSP) is
studied as a two-stage robust optimization model. In
this study, some projects are considered as a multi-
project problem and should be scheduled while the
durations of activities are not certain. For each project,
a due date, DDg, is determined by the global project
manager as a deadline for �nishing each of the projects
and is noti�ed to the local project managers. The aim
is to minimize the deviation of each project makespan
from its due date, while the required resources are in
common and the activities' durations are uncertain. Of
note, in the multi-project problem, the cost of deviating
from the due date is not equal for di�erent projects.
Therefore, the degree of priority and importance of
project g, demonstrated by wg as its weight, should
be considered in the calculation such that:X

g

wg = 1:

The question is how to allocate and share the com-
mon resources between di�erent activities so that the
maximum weighted tardiness for all projects, shaping
multi-project, can be minimized while the activities'
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durations are uncertain. Therefore, this study seeks
one su�cient selection of all projects in which the
maximum weighted di�erence between the projects'
makespan and their due dates is minimized.

4. Mathematical modeling of the problem

The resource-constrained multi-project scheduling
problem under uncertain durations of activities is
formulated as a two-stage robust optimization model.
In the following, the notations of indices, parameters,
and variables used in the proposed models are repre-
sented.

4.1. The notations
A list of the notations applied in the proposed models
is as follows:

Indices
G The set of projects in the multi-project

problem
V The set of activity nodes
R The set of renewable resources
E The set of precedence relations between

activities
P The set of scenarios belonging to

activities' durations

Parameters
wg The weight (priority degree) of project

g
DDg The due date of project g

Phi;g The duration of activity i in project g
under scenario h

bigk The required resource type k for
performing activity i of project g

bk The capacity of resource type k

Pmin
i;g The minimum scenario value for the

duration of activity i in project g
Pmax
i;g The maximum scenario value for

duration of activity i in project g

Variables
TTa� The total weighted tardiness of

projects
Tag The tardiness of project g

Shi;g The start time of activity i of project
g under scenario h

xigjg0 The decision variable with value one
when activity i of project g is the
predecessor of activity j of project g0;
otherwise, it takes the value zero

figjg0k The number of resource units of type k
transferred from the end of activity i
of project g to the start of activity j of
project g0

aig The decision variable with value one
if the duration of activity i of project
g takes the maximum value, and it
takes the value zero if the duration
of activity i of project g takes the
minimum value

LPg The longest path of project g in the
multi-project network

'min
g00igjg0'

max
g00igjg0The minimum and maximum ows

belonging to project g00 transferred
from activity i of project g to activity
j of project g0, respectively

Si;g The start time of activity i belonging
to project g

4.2. The �rst-stage model
The following is the mathematical formulation of the
�rst stage model:

minTTa� =
GX
g=1

wg:Tag; (1)

s.t.

Tag � Shn+1;g �DDg; 8g 2 G;h = 1; :::; jP j; (2)

Shj;g0 � Shi;g + Phi;g �M(1� xigjg0);
8(i; j) 2 V � V; 8g; g0 2 G�G; i 6= j or

g 6= g0; h = 1; :::; jP j; (3)X
g0

X
i2V;
i6=0

X
g

f0gig0k = bk; 8k 2 R; (4)

X
g

X
j2V;
j 6=n+1

X
g0
fjgn+1g0k = bk; 8k 2 R; (5)

X
g02G

X
j2V;j 6=n+1
(j 6=i or g 6=g0)

fjg0igk = bigk;

8i 2 V n f0; n+ 1g ; 8k 2 R; 8g 2 G; (6)X
g02G

X
j2V;j 6=0
(j 6=i or g 6=g0)

figjg0k = bigk;

8i 2 V n f0; n+ 1g ; 8k 2 R; 8g 2 G; (7)
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figjg0k � min fbigk; bjg0kg :xigjg0 ;
8(i; j) 2 V � V; 8(g; g0) 2 G�G; 8k 2 R;
i; j 6= 0; n+ 1; (8)

xigjg0 = 1; 8(i; g; j; g0) 2 E; (9)

S0g = 0; 8g 2 G; (10)

Tag � 0; 8g 2 G; (11)

