
Scientia Iranica D (2018) 25(6), 3415{3441

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

From Object-Z speci�cation to Groovy implementation

F. Zaker, H. Haghighi�, and E. Nazemi

Faculty of Computer Science and Engineering, Shahid Beheshti University G.C., Tehran, 1983969411, Iran.

Received 11 July 2016; received in revised form 21 October 2017; accepted 4 August 2018

KEYWORDS
Formal program
development;
Object oriented
programming;
Animation;
Object-Z;
Groovy;
JVM.

Abstract. So far, valuable research studies have been conducted on mapping notations
of object-oriented speci�cation, such as Object-Z, in di�erent object-oriented programming
languages, such as C++. However, the results of selecting JVM-based programming
languages for mapping have not covered most of basic Object-Z structures. In this paper,
the Groovy language, as a dynamic JVM-based language, is selected to overcome some of
the existing limitations. As the main contribution, the rules required for mapping Object-Z
speci�cations to execute Groovy code are introduced. The proposed rules cover notions
such as multiple inheritance, inverse speci�cation of functions, functions de�ned on generic
de�nitions, and free-type constructors. Previous methods have not covered these notions
for the formal development of program from object-oriented speci�cations, regardless of
the selected formal speci�cation language and target programming language. In addition,
in this paper, the parallel composition construct is mapped to a parallel, executable code
to improve the faithfulness of the �nal code to the initial speci�cation. A mapping rule
for the class union construct is introduced, which has not yet been provided for any JVM-
based language. Unlike previous works, instead of presenting the mapping rules in terms
of natural languages, they are presented in terms of some formal mapping rules.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Woodcock et al. [1] categorized 62 industrial projects
into transport, �nance, defense, telecom, nuclear,
healthcare, and some other �elds from November 2007
to December 2008 to which formal methods were ap-
plied. Fitzgerald et al. [2] reported on the application
statuses of formal methods to 98 industrial projects in
2012 in almost all aforesaid categories. The increasing
number of industrial projects to which formal methods
have been applied shows the necessity of conducting
researches on formal program development and similar
research areas.

Due to the popularity of object-oriented program-

*. Corresponding author.
E-mail address: h haghighi@sbu.ac.ir (H. Haghighi)

doi: 10.24200/sci.2018.20798

ming approaches, there is a growing interest in utilizing
object-oriented concepts, such as encapsulation and
reuse, when applying formal methods [3]. Object-
Z [4,5] is an extension of the Z notation [6], which allows
for speci�cation of large and sophisticated programs
as sets of independent classes [7]. Some previous
approaches have been proposed to develop object-
oriented programs from Object-Z. An inclusive survey
of the development of object-oriented programs from
formal speci�cations is provided in [3].

We have found more than 63 published papers
on the development of object-oriented programs from
formal speci�cations, implying the importance of ad-
vances in this research �eld. For example, there
are 18 papers on animating formal speci�cations; 11
papers used Object-Z [8-18]; seven used VDM and
VDM++ [19-25] as the source speci�cation languages.
In addition, there are at least 32 works focusing
on re�nement of formal speci�cations from which 10



3416 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

approaches re�ned Object-Z speci�cations [26-35], 5
methods applied VDM++ [36-40], and 17 papers were
published for B, Event-B, and UML-B [41-57]. Among
related works, 13 papers attempted to cover the whole
process of re�nement from speci�cation to code: six
using Object-Z [58-63] and seven using Event-B [64-70]
as the source speci�cation languages.

Among programming languages, JVM-based lan-
guages are prevalently used for the development of
large-scale sophisticated software systems. According
to Oracle's reports in 2014, over 9.3 million pro-
grammers worldwide used Java or other JVM-based
languages at the time [71]. Groovy is a dynamic
JVM-based programming language designed for work-
ing with internal DSLs by means of adding powerful
meta-programming capabilities [72]. Groovy allows
overriding of certain language constructs to facilitate
numerical computation, because it uses a meta-class to
control the behavior of each Groovy class. In Addition,
Groovy can be compiled into Java bytecodes. Thus, in-
tegration with existing Java libraries is straightforward,
and key Java optimization techniques can be applied to
the compiled classes. Groovy supports integration with
Java codes, allowing for joint compilation with existing
Java sources. This is an important factor, which is not
o�ered by other languages targeting JVM [73].

Previous surveys [3,74] concentrating on the de-
velopment of object-oriented programs from formal
speci�cations have revealed some weaknesses in this
area. Some of these weaknesses are addressed in this
paper. Considering Java as the destination language,
the mapping in [7], with Object-Z as the source
language, only focuses on the class structure. In
addition, this mapping provides very simple rules and
ignores implied preconditions. The mapping proposed
in [75] only relies on simple and basic structures of
Object-Z concerning the class structure, state schema,
and operation schema. In [76], a relatively complete
mapping from VDM to Java was proposed. However,
the proposed mapping does not obviously cover object-
oriented structures, since VDM-SL is not object ori-
ented itself. This drawback was overcome partially
in [77] by completing the mapping proposed in [76],
adding object-oriented structures and using VDM++
as the source language. However, issues such as
multiple inheritance with a large number of imposed
constraints remain unsolved because Java does not
permit multiple inheritance. In addition, the mapping
proposed in [20] replaces the notion of parallel com-
position with concurrency. In [17-20], Event-B is used
as the source language to develop Java code. Some
tools were also developed in these studies. The OCB
(Object-oriented Concurrent-B), which is very similar
to Java as the destination language, was introduced
in [17-19] to link the Event-B modeling language to the
implementation code in the development process. In

spite of using OCB as the intermediate language, these
studies only focused on concurrency-related notions,
such as processes and monitors [3].

Regarding C++ as the target language, in [78],
a structured, yet imperfect, mapping was introduced
from Object-Z to C++. The proposed mapping does
not cover some speci�cation constructs of Object-Z
such as pre-condition, post-condition, class invariants,
visibility list, operation operators, object containment,
and some types of de�nitions, like class variables and
generic parameters. In [79], the work of [78] has been
supported by presenting two new rules that consider
a constructor for constant types and a template class
for generic parameters. These mapping rules were later
completed in [9] by covering more Object-Z structures,
such as class union, object aggregation, object con-
tainment, and some of the operation operators. These
mapping rules have been formally presented and proved
in [80]. However, some speci�cation constructs, such as
multiple inheritance, inverse speci�cation of functions,
functions on generic de�nitions, and constructors of
free types remain unmapped. In addition, some
speci�cation constructs, such as parallel composition,
are not mapped correctly.

Although many of the weaknesses in the develop-
ment of programs from object-oriented speci�cations
have been addressed [9,80], there are still unsolved
problems. For example, multiple inheritance, generic
de�nitions, and parallel composition notions are not
covered by these studies. These problems occur due
to the shortages in the destination languages in com-
parison to features of the used speci�cations languages.
Moreover, in previous works, the readability of gener-
ated code is low, resulting in the increase of system
maintenance costs. In the approach proposed in this
paper, to improve the readability of the generated code,
the AOP (Aspect-Oriented Programming) [81] model
is used because it helps to separate pre-conditions and
post-conditions from the body of schemas.

Since some of the existing weaknesses occur due
to the shortcomings in destination languages, it is
important to select a proper mapping destination
language that enables us to overcome these weaknesses.
Moreover, the destination language should be a lan-
guage that is highly popular and acceptable among
software developers. In this paper, Groovy is selected
as a Java-based dynamic language to solve some of
the aforementioned problems. Major contributions of
this work are as follows. First, some new notions
and constructs are included in the proposed mapping,
which have not been covered by previous methods.
These notions and constructs are listed below:

1. Multiple inheritance;
2. Inverse speci�cation of functions (speci�cation of

inputs in terms of outputs);



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3417

3. Functions on generic de�nitions;
4. Free-type constructors (not constant values).

In addition, unlike previous works, parallel composi-
tions are mapped on a parallel construct (not a concur-
rent construct). This approach improves the e�ciency
of the �nal code and its faithfulness to the initial
speci�cation. Moreover, the control of constraints is
assigned to advisors [82] in the mapping rules. This
helps avoid mapping speci�cations to complex and
illegible codes.

As for another scienti�c contribution, this paper
considers some notions other than the aforementioned
ones, such as class union and free type (both con-
stant values and constructors), which have not been
addressed by previous JVM-based works.