Shi;g � 0; 8i 2 V; 8g 2 G; h = 1; :::; jP j; (12)

figjg0k � 0; 8(i; j) 2 V � V;
8(g; g0) 2 G�G; 8k 2 R; (13)

xigjg0 2 f0; 1g ; 8(i; j) 2 V � V ; 8g; g0 2 G�G:
(14)

The minimization of the total weighted tardiness
of the projects is displayed in Eq. (1) as the objective
function. The tardiness of each project is the di�erence
between the project's makespan and its determined due
date and is obtained by Constraint (2). Constraint (3)
demonstrates the precedence relationships between the
activities, where M is a big number. Therefore, based
on this constraint, the successor activity, j, cannot
start earlier than the �nish time of its predecessors
under each scenario. The sum of resource ows (type k)
sent from dummy start nodes 0 is equal to the available
capacity of resource (type k), as mentioned in Eq. (4).
In addition, based on Eq. (5), the sum of resource ows
type k sent from the activities of all projects to the
dummy �nish nodes n + 1 of projects is equal to the
available capacity of resource type k.

The sum of incoming resource ows (type k) from
other activities to activity i of project g is equal to the
required resource type k for performing the activity i
of project g, which is described in Eq. (6). Similarly,
Eq. (7) ensures that the sum of resource ows (type k)
exiting from activity i of project g to other activities is
equal to the required resource type k for executing the
activity i of project g. Constraint (8) ensures that the
resource ow (type k) transferred from the activity i of
project g to the activity j of project g0 is quite equal to
the minimum value of fbigk; bjg0kg. In addition, this
equation prevents resource transferring between two
activities, where there is no precedence relationship
between them.

According to Eq. (9), the binary variable, x,
is equal to 1 for the two activities with precedence
relationship between them. The start time of (dummy)
activities 0 for all projects is zero (the start point of
the scheduling horizon), as demonstrated in Eq. (10).

Based on Constraint (11), the tardiness of projects
cannot be negative. Constraints (12) and (13) intro-
duce the nonnegative decision variables of the start
time of activities and the resource ow between the
activities, respectively. At last, the binary variable, x,
is presented in Eq. (14).

In this stage, the best structure E[X is obtained
for the existing scenarios regarding the precedence re-
lationships and resource requirements. This structure
is the output of the �rst-stage model, which is required
as an input for the second-stage model. In fact, this
structure is achieved while the total weighted tardiness
of projects as an objective function is minimized.

4.3. The second-stage model
In this section the mathematical formulation for the
second stage model is presented:

maxTTa� =
GX
g=1

wg:Tag; (15)

s.t.

Tag � (LPg �DDg); 8g 2 G; (16)

LPg00 =
X

(i;g;j;g0)2EUX
(pmin
ig :'min

g00igjg0 + pmax
ig :'max

g00igjg0);

8g00 2 G; (17)X
(i;g;j;g0)2EUX

'max
g00igjg0 � aig;

8i 2 V n f0; n+ 1g ; 8g 2 G; 8g00 2 G; (18)X
(i;g;j;g0)2EUX

'min
g00igjg0 � 1� aig;

8i 2 V n f0; n+ 1g ; 8g 2 G; 8g00 2 G; (19)X
(i;g;j;g0)2EUX

('min
g00igjg0 + 'max

g00igjg0) = 1;

for i = 0; 8g00 2 G; (20)X
(i;g;j;g0)2EUX

('min
g00igjg0 + 'max

g00igjg0) = 1;

8g00 2 G; j = n+ 1; g0 = g00; (21)

'min
g00igjg0 = 0; 8i 2 V; 8g; g00 2 G�G;

j = n+ 1; g0 6= g00; (22)

'max
g00igjg0 = 0; 8i 2 V; 8g; g00 2 G�G;

j = n+ 1; g0 6= g00; (23)
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X
(i;g;j;g0)2EUX

'min
g00igjg0 + 'max

g00igjg0

=
X

(j;g0;i;g)2EUX
'min
g00jg0ig + 'max

g00jg0ig;

8i 2 V n f0; n+ 1g ; 8g 2 G; 8g00 2 G; (24)

Tag � 0; 8g 2 G; (25)

'min
g00igjg0 � 0; 8(i; g; j; g0) 2 EUX; 8g00 2 G; (26)

'max
g00igjg0 � 0; 8(i; g; j; g0) 2 EUX; 8g00 2 G; (27)

xigjg0 2 f0; 1g ; 8(i; j) 2 V � V ; 8g; g0 2 G�G;
(28)

xigjg0 = 1; 8(i; g; j; g0) 2 E; (29)

aig 2 f0; 1g ; 8i 2 V; 8g 2 G; (30)

a0g = an+1g = 0; 8g 2 G; (31)

S0g = 0; 8g 2 G: (32)

In the second-stage model, the worst-case scenario
should be found in such a way that the total weighted
tardiness of the projects is maximized, as represented
in Eq. (15). Eq. (16) shows how to obtain the projects'
tardiness. In this equation, the �nish time of each
project is obtained by the longest path (LPg) method
in the overall network of the projects, as demonstrated
in Eq. (17). In the single project problem, the longest
path can be obtained by

P
(i;j)2EUX

(pi:'ij), where pi is

the duration of activity i and 'ij is the ow transferred
from activity i to activity j. The multiplication of
pi and 'ij leads to the nonlinearity of this formula.
The binary variable, ai, is introduced to linearize the
formula and is converted it to

P
(i;j)2EUX

(pmin
i :'min

ij +

pmax
i :'max

ij ), in which pmin
i and pmax

i are the minimum
and maximum values of the duration belonging to
activity i, respectively. For detailed information about
calculating the longest path of \single project" and how
to linearize it, please refer to Artigues et al. [36].

In the multi-project scheduling problem, the EUX
is the overall structure of all projects including the
primary precedence relationships between activities
(E) and the extra precedence relationships caused by
resource constraint (X). Therefore, in the studied
problem, the projects are interrelated with each other
in this structure. Thus, for obtaining the longest paths
of the projects, a ow per project should be sent from
0 activities to other activities in the overall structure,
as demonstrated by 'g00igjg0 . It is worth mentioning

that the �rst index (g00) in the decision variable 'g00igjg0
shows the project for which we want to calculate the
longest path.

In order to linearize the longest path formula,
Constraints (18) and (19) are created in which the
binary variable, aig, takes the value 0 when the
duration value of activity i of project g is minimum
and, thus, 'max

g00igjg0 = 0. On the other hand, aig takes
value 1, showing that the duration value of activity i
of project g is maximum and, thus, 'min

g00igjg0 = 0.
As mentioned before, the predecessor of one

activity can be the activity within the same project
or from the other projects. Therefore, the longest path
of one project does not necessarily originate from the
activity 0 of that project, and it can also start from
the 0 activity of other projects. According to Eq. (20),
the summation of ows by calculating the longest path
of the project g00, originated from start nodes 0 of all
projects, to the overall structure should be equal to
1. Besides, Eq. (21) implies that the ow calculating
the longest path of project g00 should end in the node
n+ 1 of project g00. Eqs. (22) and (23) ensure that the
ow calculating the longest path of one project cannot
enter the end node n + 1 of other projects. For each
ow, the conservation law should be satis�ed, i.e., the
sum of ows entering the activity i of project g should
be equal to the sum of ows exiting from the activity i
of project g. This law is presented in Eq. (24).

Constraint (25) introduces the nonnegative vari-
able of the projects' tardiness. The ows related to the
longest path calculations are represented in Eqs. (26)
and (27). The binary variable, x, is de�ned in Eq. (28),
while it should take value 1 for the activities with
precedence relationship between them, as stated in
Eq. (29). The binary variable, a, is described in
Eq. (30). Eq. (31) represents that, for all start nodes
0, the variable a takes value 0. Finally, the start time
of the projects is set at time 0, as shown in Eq. (32).

4.4. The two-stage exact approach
The scenario relaxation algorithm is an iterative op-
timization algorithm that generates optimal robust
decisions with respect to the deviation and relative
robust objectives. The key insight of the scenario
relaxation algorithm is that, for a problem with a
large number of possible scenarios, only a small subset
of scenarios actually has to be explicitly examined
when searching for the deviations from the optimal
(or relative) robust solution. For more information
about the scenario relaxation algorithm, please refer
to [38].