The remainder of this paper is organized as
follows. In Section 2, to increase the reader's familiarity
with the Object-Z speci�cation language, a simple
speci�cation of the credit card management system
is investigated. In Section 3, some of the features of
Groovy are explained. In addition, the main reasons
are described to select this language as the destination
language from the collection of JVM-based program-
ming languages. Section 4 presents our mapping
rules from Object-Z to Groovy and their applications
through examples. In Section 5, the ability of the
proposed mapping rules for producing object-oriented
programs from Object-Z speci�cations is challenged
through a case study. The last section is devoted to
the conclusions and some directions for future work.

2. Object-Z as the source language

This section provides an illustrative example for rel-
ative understanding of Object-Z. The speci�cation
instance used in this section is similar to the case study
presented in [9]. This speci�cation, which is related to
the credit card management system, will also be used
as the case study of this paper.

2.1. Credit management system's speci�cation
In speci�cation of the credit card management system,
we focus on the basic features of credit cards and
their interactions. Withdrawal limit, card status, and
ownership should be speci�ed for each credit card.
Hence, types and abbreviations are de�ned as shown
in Listing 1.

We start the speci�cation operation with the
CreditCard class that introduces the possible features

Listing 1. Types and abbreviations.

and operations of a credit card (Listing 2). A with-
drawal limit is determined for each card, which is
de�ned by the limit constant. The value of the limit
constant is assigned by one of the possible values in
limitValue. The number of days the credit card is
valid is speci�ed by a constant named expiry value.
The balance, owner, number of remaining days to
the expiration date, and card status are speci�ed by
the balance, owner, expiry, and status variables in the
state schema, respectively. Among these variables, the
status variable is determined based on the number of
remaining days to expiration; when this number is zero,
the status variable becomes invalid.

To de�ne a card, the zero value is assigned to
the balance variable. This variable is expected to
take a negative value. With each withdrawal from
the credit card, the amount should be subtracted
from the balance of the credit card. The minimum
value of the balance variable is limited by the negative
value of the limit constant. The expiry variable is
assigned value with the expiry value constant, and its
value decreases by one at the end of each day via
the newDay operation schema. Validity of the credit
card is extended with the reissue operation schema,
which assigns the expiry value to the expiry variable.
Withdrawal takes place with the withdraw schema, and
depositing is speci�ed by the deposit schema. Both
of these operations are executable if the credit card
status is set as valid. These schemas change balance in
proportion to the requested operation, and the value is
determined by the amount input parameter.

After speci�cation of the CreditCard class, an-
other class named CreditCardCon�rm is speci�ed as
shown in Listing 3. The CreditCardCon�rm class
is derived from the CreditCard class. In this class,
a new schema, called withdrawCon�rm, is speci�ed
through sequential composition of the withdraw and
fundsAvail schemas (which returns the credit card
balance). The sequential composition is a binary
operator used to model two operations occurring in a
sequence [4]. Using this operator, the withdrawCon�rm
schema executes the withdrawal operation and, then,
returns the remaining card balance.

Another class, named CreditCardCount, is de�ned
which is derived from the CreditCard class (Listing 4).
The CreditCardCount class changes the withdraw op-
eration schema to present a new implementation of
this operation schema from the parent schema using a
new operational schema, called incrementCount. The
objective of the incrementCount schema is to count the
number of withdrawal transactions.

In Listing 5, a new class is speci�ed which is
derived from both the CreditCardCon�rm and Credit-
CardCount classes. This class is suggestive of the well-
known diamond problem in multiple inheritance. The
diamond problem is an ambiguity that arises when two



3418 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

Listing 2. CreditCard speci�cation.

Listing 3. CreditCardCon�rm speci�cation.

Listing 4. CreditCardCount speci�cation.

Listing 5. CreditCardCon�rmAndCount speci�cation.



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3419

classes B and C are derived from A, and class D is
derived from both B and C. If there is a method in A
that B and C override it and D does not override it,
then it remains unknown which version of method D is
derived: that of B, or that of C?

Finally, the CreditCards schema is de�ned that
includes operations required for de�nition and discard-
ing credit cards using the CreditCard schema. Due to
space restrictions, the speci�cation of the CreditCards
schema is provided in Appendix A.

3. Groovy as the destination language

Groovy, as a new language, is based on the Java
platform and adds many features that lead to the fame
of Ruby [83]. Although this language is based on the
main Java structure and is not di�erent from Java on
the byte code level, Groovy adds unique features to
Java on the level of interaction with developers [84].
In addition, the development platform of grails uses
Groovy for the service, controller, and domain class
code [82]. The grails framework drastically increases
the speed of development of organizational web-based
software systems and even websites with a heavy
workload. Nowadays, the grails platform is gaining
more popularity among software developers. As for
another advantage, using Groovy on the grails plat-
form, the convention over con�guration pattern (for
detailed information, refer to Subsection 3.4) allows for
generation of executable codes with suitable web-based
user interfaces. This leads to considerable similarity of
Groovy to the world of industry.

The distinctive features of Groovy, which con-
vince us to select this language as the destination
language for our mappings, will be described in the
following subsections. These features facilitate the
process of mapping and code generation.

3.1. Dynamism of the language
As a dynamic programming language, Groovy is ca-
pable of making many executive decisions at runtime,
which are related to the compile time in typical
programing languages. These decisions may lead to
actions such as adding new code, extending objects
and de�nitions, or modifying the type system [85] of
Groovy. In general, it provides a full control over the
�elds, behaviors, and structures of objects involved
in the program at runtime. As will be described in
Subsection 4.2.5, the role of dynamism of the language
is completely evident in mapping rules related to
\renaming of operation schemas" in class inheritance.

3.2. Special structures of Groovy
One of the popular features of Groovy, as a dynamic
language, is a structure called closure. Closure is a
small code segment that could be stored and executed
as a string. This structure is derived from the lambda

expressions in functional programming languages. It
receives a number of parameters as the input and
executes commands in accordance with the inputs [85].

Lambda expressions are supported by all the
structures and dynamic functions of Groovy [85]. This
is one of the features added by Groovy to Java.
This feature enables Java to implement facilities, such
as universal and existential quanti�cations, in logic-
based formal notations (e.g., Object-Z). This feature is
not normally available in non-functional programming
languages.

In addition, one of the most important features
of Groovy is a set of classes and functions known as
Map type. Typically, a Map is a collection of pairs
(key, value). Each key is unique in the collection and
is used to retrieve the corresponding value. All the
entities de�ned in Groovy are considered a kind of Map
due to the dynamic nature of this language. Hence, it
is possible to add or delete an attribute to an entity
anytime the developer desires [84]. In this paper, the
most important application of this feature lies in the
mapping of basic types, which will be discussed in
Subsection 4.1.1.

Moreover, another feature of Groovy, called
Mixin, solves the problem of multiple inheritance in
Java [85]. According to this feature, we can add
functions from any number of classes to destination
classes at the runtime. The application of this feature
is shown in the mappings presented in Subsection 4.2.5.

Another important feature of Groovy is the in-
clusive feature provided for metaprogramming. In
Groovy, the developers have access to the structure of
all classes at the runtime and can make any change to
the desired structures [85].

3.3. Aspect-oriented model
Frameworks supporting Groovy (such as the spring
framework) provide a feature called dependency in-
jection [86]. This feature allows for applying various
behaviors and attributes to functions and classes at
the runtime using AOP advisors [82]. One of the
most important challenges of generating executable
codes from abstract speci�cations is the problem of
pre- and post-conditions. As will be discussed in the
following sections, this problem can be overcome using
dependency injection feature such that the readability
of the generated code is not far from the system
speci�cation.

3.4. Convention over con�guration
One of the most important features of Groovy is the
ability to use the convention over con�guration pattern.
The aim of this design model is to reduce the number
of decisions that should be made by a developer during
development of a software system [84]. This would
result in simplifying the software development process



3420 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

and preventing the personal deviations. This feature
enables the descriptor to avoid plenty of details re-
quired for implementation. Most of the implementation
details can be extracted from conventions de�ned on
top of the speci�cation language. For instance, naming
of a class can provide lots of information about the
application and role of the class in the system, related
access levels, basic functions required by the class,
and even the method for persisting instances of the
class. These conventions could be mapped and imple-
mented by Groovy or any other language supporting
the convention over con�guration pattern. Although
the convention over con�guration is not utilized in
the mapping rules of this paper, it is one of the rea-
sons for selecting Groovy as the mapping destination
language. The convention over con�guration pattern
would largely contribute to inclusion of more features
in future research studies.