In this paper, the objective function is to minimize
the maximum total weighted tardiness of the multi-
project problem under uncertain activities' durations.
A two-stage model is presented for the RRCMPSP
in Sections 4.1 and 4.2. Based on the mentioned
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modeling, the set of decision variables can be divided
into two groups. The �rst-group variables are those
related to the su�cient selection decisions X 2 �. The
second group variables are related to the calculation of
the longest paths in the structure obtained by the �rst-
stage model. According to the Benders alphabet, the
�rst-stage model corresponds to the \Master problem",
and the second-stage model is similar in spirit to the
\Sub problem".

According to Artigues et al. [36], a duration
scenario p is extreme if pi = pmin

i or pi = pmax
i for all

i 2 �. They also proved that there is always an extreme
duration scenario for which the maximum absolute
regret of an ES-policy X is reached. Therefore, in the
worst case for the studied problem in this paper, the
number of algorithm iterations can be jP j = 2�, where
� is the number of activities belonging to all projects.

In this approach, the scenarios are gradually
added to the problem structure in the sequential
iterations. First, one scenario of activity durations
is considered (any arbitrary number of scenarios can
be considered), and the �rst-stage model is solved.
The aim is to obtain the structure E [ X, for which
the total weighted di�erences between the projects'
makespan and their due dates are minimized. In
other words, considering the existing scenario, we
search for an optimized E [ X with minimum total
weighted tardiness of the projects. In the next step,
the second-stage model is the worst-case scenario for
the obtained structure of the �rst-stage model such
that the objective function (total weighted tardiness of
the projects) will be maximized. Then, the mentioned
scenario should be added to the scenario set of the
�rst-stage model. This algorithm continues until the
objective functions of the both stages become equal.
In other words, the algorithm terminates when the
minimum weighted tardiness of the optimized structure
for the existing scenarios is equal to the maximum
weighted tardiness of the worst-case scenario for the
assigned structure.

The steps of the applied approach are described
in the following, where iter is the counter of algorithm
iterations:

Step 1 (preliminary). The set P̂1 containing only
one scenario p1 for the duration of all activities of the
projects is considered. In addition, iter = 1, LB = 0,
and UB = +1 are assumed;

Step 2 (�rst-stage model). Models (1){(14)
are solved in order to obtain LB = TTa�(P̂iter).
In addition, the corresponding ES-policy, Xiter, is
obtained;

Step 3 (second-stage model). Models (15){
(32) are solved and the maximum TTamax(Xiter)
for Xiter is obtained. The corresponding worst-

case scenario, piter+1, is obtained. In addition, the
UB = TTamax(Xiter) is considered;

Step 4 (optimality investigation). If LB = UB,
then stop the algorithm. If LB 6= UB, then iter =
iter + 1, P̂iter = P̂iter�1 [ �piter	 and the algorithm
should continue from Step 2.

5. Numerical example

In this section, one simple example is presented to
illustrate the application of the mentioned approach
to the multi-project problem. Consider a multi-project
problem that consists of three projects. Each project
has only four activities (the start activities and end
activities are dummies), as shown in Figure 2. There
is only one renewable resource with (b1 = 7). The
required resource for performing each activity, the
possible durations of activities, the determined due
date of projects, and the importance weight of the
projects are all represented in Table 1. Both of the
�rst-stage and second-stage models are coded in GAMS
v24.1.2 and solved by the \CPLEX" solver.

The EUX1 is obtained after solving the �rst-stage
model in the �rst iteration. According to this structure,
the total weighted tardiness of the projects according
to the �rst scenario will be minimized. In the �rst
scenario, the durations of all activities are considered
at their minimum values (Table 2). To avoid untidiness
caused by too many arcs, the representation of the
whole EUXs is neglected in each iteration. The longest
paths of the projects according to the �rst scenario are
calculated and shown in Figure 3(a).