3.5. Similarity to the speci�cation language
As mentioned before, Groovy supports the closure
structure, lambda expressions, and aspect-oriented
model. These features along with many others make
Groovy very similar to formal speci�cation languages
such as Object-Z. This improves readability and com-
prehensibility of Groovy code generated from Object-Z
speci�cations.

4. Mapping of Object-Z to Groovy

This section presents the rules required for mapping
Object-Z notations to Groovy. Subsection 4.1 provides
mapping rules for global paragraphs, which are com-
mon in the Z speci�cation language. In Subsection 4.2,
the mapping of the class schema as a major new
construct in Object-Z is described. Finally, Subsec-
tion 4.3 addresses the mapping rules for operational
operators, playing the role of a composer of other
predicates.

Supposing that ObjectZSpec is a set of formal
speci�cations in Object-Z language and GroovyCode
is a set of Groovy codes, mapping function M :
ObjectZSpec ! GroovyCode is de�ned. Function M
maps each speci�cation in Object-Z to an executable
code in Groovy. Each construct in Object-Z abstract
syntax is considered as a type throughout the paper.
In addition, it is assumed that each Object-Z construct
is a set of elements; hence, set notations, such as
membership, are used throughout the paper.

4.1. Mapping of global paragraphs
In the Object-Z speci�cation language, each block
of a speci�cation placed in the root of speci�cation
document (except classes) is called a global paragraph.
In this section, the mapping of global paragraphs is
studied in six general categories: basic types, ax-
iomatic de�nitions, generic de�nitions, abbreviation

de�nitions, free types, and schemas.
M(GlobalParagraphs) =

M(BasicTypeDefinitions)[
M(AxiomaticDefinitions)[
M(GenericDeinitions)[
M(AbbreviationDefinitions)[
M(FreeTypes) [M(Schemas)

The union sign in this paper is an associative binary
operator de�ned as in the following:
8 a; b �M � a [ b = fx :Mjx 2 a _ x 2 bg

4.1.1. Basic types
Every Object-Z speci�cation begins with certain ob-
jects that are members of the basic types or given sets
of the speci�cation [4]. The basic type paragraphs are
de�ned as follows [87]:

[Type1; T ype2; � � � ; T ypeN ]:

A complex structure may be assumed for basic types in
the implementation phase. Therefore, these types are
mapped to Groovy classes to be able to develop them
in the future. A separate �le is created for each class.
In the class related to each basic type, a static property
is de�ned to keep instances of that class. We have:
M(BasicTypeDe�nitions) =

M([Identi�erList ]) =

8 i : Identi�er ji 2 Identi�erList � (M(i) =

public class i f
private static List < i > instanceList

= new ArrayList < i > ()

public static List < i > getInstanceList()

finstanceListg
public i()finstanceList:add(this)g

g)�
Moreover, a list of the classes created for basic types is
stored in the Context class (for more information about
Context class, refer to Subsection 4.1.2) as follows:

public static List <Class> basicTypes = [[Type1];
[Type2]; � � � ; [TypeN ]].

Discussion on soundness. Object-Z allows the
speci�er to assign or retrieve values of basic types' �elds
without de�ning them explicitly. Since all classes in



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3421

Groovy inherit features of the Map structure, there
is no need to de�ne �elds in the class structure in
Groovy; this means that the provided mapping rule
covers the semantics of basic types in Object-Z. In
addition, the basicTypes list of the Context class and
the instanceList of each class will be used to enforce
the global constraints at the system level. For each
class including the basicTypes list of the Context
class, the integrity of the global constraints will be
checked for each object in the instanceList of the
class.

4.1.2. Axiomatic de�nition
An axiomatic de�nition introduces one or more global
notions (constants, operators, symbols, or functions)
by a list of declarations and an optional list of pred-
icates constraining their values [9]. To allow the
mapping of global variables and functions in Object-Z,
a public class named Context is de�ned in Groovy that
contains these variables and functions. The mapping
for each case of axiomatic de�nitions [9] is presented in
the following subsections:
M(AxiomaticDefinitions) =

M(ConstantDefinitions)[
M(OperatorDefinitions)[
M(SymbolDefinitions)[
M(FunctionDefinitions)

4.1.2.1. Constant de�nition
Constant values are mapped to Groovy code by a
combination of a private static variable and two public
static functions (namely, get and set). The get function
retrieves the value of a constant. The set function
assigns a value to a constant. Consider [constant] in
the following axiomatic de�nition:

[identi�er] : [type]
[constraints]

The mapping is illustrated below:
M(ConstantDefinitions) = 8 i : Constant

�(M(constanti : typei � constraintsi �)

= private static typei constant i

public static typei getConstant i()fconstant ig
public static void setConstant i (typei value) f

if (!M(constraintsi)) throw new Exception()

constanti = value

g)�

Discussion on soundness. Since static properties
are shared between all instances of a class in Groovy,
mapping constant values to static properties satis�es
the semantics of constants in Object-Z. In addition, any
access to the constant trying to set an unacceptable
value will be blocked due to the constraints' control
mechanism. Since the access level of constant i �eld
is private, the required constraints are controlled in
the body of setConstant i as the public setter function
of constant i property. If the provided value does not
meet the speci�ed constraints, the raised exception
prevents execution of the next line of the code, which is
equivalent to the expected non-deterministic behavior
in the same condition in Object-Z.

Example 1. Consider a constant speci�ed as follows:

myConstant : Z
myConstant%2 = 0

Based on the given constraint, values of the constant
speci�ed in the above paragraph should always be even.
The following code is obtained after mapping:

private static int myConstant

public static int getMyConstant()fmyConstantg
public static void setMyConstant (int value) f

if (! (value %2 == 0)) throw new Exception()

myConstant = value

g
As seen, a new value is assigned to myConstant only if
this value meets the speci�ed constraints. Any direct
access to myConstant variable is prevented to ensure
the right application of constraints.

4.1.2.2. Operator de�nition
All operators in Groovy have the corresponding func-
tions. To provide a speci�c implementation for any
operator on basic types, its corresponding function
should be overridden in Groovy. The mapping rules
should be provided for operator de�nitions in two
di�erent categories: unary and binary operators.

M(OperatorDefinitions) =

M(UnaryOperatorDefinitions)[
M(BinaryOperatorDefinitions)

Consider [operator] as a unary operator in the following
speci�cation:

[operator ] : [type]
8 t : [type]:t [operator ]() [constraints]



3422 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

The mapping rule is illustrated below:

M(UnaryOperatorDefinitions) =

8 i : Operatorji 2 UnaryOperators
�(M( operatori : typei �8 t : typei � t operatori
() constraintsi �) =

public class typeifM(operatori)()

fM(constraintsi)g)�
Consider [operator] as a binary operator in the follow-
ing speci�cation:

[operator ] : [type1 ]$ [type2 ]
8 t1 : [type1]; t2 : [type2]:t1[operator ]t2()[constraints]

The mapping rule is illustrated below:

M(BinaryOperatorDefinitions)

= 8 i : Operatorji 2 BinaryOperators
�(M( operatori : type1i ; type2i � 8 t1 :

type1i ; t2 : type2i � t1operatori t2
() constraintsi �) =

public class type1ifM(operatori)(type2iother)

fM(constraintsi)g)�
In Groovy, each operator has a speci�c prede�ned
function that should be overridden in order to change
its functionality (see [84] for a complete list of operators
and their corresponding functions). In the provided
mapping rule, M(operator) returns the name of the
function, which is responsible for specifying the func-
tionality of operator. Both unary and binary functions
are de�ned in the class related to their �rst operand.
The binary function receives the second operand in its
parameters.

Discussion on soundness. After mapping, the
operator's usage syntax remains exactly the same
as its usage syntax in Object-Z. Supposing that
M(constraintsi) preserves semantics of the constraints
de�ned on the operator, there is no gap between the
semantics of the resulting Groovy code and the original
speci�cation.

Example 2. Consider the de�nition of the following
operator on the Person basic type:

== : Person $ Person
8 s; t : Person:s == t() s:id = t:id

This operator is mapped to a function in the class
resulting from the mapping of the type located on the
left side of the operator. Due to the existence of \=="
operator, equals function is overridden as follows:

public class Person f
int id

boolean equals (other) fid == other:idg
g

If the type on the left side of the operator is mapped to
a system type in Groovy (such as Integer, List, etc.),
then the related function of the mapped system type is
overridden at the runtime using the metaprogramming
feature. See the renaming of operation schemas in
Subsection 4.2.5 for an example about how a function
of a class can be overridden at the runtime.

4.1.2.3. Symbol de�nition
To map symbols from Object-Z to Groovy, the notion
of functions is utilized. Consider [symbol] as a symbol
in the following speci�cation:

[symbol ] [type1] : [type2]
8 t : [type1]:[symbol ] [t] = [expression]

The mapping rule is as follows:

M(SymbolDefinitions) =

8 i : Symbol � (M(symbolitype1i : type2i

�8 t : type1i � symboli texpressioni�) =

public static type2i symboli (type1i t)

fM(expressioni)g)�
Symbol de�nition in Object-Z is very similar to the
de�nition of functions in Groovy. Execution of a
symbol in Object-Z is mapped to execute a function
in Groovy with the same syntax. We map each symbol
to a static function to make it executable without
instantiating new objects.

Discussion on soundness. Each symbol de�nition
is mapped to a function with the same input
parameters in Groovy, and the syntax of executing the
symbol de�nition remains the same in the mapping.
Assuming that M(expressioni) maps the body of
the symbol de�nition to the equivalent Groovy code,
semantics of symbol de�nitions are preserved by the
provided mapping rule.



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3423

Example 3. Consider a symbol speci�cation as fol-
lows:

square [Z] : Z
8 x : Z:square [x] = x � x

Such a speci�cation is mapped to a static function in
the Context class as shown in the following:

public static int square (int x)fx � xg
4.1.2.4. Function de�nition
The function mapping is very similar to the mapping
of symbol de�nition. Function de�nitions are de�ned
as static functions in the Context class. For example,
consider the following speci�cation for the square func-
tion:

square : Z! Z
8 i; o : Z:(i; o) 2 square () o = i � i

It should be mapped exactly similar to the mapping
given for symbol square in the previous subsection.
However, square is a simple case in which the output
is explicitly speci�ed in terms of the inputs. In case of
inverse speci�cations where input variables are de�ned
based on the output variable(s), the previous mappings
are useless.

Consider the following syntax specifying an in-
verse function:

[function] : [type1]! [type2]
8 t1 : [type1]; t2 : [type2]:(t1; t2) 2 [function]
() [constraints]

The mapping rule is illustrated below:
M(ReverseFunctionDefinition) =

8 i : Functionji 2 ReverseFunctions�
(M(functioni : type1i ! type2i

� 8 t1 : type1i ; t2 : type2i � (t1; t2 2 functioni
() constraintsi)�) =

public static type2ifunctioni(type1it1)

flimitedRange(type2i) � findResult
fM(constraintsi)gg)�

The �ndResult function takes a closure as its input
parameter and checks the constraints inside the clo-
sure against each value of the speci�ed range. The
limitedRange function is responsible for providing a
limited range of type2i ; the speci�er may participate
in selecting the limited range. The �rst value in the
speci�ed range that satis�es the given constraints is
returned as the output of the �ndResult function.

Discussion on soundness. Although the method

used in the mapping of inverse functions cannot �nd
all possible solutions, it is able to �nd at least one
return value for the function if the search space is
limited properly. Supposing that the limited range of
type2i is selected wisely, the Groovy code resulting from
applying the provided mapping rule is able to �nd one
of the matching return values of the speci�ed function.

Example 4. Consider the following speci�cation of
the root function:

root : Z! Z
8 i; o : Z:(i; o) 2 root () i = o � o

Such a speci�cation is mapped to the following static
function:

public static int root (int input)

f(1::1000):�ndResult fit � it == inputgg
To ensure the e�ciency of the generated code, the
range of integers at the time of mapping should be
limited (if the descriptor has not done so). The reason
is that there is a wide range of integer values that
can be taken as an input by the root function. As
seen in the code resulting from the above mapping,
the integer values range from 1 to 1000. This range
can be shortened or expanded in proportion to the
descriptor's need. It is highly recommended for the
descriptor to specify the required range of integers
or other unlimited types. The keyword `it ' inside
the �ndResult function refers to the current element
of the array or range. The descriptor can specify
a di�erent speci�c problem implementation for the
�ndResult function. For instance, the utilization of
a binary search method, instead of the default linear
search method, can improve the performance of the
�ndResult function.

4.1.3. Generic de�nition
A generic de�nition is a generic form of an axiomatic
de�nition used to de�ne a family of global notions
(constants, operators, symbols, or functions) and is
parameterized by its formal parameters [9]. Since the
type of generic parameters is not known, the main
challenge to the mapping of these de�nitions is to map
functions speci�ed by generic types [9]. However, this
challenge could be resolved by the dynamism feature
of Groovy. Based on this feature, there is no need to
specify the type of input parameters of functions at the
designing time.

Example 5. Consider the following speci�cation:

[X;Y ]
�rst : X �X ! X
8 x : X; y : Y:�rst(x; y) = x



3424 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

This speci�cation could be mapped to a function such
as the following function in Groovy:

public static def �rst(x; y) fxg
As seen in the mapped function, the function's return
type is unknown. This return type is determined at the
runtime based on the type of the assigned value to the
x input argument. It is the advantage of the dynamism
feature of Groovy as the destination language. It
should be noted that, in Groovy, the use of the return
keyword is optional. In addition, the last accessed value
in the body of a function is assumed as the default
return value of that function.

Besides the problem mentioned above, another
concern in the mapping of generic de�nitions is the
mapping of generic constraints. In this case, two issues
are raised:

1. Mapping the constraint;
2. Applying the constraint globally.

For the �rst issue, a static function, named generic-
Constraint, is de�ned in the Context class. All generic
constraints are checked in this function. The mapping
rule for this function is illustrated below:

public static void genericConstraint() f
basicTypes:each fbasicType� >

basicType:instanceList:each finstance� >
if(![constraints])throw newException()g

g
g

In this mapping rule, by traversing the list of basic
types de�ned in the Context class, all instances of
each basic type class are checked against the speci�ed
constraints.

Example 6. Consider the following speci�cation:

[X]
left ; right : X
left 6= right

The required mapping is de�ned as follows:
public static void genericConstraint()f

basicTypes:each fbasicType� >
basicType:instanceList:each finstance� >

if (basicType:instanceList:count

fit== instanceg>1)

throw new Exception()

g
g

g
The each commands are necessary for all the speci�-
cations of generic constraints, while the internal count
command is only a mapping of the particular constraint
in this example.

Now, for the second mentioned issue, i.e., the
global application of generic constraints, it is su�cient
to use the annotations and aspects of Groovy. These
annotations call the genericConstraint function as the
pre- and post-condition to execute each function that
changes the state of an object in the system. By
using @Transactional, it is also possible to protect
the integrity of the function to be executed. For
this purpose, the function should be executed only
when the constraints speci�ed in genericConstraint are
met (before and after the execution of the function).
The @Transactional attribute includes the body of a
function in a transaction. Hence, the raise of any
exception in the function execution causes rollback for
all applied changes to state variables.

4.1.4. Abbreviation de�nition
An abbreviation de�nition introduces a type whose
name is the identi�er on the left side of the de�nition
and whose values are speci�ed using an expression on
the right side [9]. The abbreviation de�nition map-
ping can be studied in four major categories [9] as
follows:
M(AbbreviationDefinitions) =

M(ComputationalExpressions) [M(Sets)[
M(ClassUnions) [M(Ranges):

4.1.4.1. Computational expression
Computational expressions are easily mapped using the
closure structure in Groovy. Consider [variable] as a
computational expression in the following speci�cation:

[variable] == [expression]:

The mapping rule is illustrated below:

M(CompitationalExpressions) =

8 i : V ariable � (M(variablei == expressioni) =

def variablei = fM(expressioni)g)�
To access the real-time value of the computational ex-
pression, it is su�cient to run the following command.
This command calls the mapped closure and returns
its output value:



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3425

variable()

Groovy closures are executable code blocks. Putting
parentheses after a closure's name executes its body
and assigns the return value to the variable placed on
the left-hand side of the assignment; see [85] for more
information about Groovy closures. The only di�er-
ence between syntaxes of computational expressions in
Object-Z and Groovy is the need to put parentheses
after variable name in order to access the real-time
value of the computational expression.

Discussion on soundness. In the Object-Z seman-
tics, the real-time value of computational expressions
should be returned on each call. It is supposed
that M(expressioni) preserves the semantics of com-
putational expression body. Since Groovy closures
calculate the return value on each call, the proposed
mapping rule preserves semantics of the computational
expression.