For the given EUX1 from the �rst-stage model,

Figure 2. Multi-project network.
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Table 1. The multi-project required data.

i g big1 pig
Due
date

Project
weight

P
ro

je
ct

1 1 1 0 f0g
7 0.32 1 4 f4; 5; 6g

3 1 3 f2; 4g
4 1 0 f0g

P
ro

je
ct

2 1 2 0 f0g
4 0.42 2 3 f3; 4g

3 2 5 f1; 2; 3g
4 2 0 f0g

P
ro

je
ct

3 1 3 0 f0g
4 0.32 3 2 f2; 3; 5g

3 3 4 f4; 5; 6g
4 3 0 f0g

Table 2. First scenario values for activities' durations.

Project
Activity 1 2 3

1 0 0 0
2 4 3 2
3 2 1 4
4 0 0 0

the second-stage model should be solved. The maxi-
mum total weighted tardiness for EUX1 is determined
by �nding the worst-case scenario, as presented in
Table 3.

Figure 3(b) shows the longest paths of the
projects according to the worst-case scenario (the
demonstration of the longest paths based on the �rst

Table 3. The worst-case scenario obtained by the
second-stage model in the �rst iteration.

Project
Activity 1 2 3

1 0 0 0
2 6 3 2
3 2 3 6
4 0 0 0

Table 4. The worst-case scenario obtained by the
second-stage model in the second iteration.

Project
Activity 1 2 3

1 0 0 0
2 6 4 5
3 2 3 6
4 0 0 0

scenario is ignored) resulting from the second-stage
model in the �rst iteration.

The �rst-stage model should be solved regarding
two scenarios for the activities' durations in the second
iteration. The total weighted tardiness of the projects
should be minimized with regard to these two scenarios.
Therefore, the optimized EUX2 structure is obtained,
which will be the input for the second-stage model.
The longest paths of the projects only for the second
scenario are depicted in Figure 4(a).

After that, the second stage model is solved
while the objective is to maximize the total weighted
tardiness of projects. In fact, for the given EUX2,
the worst-case scenario should be achieved, which is
demonstrated in Table 4. The longest paths of the

Figure 3. (a) First-iteration/level 1. Obj: 1.3, Ta1: 2, Ta2: 1, Ta3: 1. (b) First-iteration/level 2. Obj: 5.9, Ta1: 8, Ta2:
5, Ta3: 5, aig = 1 for f2:1; 3:2; 3:3g.
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Figure 4. (a) Second-iteration/level 1 (second scenario): Obj: 5, Ta1: 8, Ta2: 5, Ta3: 2. (b) Second-iteration/level 2:
Obj: 7.1, Ta1: 11, Ta2: 8, Ta3: 2, aig = 1 for f2:1; 2:2; 2:3; 3:2; 3:3g.

Figure 5. (a) Third-iteration/level 1 (third scenario): Obj: 5.9, Ta1: 8, Ta2: 5, Ta3: 5. (b) Third-iteration/level 2: Obj:
5.9, Ta1: 8, Ta2: 5, Ta3: 5, aig = 1 for f2:1; 3:2; 3:3g.

projects based on only the worst-case scenario are
shown in Figure 4(b).

In the third iteration, the �rst-stage model is
solved regarding three scenarios. The longest paths
of projects only for the third scenario are shown in
Figure 5(a).

By obtaining the EUX3, the second-stage model
can be solved. The obtained worst-case scenario and
the longest paths of the projects are depicted in Table 5
and Figure 5(b), respectively.

By comparing the objective functions of the �rst-
stage and second-stage models in the third iteration, it
is realized that the algorithm should stop when both of
the objective functions have the same value, i.e. 5.9 in
this simple example. The results of each iteration are
presented in Table 6 in brief.

After three iterations, the optimized value of the
objective function of this example has been obtained.
This value is found by the best structure according to
the resource-constraint and precedence relationships in
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Table 5. The worst-case scenario obtained by the
second-stage model in the third iteration.

Project
Activity 1 2 3

1 0 0 0
2 6 3 2
3 2 3 6
4 0 0 0

which the total weighted tardiness of the projects is
minimum. With regard to the existing uncertainty in
the activities' durations, the obtained result is robust.
In fact, it ensures that if any scenarios occur for
the activities' durations (in this example, we have
(34) � (22) = 324 possible scenarios occurrence), the
total weighted tardiness of the projects will not be
greater than 5.9. This is exactly the characteristic
of the robust optimization method that immunizes
the problem against uncertainty and keeps the results
feasible and almost optimal.