4.1.4.2. De�ning set
A set is de�ned the same as follows:
M(Sets) = 8 i : Sets � (M(i) = (defi = [e2ie))�

The def keyword in Groovy is used to declare variables
without specifying their types. Set membership is also
controlled by the contains function, which returns true
if its input value is a member of the speci�ed set.

Example 7. Consider the following set:

def variable = [10; `string']

To control the membership of an element in the above
set, it is su�cient to run the following command:

variable:contains ([element])

4.1.4.3. Class union
An abstract class is de�ned for the mapping of a union
of classes. The classes included in the class union
abbreviation are derived from the de�ned abstract
class. This abstract class is also derived from the
Schema class introduced in Subsection 4.1.6. The
instanceList of the abstract class is the union of
instanceList collections of its sub-classes.

Consider [Union] as the class union in the follow-
ing speci�cation:

[Union]==MemberClass1[ � � � [ MemberClassN

According to the explanations provided in this section,
the mapping rule is as follows:

M(ClassUnions) = 8 i : ClassUnion

�(M(MemberClass1i[� � �[ MemberClassNi)=

public abstract class i extends Scheme
n

public static List < i > getInstanceList ()�XN

i=1
MemberClassi � instanceList

	
o
[Ni=1public MemberClassi extends i fg)�

Discussion on soundness. Using the provided
mapping rule, each instance of a member class is
also an instance of the Union class. In addition,
the instanceList property of the Union class contains
all instances of member classes; this is of help in
controlling global constraints de�ned on instances of
the Union class. In this way, the provided mapping rule
preserves semantics of class union in Object-Z, while
this construct is mapped to Groovy code.

4.1.4.4. Range
A range de�nition is mapped from Object-Z to Groovy
with almost no change in the structure.
M(Ranges) = 8 i : Ranges; start : i; end :

ij(8 e : i:start � e ^ end � e)
�(M(i) = (defi = start::end))�

4.1.5. Free type
A free-type de�nition introduces a type whose name
is the identi�er on the left side of the de�nition and
whose values are determined by the branches of the
right side [9]. If the right side only involves constant
values (simple free type), the free type is mapped to
an enumeration in Groovy. Otherwise, if constructor
functions are used on the right side of a free-type
de�nition (complex free type), it should be mapped
to a class de�nition. The free-type construct can
be mapped in two ways, depending on its right-side
branches.
M(FreeTypes) =M(SimpleFreeTypes)[
M(ComplexFreeTypes)�

Consider [freeType] in the following simple free-type
speci�cation:

[freeType] ::= [constant1]j � � � j[constantN ]:

The mapping rule is illustrated below:
M(SimpleFreeTypes) = 8 i : FreeTypeji
2 SimpleFreeType � (M(i

::= constant1i j � � � jconstantNi) = enum i

= [Nic=1constantci)�
Consider [freeType] in the following complex free type
speci�cation:



3426 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

[freeType] ::= [constant1]j � � � j[constantN ]j[func1]

� [params1]� j � � � j[funcM ]

� [paramsM ]�
The mapping rule is illustrated below:

M(ComplexFreeTypes) = 8 i : FreeTypeji
2 ComplexFreeType
�(M(i ::= constant1i j � � � jconstantNi jfunc1i
� params1i� j � � � jfuncMi � paramsMi�=

public class if
private i()

[Nic=1public static i getConstantci()fnew i()g
[Mi
c=1public static i funcci(paramsci)fnew i()g

g)�
In this mapping, constant values are mapped to class
properties. These read-only properties create and
return a new instance of the class. For each constructor
function, a corresponding function is introduced in the
class. The type of parameters is determined from
the type of the speci�ed function's input parameters.
Note that the access level of the default constructor
of the class is de�ned as private in order to prevent
creation of new instances of the class. Obviously, user
intervention is required to complete the mapping of free
types because no more implementation details can be
extracted from their speci�cations.

Discussion on soundness. In the case of simple
free types, which are only composed of constants,
mapping to a simple enumeration in Groovy ful�lls the
requirements of the semantics of free types. In case
of complex free types including constructor functions,
regardless of the presence of constants, the branching
logic is not deducible from the Object-Z speci�cation.
The provided mapping rule simply returns a new object
of the class resulting from mapping the free-type spec-
i�cation to Groovy code. Of course, additional details
are required to be provided by the speci�er in order
to produce the �nal implementation in Groovy. In
general, the provided mapping rule covers all deducible
semantics of simple and complex free types, and the
rest is postponed to the next implementation phases.

4.1.6. Schema
A schema is a pattern of declaration and constraint [9].
The class construct is used to map the schema speci�-
cations. In this mapping, variables of the schema are

de�ned as properties in the mapped class. Each schema
should have a function that checks the consistency of
constraints with current values of variables. For this
purpose, an abstract class, named Schema, is designed
such that all the mapped classes of each schema are
derived from Schema. A sample implementation for
class Schema is provided here:

public abstract class Schemaf
protected abstract boolean

checkConstraintsInternal();

public void checkConstraints

(Closure addedCondition = ftrueg)f
if(!checkConstraintsInternal()

j j!addedCondition()) throw new

Exception()

g
g

A function, called checkConstraintsInternal, is intro-
duced in this class. The Schema class forces all the
inherited classes to implement this function. The
checkConstraintsInternal function returns true if the
constraints of the schema are met; otherwise, the check-
Constraints function, which is called after every change
in variables, raises an exception. The checkConstraints
function takes an input parameter of the closure type.
The default value of this parameter is a closure that
always returns true. This input parameter is later used
to control pre-conditions of each operation schema of
the class speci�cation.

Two special annotations are de�ned to apply the
constraints of the schema.

1. The @CheckConstraintsAfter annotation signs the
functions and controls the constraints of the schema
after the execution of each signed function. This
annotation takes an optional parameter of the
closure type that controls possible post-conditions
of the related function;

2. The @CheckConstraintsAround annotation signs
the functions and controls the constraints of the
schema before and after the execution of each
signed function. This annotation takes two optional
parameters of the closure type: one for controlling
the possible pre-conditions before the execution and
another for controlling the possible post-conditions
after the execution of the related function.

The next step is to de�ne an interceptor to



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3427

control the above annotations. This interceptor has
two responsibilities:

1. It executes the checkConstraints function before
and after the execution of functions signed by
CheckConstraintsAround. It may receive possible
pre- and post-conditions from the annotation and
send them to the checkConstraints function;

2. It executes the checkConstraints function after
the execution of functions signed by CheckCon-
straintsAfter. It may receive possible post-
conditions from the annotation and send them to
the checkConstraints function.

Listing 6 shows the implementation of the mentioned
annotations and interceptor. The interceptor uses AOP
advisors to implement the desired functionality of each
annotation.

Consider [SchemaParagraph] as a schema de�ni-
tion in the following speci�cation:

[SchemaParagraph]
[stateVariable1] : [type1]
� � �
[stateVariableN ] : [typeN ]
[constraints]

The mapping rule for such a schema is as follows:

M(Schemas) = 8 i : Schema

�(M(stateV ariable1i : type1i � � �
stateV ariableNi : typeNi � constraintsi �)

= public class i extends Schema f
[Nic=1typecistateV ariableci

[Nic=1typecigetStateV ariableci()fstateV ariablecig
[Nic=1@Transactional @CheckConstrainsAfter

public void setStateV ariableci(typeci value)

fstateV ariableci = valueg
@Override protected boolean

checkConstraintsInternal()fM(constraintsi)g
g)�

Discussion on soundness. The most important
consideration in mapping of a schema is assuring
ful�llment of its constraints when one or more state
variables change. Functions responsible for changing
the schema variables and setter functions de�ned for

state variables are de�ned as transactional functions.
If constraints are not met, an exception is raised that
prevents the assignment of values to variables through
transaction rollback. This means that any change in
the state of a schema preserves its constraints; other-
wise, the behavior of the system is non-deterministic.
Thus, semantics of schema declaration in Object-Z is
preserved by the provided mapping rule.