6. Computational experiments

Both of the �rst-stage and second-stage models are
coded in GAMS v24.1.2 and solved with the CPLEX
solver. The experiments were run on a personal
computer with an Intel(R) Xeon(R) CPU E7-8890 v4@
2.20 GHz 2.19 GHz (2 processors) and 42 GB RAM
under Windows 10 operation system.

6.1. The test problems
In this paper, in order to generate the test problems,
the software RanGen [39] is applied to deterministic
RCPSP. To adapt the test problems to RRCMPSP, the
required additional data are considered. In addition,
the number of activities can be chosen. In this research,
the number of activities, n = 30, is considered for each
project in the multi-project problem. The application
of this software provides us instances with di�erent
values of the parameters related to the structure of
the projects. The considered parameters include order

strength, resource factor, and resource constrainedness,
which are explained briey in the following:

� Order Strength (OS): The number of precedence
relations is divided by the theoretical maximum
number of precedence relations in the network. The
minimum value of OS is 0 (in the parallel network),
and the maximum value of OS is 1 (in the serial
network case). Therefore, it can take values from 0
to 1. In this research, OS can be chosen from two
values f0:4; 0:7g;

� Resource Factor (RF): How many di�erent re-
sources used on average by the activities are de-
termined by this factor. The minimum value of
RF is 0 (no resource requirements for executing the
activities), and the maximum value of RF is 1 (when
all the activities require all kinds of resources).
Therefore, it can take values from 0 to 1. In
this research, RF chooses a value from the set
f0:25; 0:5; 0:75g;

� Resource Constrainedness (RC) (per re-
source type): This factor can be obtained through
Eq. (33) [40]:

RCk =
DMNDk

Rk
; for all k 2 R; (33)

where Rk is the capacity of resource type k, and
DMNDk is the average quantity of resource type k
demanded when required by an activity and can be
calculated by Eq. (34):

DMNDk=

P
N
rijkP

N

�
1 if rijk � 0
0 if rijk = 0

� ; for all k 2 R;
(34)

where rijk is the per-period requirement of
resource type k by activity j of project i, and
N is the set of all activities to be scheduled.
In this research, RC chooses a value from the
set f0:3; 0:6g. For each combination of OS, RF,
and RC, �ve instances of the RRCMPSP are

Table 6. The summary of the results obtained from iterations.

First iteration Second iteration Third iteration
Projects Projects Projects

1 2 3 1 2 3 1 2 3

First stage model Projects tardiness 2 1 1 8 5 2 8 5 5
The total weighted tardiness 1.3 5 5.9

Second stage model
Projects tardiness 8 5 5 11 8 2 8 5 5

The total weighted tardiness 5.9 7.1 5.9

Optimality check � � p
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considered. Each multi-project problem is assumed
to be containing three projects. Thus, 2(OS) �
3(RF ) � 2(RC) � 5(per combination examples) �
3(number of project in each multi project problem)
= 180 instances are needed to be randomly
generated by RanGen.

6.2. Computational experiments
There are 12 classes of problems with respect to
di�erent values of factors: OS, RF, and RC. The
average execution time per iteration for both of the
�rst-stage and second-stage models is calculated. In
addition, the average number of iterations is recorded.
Table 7 represents the computational results of the test
problems.

Figures 6 to 8 illustrate the sensitivity analysis of
the obtained results for di�erent levels of factors RC,
RF, and OS, respectively. As is shown by these �gures,
the behavior of the solution approach is strongly related
to the instances and their characteristics.

There are 6 classes of problems based on the
di�erent values of OS and RF, in which the e�ect of
factor RC should be examined. As shown in Figure 6,
the most e�ective factor is RC, which strongly impacts
on the performance of the applied approach. It is
notable that the linear histogram is �tted just for
showing the e�ect of the factors' value on the results
schematically. According to these 6 experiments,
the computational time grows rapidly according to
the higher value of RC. In other words, when the
value of RC increases, the instances become harder
to solve and the approach needs requires time for
execution. Of note, this impact is mainly observed

Figure 6. The sensitivity analysis of Resource
Constrainedness (RC).

on the performance of the �rst-stage model, in which
extra precedence relationships (X) should be obtained
(according to the resource constraint). Therefore, RC,

Table 7. The computational results.