Example 8. Consider the following speci�cation for
the PowerSupply schema:

PowerSupply
contactor : Z
status : Z
contactor = 1) status = 0

Such a schema is mapped to the following class imple-
mentation in Groovy:

public class PowerSupply extends Schemaf
private int contactor

public int getContactor()fcontactorg
@Transactional

@CheckConstraintsAfter

public void setContactor(int value)

fcontactor = valueg
private int status

public int getStatus()fstatusg
@Transactional

@CheckConstraintsAfter

public void setStatus(int value)

fstatus = valueg
@Override

protected boolean checkConstraintsInternal()

fcontactor! = 1j jstatus == 0g
g

4.2. Class
A major new construct in Object-Z is the class schema,
which captures the object-oriented notion of a class
by encapsulating a single state schema, its associated
initial state schema, and all the operation schemas
of the given state [9]. Each class in an Object-Z



3428 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

Listing 6. Implementation of the AOP advisors.

speci�cation is mapped to a class in Groovy with the
same name. In Groovy, the access level to each entity in
the �nal class is speci�ed based on the rules presented
in [9].

4.2.1. Local speci�cations
The mapping process of local speci�cations of a class
is very similar to that of global paragraphs. Local
speci�cation of basic types, axiomatic de�nitions, ab-
breviations, and free types are mapped exactly similar
to global paragraphs. However, they are hosted by
their parent class instead of the Context class.

4.2.2. State schema
Similar to the mapping of typical schemas, the state
schema of a class is mapped onto a set of properties of
the �nal class. Of note, if a class is derived from other
classes, then the checkConstraints function (refers to
Subsection 4.1.6) is de�ned as the combination of
constraints of the child class and checkConstraints
functions of the parent classes.

4.2.3. Initial schema
The initial schema lacks input variables and return
values. It only assigns initial values to variables of the
class state schema. Therefore, the initial schema of

each class is mapped to the default (non-parametric)
constructor of that class. However, if a class is derived
from other classes, it should call their constructor
functions in the body of its constructor. This point
is discussed in more detail in Subsection 4.2.5. The
initial schema is de�ned as a non-parametric function,
called ClassName Constructor, with no return value.
This function is called in the constructor of the target
class. It should be noted that, in the rest of the paper,
wherever we mention a target object, it refers to the
object intended to be mapped during the mapping
process. Considering [ClassName] as the name of the
target class, the mapping of the initial schema is as
follows:

M(InitialSchema) =

@Transactional public Class()fClassConstructor()g
@CheckConstraintsAfter protected void

ClassConstructor()fM(predicates)g�
4.2.4. Operation schema
Every operation schema in an Object-Z speci�cation
is mapped to a function of the same name in the



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3429

related class in Groovy. Each input of the schema
is considered as an input parameter for the �nal
function in Groovy. Considering the number of output
parameters of an operation schema, three possible cases
are studied.

M(OperationalSchemas) =

M(NoOuputOperationSchemas)

M(SingleOuputOperationSchemas)[
M(MultipleOuputOperationSchemas)[

Before describing these three cases, some naming con-
ventions are explained here. In the mapping rule given
in this subsection, M(params), M(preCondition),
and M(postCondition) refer to the mapping of in-
put variables, pre- and post-conditions of the target
operation schema, respectively. M(expression) is a
result of mapping those predicates of the operational
schema, assigning values to the output parameters
or explicitly specifying a change in the state vari-
ables of the target class. accessor speci�es the
access level of the mapped function. The process
of selecting accessor is the same as that presented
in [16].

The three possible cases for mapping operation
schemas are as follows:

1. The operation schema lacks any output. The
mapping rule for such an operation schema is as
follows:

M(NoOuputOperationSchemas) =

8 i : Schemajjoutput(i) = 0 � (M(i) =

@CheckConstraintsAround(preCondition =

M(preCondition); postCondition =

M(postCondition))accessor void

i(M(params))fM(expressions)g)�
In this case, the return type of the resulting
function in Groovy is void, and no return value
is expected from the resulting function. Pre- and
post-conditions are automatically controlled using
the CheckConstraintsAround attribute (see Listing
1);

2. The operation schema has one output variable. In
this case, the �nal function in Groovy returns one
value. The mapping rule for such a schema is
illustrated below. In this rule, type refers to the
type of the only output parameter of the operation
schema. If it is not possible to detect the type of the
return value, it is speci�ed using the def keyword.

M(SingleOuputOperationSchemas) =

8 i : Schemajjoutput(i) = 1 � (M(i) =

@CheckConstraintsAround(preCondition =

M(preCondition); postCondition =

M(postCondition))

accessor M(type)i(M(params))f
M(type)result

M(expressions)result

g)�
Since the operation schema returns a single value,
the return value type of the resulting function is
mapped using M(type). This function tries to ex-
tract the return value type of the operation schema
using a simple switch-case statement. If M(type)
function fails to detect the proper type, it will
return def as the default type of the return value.
Since Groovy is a dynamic programming language,
it is possible to postpone the identi�cation of the
return value type to the runtime using the def
keyword;

3. The operation schema has more than one output
variable. In this case, the �nal function in Groovy
returns a Map [85], which has keys with the same
name as output variables of the operation schema.
The mapping rule in this case is as follows:
M(MultipleOuputOperationSchema) =

8 i : Schemajjoutput(i)j > 1 � (M(i) =

@CheckConstraintsAroundpreCondition =

M(preCondition; postCondition =

M(postCondition))

accessor Map i(M(params))f
Map < String;Objec > result = [:]

M(expressions)

result

g)�
At �rst, a Map variable named result, which takes
strings as the key and objects as the value, is
declared. Each assignment to an output variable is
mapped to an assignment to a key of the result map.
The name of the assigned key is the same as the



3430 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

output variable name. Finally, the result variable is
returned as the output value of the function.

Discussion on soundness. All the provided map-
ping rules for di�erent types of operation schemas
are using an attribute named @CheckConstraintsAround
for ensuring pre- and post-conditions of the operator
schema (see Listing 1 for implementation details of the
@CheckConstraintsAround attribute). In addition, the
@CheckConstraintsAround attribute checks ful�llment
of global state constraints of the schema. Suppos-
ing that M(preCondition), M(postCondition), and
M(expressions) map pre-conditions, post-conditions,
and body of the operation schema onto proper Groovy
codes, it is expected that the provided mapping rule
preserves semantics of operation schemas in Object-Z.

4.2.5. Class inheritance
Since the Object-Z speci�cation language supports
multiple inheritance [4], this notion has to be covered
in the mapping of classes to the Groovy programming
language. To map the class inheritance, three possible
cases are studied in the following:

M(Inheritance) =M(SingleInheritance)[
M(MultipleInheritanceWithSameRoot)[
M(MultipleInheritanceWithDifferentRoots)

1. The child class is only derived from one other
class. Considering SubClass as the child class and
SuperClass as its parent class, the mapping rule for
this inheritance structure is illustrated below:
M(SingleInheritance) =

M(SubClass� SuperClass�=

public class SuperClass extends Schema

fM(SuperClassBody)g
public class SubClass extends SuperClass

fM(SubClassBody)g�
In this case, the child class is derived from the
parent class using the keyword extends in Groovy.
The function resulting from mapping the initial
schema of the parent class should be called in the
constructor of the child class prior to the function
resulting from mapping the initial schema of the
child class. Through mapping, each instance of
SubClass is an instance of SuperClass, too. All
state variables and operation schemas of SuperClass
are accessible in SubClass, and all constraints on
state variables of SuperClass are controlled in the
operations of the SubClass.

As an example of this type of inheritance,
see the mapping provided for the CreditCardCount
(refer to Subsection 5.3) and CreditCardCon�rm
classes (refer to Subsection 5.4) in the case study.

2. The child class is derived from two or more classes,
and all the super classes eventually are derived
from the same class. In the following mapping
rule, SuperClass represents the root class, SubClass
represents the child class, IntermediateClassi repre-
sents the ith medial class, andN is the total number
of medial classes.

M(MultipleInheritanceWithSameRoot) =

M(SubClass�[N

i=1
IntermediateClassi

jIntermediateClassi�SuperClass��)=

public class SuperClass extends Schema

fM(SuperClassBody)g
[Ni=1 public class IntermediateClassi extends

SuperClassfM(IntermediateClassBodyi)g
@Mixin([Ni=1IntermediateClassi) public class

SubClass extends SuperClass

fM(SubClassBody)g�
The child class is derived from the root class using
the keyword extends in Groovy. The functions of
the super classes are added to the child class using
the Mixin attribute of Groovy [88]. In this case, the
constructor function of each super class is added to
the constructor function of the child class in order of
participation of the corresponding classes in the in-
heritance tree. By using this mapping, all instances
of SubClass are instances of SuperClass and each of
intermediate classes using the method described in
Subsection 4.2.5.2. In addition, all state variables
and operations of intermediate classes are accessible
in SubClass, and all constraints on state variables of
intermediate classes and SuperClass are controlled
in all operations of SubClass.

The mapping of the CreditCardCon�rmAnd-
Count class in the case study (see Subsection 5.5)
is an example for mapping multiple inheritance.

3. The child class is derived from two or several
classes, which do not have the same parent class:
In this case, the child class is derived from the
Schema class, and the body of all the parent
classes is added to the child class using the Mixin
attribute. The mapping rule is illustrated below,



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3431

where SuperClassi refers to the ith parent class and
SubClass refers to the child class.
M(MultipleInheritanceWithDifferentRoots)=

M(SubClass�[N

i=1
SuperClassi�)=

[Ni=1 public classSuperClassi extends

SchemafM(SuperClassBodyi)g
@Mixin([Ni=1SuperClassi) public class

SubClass extends Schema

fM(SubClassBody)g�
According to the pattern used in this paper to name
the function related to the initial schema and due
to the uniqueness of class names, the name of the
function related to the initial schema of each class
is unique. Hence, the child class can easily call
the functions related to the initial schema of the
parent classes. In the case of operation schemas,
with the same name, the function related to the
last class mentioned in the Mixinattribute is chosen.
Similar to the previous mapping rule, all instances
of SubClass are instances of all super classes using
the method described in Subsection 4.2.5.2.

Discussion on soundness. The provided mapping
rules for each studied inheritance case preserve the
semantics of class inheritance in Object-Z speci�cations
by ensuring the following required properties:

1. Instances created from each subclass are also
instances of the parent classes (see Subsec-
tion 4.2.5.2);

2. State variables and operation schemas of the parent
classes are available in the child classes;

3. Constraints de�ned on state variables of the parent
classes are also controlled by the child classes;

4. Init schemas of the parent classes are called inside
the initial schema of the child classes;

5. Multiple inheritance is supported;
6. Overriding and renaming of operation schemas are

supported (see Subsection 4.2.5.1).

4.2.5.1. Operation schema renaming
One of the challenges in the class inheritance mapping
is the renaming of operation schemas. In this case, an
operation schema in the parent class is renamed, and a
new implementation of that schema may be presented
in the child class (often using the operation schema of
the same name in the parent class). In this case, the
schema's new body in the child class is implemented
in a new private and uniquely named function. Then,

the inherited function is renamed to the new speci�ed
name in the constructor of the target class. Finally,
the uniquely named function is used to provide a new
implementation for the renamed function. Consider the
following speci�cation:
SubClass

jSuperClass [newSchemaName=oldSchemaName]

The mapping of the above renaming in the child class
is performed by changing the name of the homony-
mous function of the parent class in the child class
constructor. This task uses features of dynamism and
metaprogramming of the Groovy dynamic language.
The following is the rule for the mapping of schema
renaming:

[new SchemaName]

= metaClass:getMetaMethod([oldSchemaName];

[parameter types] as Class])

In Groovy, each class has a property, named metaClass,
which allows accessing or modifying the de�nition of
the class. A method named getMetaMethod of meta-
Class takes both a name and a list of parameter types
and returns the matching method. [parameter types]
in this mapping refers to the list of Groovy classes
corresponding to the type of input parameters in the
target function. The mapping of the CreditCardCount
class in the case study presented in Section 5 is an
example of the mapping of schema renaming.

4.2.5.2. Membership problem
Another problem of the class inheritance mapping is
that each instance of the child class has to be castable
to the parent classes. Moreover, the inheritance has
to be controllable using the instanceOf operator. The
instanceOf operator checks whether an object is an
instance of a speci�c class. The mentioned problem
only occurs in Cases 2 and 3 of the class inheritance
mapping. To overcome this problem, instanceOf and
asType methods of the child class are overridden. The
next example presents the solution to these problems.

Example 9. If a child class, named A, is derived from
B, C, and D, then the following functions must be
implemented in class A:

@Override boolean instanceOf(Class clazz)

f [this:class; B; C; D]:contains(clazz)g
@Override def asType (Class clazz) f

if ([B; C; D]:contains(clazz))f
def newObject = clazz?:newInstance()



3432 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

copyProperties(this; newObject)

newObject

g
else super:asType(clazz)

g
def copyProperties (source; target)f

source:properties:each fkey; value� >
if (target:hasProperty(key) && !(key in

[`class0; `metaClass0])) target[key] = value

g
g

In this example, instanceOf and asType methods are
overridden. If the input class is B, C or D, the
instanceOf method returns true. In this case, the
asType method creates a new object of the input class,
copies values of the properties of the current instance of
A to the new object using the copyProperties method,
and �nally returns the new created object; otherwise,
the instanceOf method returns false, and the asType
method calls the asType method of its super class.
In this example, the copyProperties method uses the
metaprogramming feature of the Groovy language. At
last, the following commands will yield the expected
results as shown below:

A item = new A()

assert item:instanceOf(B)

assert item:instanceOf(C)

assert item:instanceOf(D)

B b = item as B; assert b ! = null

C c = item as C; assert c ! = null

D d = item as D; assert d ! = null

4.3. Operational operators
To map operational operators, the method proposed
in [9] with slight modi�cations is presented. These
modi�cations originate from the di�erence in applica-
tion of pre- and post-conditions in C++ and Groovy.
In the method proposed in this paper, the pre- and
post-conditions are de�ned via the related annotations.
Hence, the corresponding function is executed com-
pletely, or else it fails (i.e., none of its commands is
executed).

4.3.1. Conjunction
Conjunctions in the form of Op1 ^Op2 are mapped as
follows:
M(Conjunction) =M(op1 ^ op2)

= bool conjunction = fop1; op2

! try fop1()&&op2()g catch(ignored)ffalseg
g
conjunction(op1,op1)�

This closure takes op1 and op2 functions as the inputs
and calls the conjunction of these two functions. If an
error occurs or the pre- or post-conditions of a function
are not met, this command returns false.

Discussion on soundness. The order of evaluation
of conjunction operands in Object-Z and Groovy is the
same. Since the overall value of the conjunction is
already determined, if the �rst operand is evaluated
to be false, the second operand will not be evaluated.
This is the reason why the semantics of the conjunction
operator in Object-Z is preserved by the provided
mapping rule.

4.3.2. Choice
Choice operations in the form of Op1_Op2 are mapped
as follows:
M(Choice) =M(op1 _ op2) =

bool choice = fop1; op2 !
de�ndex=new Random().nextInt(2)

if try[op1,op2][index]))return

else tryOp([op1,op2][1-index])

g
boolean tryOp=fop!tryfop()gcatch(ignored)ffalsegg
choice(op1,op1)�
As seen, the above construct randomly tests one of
the input functions and does not execute the other
function if the �rst try succeeds. The second function
is executed when the �rst function fails. This closure
uses another closure named tryOp, which is responsible
for preventing exceptions being raised when a closure
cannot be executed.

Discussion on soundness. Since the choice closure
selects an operator randomly to be executed, its behav-
ior is non-deterministic and ful�lls the semantics of the
choice operator in Object-Z.



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3433

4.3.3. Sequential composition
Sequential compositions in the form of Op1, and Op2
are mapped using the following closure:
M(Sequential) =M(op1; op2) =

def sequential=fop1,op2 !
defresult

tryOpfop1();result=op2()g)
result

g
sequential(op1,op1)�

A closure named sequential has been de�ned. The
sequential closure receives two functions as its input
parameters and executes them sequentially. The value
returned by this closure is derived from the second
parameter.

Discussion on soundness. Groovy executes lines
of code one by one in their present order. Since
the operands of sequential composition are called in
the same order in the sequential closure and the
return value is determined based on the possible return
value of the second operand, semantics of sequential
composition in Object-Z is preserved by the introduced
mapping rule.

4.3.4. Parallel composition
To provide a proper parallelism, parallel compositions
in the form of Op1kOp2 are mapped using the following
closure:
M(Parallel) =M(op1jjop2 =

void parallel = fop1; op2 ! GparsPool.withPool

fop1.callAsync()&&op2.callAsync()gg
parallel(op1,op1)�

A new closure named parallel is de�ned. This closure
executes op1 and op2 functions in parallel using the
facilities provided by GparsPool [89] and returns a
conjunction of the results.

4.3.5. Negation
Negation operators in the form of :Op are mapped

using the following closure. The body of this closure is
similar to the result of the method presented in [9]:
M(Not) =M(:op) =

bool not=fop!op()g
not(op)�

In Groovy, each non-zero and non-null value can be
considered as true. We have de�ned a not closure,
which receives a function in its parameters and negates
the result of execution of that function.