Parameters Time

OS RF RC
First-stage average
computational time

per iteration

Second-stage average
computational time

per iteration

Average total
computational

time per
iteration

Average
number of
iterations

1 0.4 0.25 0.3 23 min, 5 s 2 s 23 min, 7 s 3.2
2 0.6 54 min, 2 s 3 s 54 min, 5 s 5.6
3 0.5 0.3 28 min, 30 s 2 s 28 min, 32 s 4
4 0.6 1 h, 3 min, 13 s 2.5 s 1 h, 3 min, 15.5 s 4.8
5 0.75 0.3 45 min, 10 s 2 s 45 min, 12 s 4.2
6 0.6 1 h, 10 min, 28 s 3.2 s 1 h, 10 min, 31.2 s 6
7 0.7 0.25 0.3 17 min, 1.5 s 2 s 17 min, 3.5 s 3.2
8 0.6 53 min 3 s 53 min, 3 s 2.2
9 0.5 0.3 22 min, 28.3 s 2.7 s 22 min, 31 s 2
10 0.6 1 h, 1 min, 8 s 3 s 1 h, 1 min, 11 s 5.4
11 0.75 0.3 42 min, 2.5 s 3.5 s 42 min, 6 s 3
12 0.6 1 h, 3 min, 54.4 s 2.6 s 1 h, 3 min, 57 s 6.2
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Figure 7. The sensitivity analysis of Resource Factor
(RF).

Figure 8. The sensitivity analysis of Order Strength
(OS).

which is mainly related to the resource constraint, has
strong inuence on the performance of the �rst-stage
model, and the second-stage model is not inuenced
signi�cantly by this factor.

The next e�ective factor is RF that is also related

to the resource constraint and has an observable in-
uence on the �rst-stage model. When RF increases,
the �rst-stage model becomes harder to solve and,
consequently, consumes more time. Therefore, RF is
the second e�ective factor that inuences the obtained
results. As demonstrated by Figure 7, a sensible
increase in the computational time occurs by increasing
the RF.

The OS factor has the least inuence on the
computational time of the obtained results, as depicted
in Figure 8. In most cases, there is a decrease
in the computational time when the value of factor
OS changes (in some cases, there are not signi�cant
changes). With respect to the de�nition of OS factor,
when OS increases, the structure of the projects moves
from the parallel structure to the serial structure.
Therefore, the problem becomes easier according to
the resource constraints, and it is expected that the
running time of the algorithm decreases signi�cantly.
However, why does it not happen? The reason is
related to the extra precedence relationship X that is
added to the E set to remove the resource conict. In
other words, the E set (based on the OS factor) is not
the only parameter that a�ects the physical structure
of the project network, and EUX is the �nal structure
of the network.

7. Conclusion and further research

The Robust Resource-Constrained Multi-Project
Scheduling Problem (RRCMPSP) was studied in
this paper, in which the objective function was to
minimize the maximum total weighted tardiness of the
projects. The durations of the activities belonging to
the projects were uncertain and de�ned with discrete
values called scenarios. The resource sharing policy
was applied in this study for resource allocation in
the multi-project problem. Moreover, there was a
deadline for each project determined by the global
project manager, and each project had its own weight
of importance, which dictates which project should
receive more consideration. To ensure exact results,
a scenario-relaxation algorithm was applied and
implemented for the proposed robust multi-project
scheduling problem. Then, the computational results
were discussed. It was found obviously that the factor
RC had more inuence on the behavior of the solution
approach, which is an important factor, especially in
the multi-project problems.

Some extensions of this research as a future study
might be of interest. While the limitation of this
study is that the presented exact solution method is
not able to solve large-size problems in a reasonable
amount of time, developing the heuristic and meta-
heuristic algorithms is suggested to solve the large-
sized RRCMPSP. As another extension, considering
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uncertainty in the resources availability and its e�ect
in managing the multi-project problems would be of
interest. In addition, some constraints can be added to
this model such as the multi-mode activities, nonrenew-
able resources, multi-skill resources, etc. while the other
objective functions such as minimum cost or maximum
quality are considered.
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