5. Case study

This section evaluates the applicability of the proposed
mapping rules. For this purpose, these rules are
applied to the credit card management system (refer
to Subsection 2.1) to generate Groovy code. Before
starting to map the speci�cation, an empty class named
Context is created. This class will be used as a
placeholder for global de�nitions and constraints in the
next subsections.

5.1. Mapping the global paragraphs
The mapping of the speci�cation to Groovy code starts
with the global paragraphs. The �rst task involves
mapping of the Customer basic type onto an empty
class. Contents of this class could be implemented
in proportion to the future needs. In this class, a
constructor and a static variable named instanceList
(which keeps instances of the class) are de�ned. The
list of created instances is used to control the generic
de�nitions. No generic constraint is involved in the
mapping of the credit card management system spec-
i�cation. However, to develop a general pattern that
could be used in automating the mapping process, the
instanceList variable is incorporated in each basic type.
See Listing 7 for the mapping of the Customer basic
type.

In addition, the Customer class is added to the
basicTypes list of the Context class. The limitValue
set is mapped to a set in the Context class. Since
status is speci�ed as a free type, which only accepts
constant values, it is su�cient to map this free type to
a simple enumeration. See Listing 8 for the mapping
of the Context class and the Status enumeration.

5.2. Mapping a simple class
After mapping the global paragraphs, the next step

Listing 7. The mapping of the Customer basic type.



3434 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

Listing 8. The mapping of the Context class and the Status enumeration.

is the mapping of the CreditCard class. According to
the aforementioned mapping rules, all classes should
be derived from a class named Schema. The limit and
expiryValue constants are mapped to the corresponding
static properties. The constraints of the state schema
are only applied to the new value of the limit and
expiryValue constants. For example, each time a
value is assigned to the limit constant, the new value
belongs to both of the set of natural numbers and
the limitValue set. The expiryValue constant is also
mapped similarly.

Of note, the state schema's constraints should
be met before and after changing the value of each
variable. To this end, the CheckConstraintsAround
annotation along with the possible pre- and post-
conditions of the operation schemas is applied to all
the functions that change one or several properties
of a class. As mentioned before, this annotation
executes the checkConstraints function before and after
the execution of each signed function. The checkCon-
straints function raises an exception if the conditions
speci�ed by checkConstraintsInternal, pre- or post-
conditions are not met. The transactional nature of
the functions that change the class state suggests that
changes occur only if the state schema's constraints
are met before and after the changes. In addition, the
constructor of the target and set functions, assigning
values to the variables of the state schema, are de�ned
as transactional functions. After the execution of
the body of these transactional functions, CheckCon-
straintsAfter is called to control the state schema's
constraints.

To continue the mapping of the CreditCard class,
a function named CreditCard Constructor is de�ned
for the initial schema of this class. The contents
of the initial schema are mapped to the Credit-
Card Constructor function. This function is de�ned as
a protected function since there is no need to access
it from the outside. However, it may be called in
the default constructor of classes inheriting CreditCard.
In addition, there is no need for this function to be
transactional since transactional functions are called
by the class constructor (which itself is a transactional
function).

The reissue, withdraw, deposit, and it newDay
functions are mapped, as shown in Listing 9. Check-
ConstraintsAround is applied to all these transactional
functions. In some cases, CheckConstraintsAround is
called with an additional parameter of the closure

type since the target function may have pre-conditions
that should be met prior to its execution. These
pre-conditions are controlled by the state schema's
constraints within the checkConstraints function. See
Listing 9 for the mapping of the CreditCard class.

5.3. Mapping of a single inheritance
Single inheritance is used to inherit the CreditCard-
Con�rm class from the CreditCard class. Similar
to the previous functions, the fundsAvail function is
mapped using the proposed mapping rules. To map the
withdrawCon�rm function, the sequential composition
function (whose mapping is given in Subsection 4.3.3)
is used. This function returns the output value of the
last input closure. Therefore, the return type of the
fundsAvail function is considered as the return type of
the withdrawCon�rm function. Since the CreditCard-
Con�rm class lacks an initial schema, its constructor
only calls the CreditCard Constructor function of the
parent class. See Listing 10 for the mapping of the
CreditCardCon�rm class.

5.4. Mapping of the renamed operation
schema

The mapping of the CreditCardCount class is a bit more
complicated than the previous ones. The reason is
that the CreditCardCount class renames the withdraw
function of its parent class and presents a new imple-
mentation for this function. The withdraw function is
mapped to a private function in Groovy with a new
unique name (newWithdraw). Next, in the constructor
of the CreditCardCount class, the withdraw function
of the parent class is renamed to oldWithdraw. The
oldWithdraw function is incorporated into the body
of the newWithdraw function. Afterwards, the new
withdraw function, called the newWithdraw function,
is added to the class instance in the constructor. The
withdrawals state variable is also implemented similar
to the previously mapped variables. See Listing 11 for
the mapping of the CreditCardCount Class.

5.5. Mapping of multiple inheritance
The CreditCardCon�rmAndCount class is derived from
both the CreditCardCon�rm and CreditCardCount
classes. The CreditCardCon�rmAndCount class also
is derived from the CreditCard (root) class. As
mentioned before, the inheritance is implemented with
the Mixin attribute. Moreover, since the withdraw
function in the CreditCardCount class is changed, this
class is mentioned after the other super class (i.e.,



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3435

Listing 9. The mapping of the CreditCard class.

CreditCardCon�rm) in the Mixin attribute. There-
fore, the CreditCardCon�rmAndCount class inherits
the withdraw function from the CreditCardCount class.
In the constructor of the CreditCardCon�rmAndCount
class, the functions related to the initial schema of the
parent classes are called in the order speci�ed in the
inheritance tree of the CreditCardCon�rmAndCount
class. See Listing 12 for the mapping of the Credit-
CardCon�rmAndCount class.

The mapping of the CreditCards Class is given in
Appendix B.

6. Conclusions and future work

In spite of the mapping rules introduced in previous
works to map VDM++ speci�cations to Java code,
the existing mapping rules aimed at JVM-based pro-
gramming languages (as the mapping destination) do
not properly cover the speci�cation constructs of the
source speci�cation language. According to the high
popularity of JVM-based languages, the necessity of
developing highly complete mapping rules aimed at
these languages becomes more evident.



3436 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

Listing 10. The mapping of the CreditCardCon�rm class.

Listing 11. The mapping of the CreditCardCount class.

Listing 12. The mapping of the CreditCardCon�rmAndCount class.



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3437

In addition to using a JVM-based language as
the destination language for mapping, the following
notions and constructs, which have not been covered by
previous methods, have been addressed in this paper as
follows:

1. Multiple inheritance is analyzed and supported by
presenting mapping rules for three di�erent possible
case;

2. By limiting the expected range of the return
value, it is possible to map inverse speci�cations
of functions (i.e., speci�cations of inputs in terms
of outputs);

3. It is possible to map generic functions by the
dynamism feature of Groovy;

4. Although mapping rules for free-type constructors
need the user's intervention, such rules are also
presented in this work.

In addition, a mapping rule for the class union was
provided, which has not been covered by previous
JVM-based researches. In addition, unlike previous
works, parallel compositions were mapped to a parallel
construct (not a concurrent structure).

Finally, the control of constraints was assigned
to advisors in the mapping rules. Consequently, using
the aspect-oriented model, the readability of the result
code was improved with annotations; in this way,
the costs of future developments of the result code
decreased.

We provided discussion on soundness of the pro-
posed mapping rules and studied the applicability of
the proposed mapping rules through a case study;
however, a formal correctness proof of the rules will
be presented in future work. As another limitation,
this paper does not provide mapping rules for all the
constraints existing in various constructs (including
pre- and post-conditions of speci�ed operations). In
addition, the expressions existing in various constructs
of the initial Object-Z speci�cation are not covered in
this paper.

The mapping approach proposed in this paper
is also applicable to other similar destination pro-
gramming languages such as Scala. However, due
to the di�erences in the structural characteristics of
each programming language, the mapping rules will be
di�erent in detail.

This work points out the following directions for
future research:

1. A special tool or library could be developed to
support the process of mapping from Object-Z to
Groovy;

2. By using speci�c conventions, it is possible to
specify the role of each class. For example, a class
may be used as DTO (data transfer object) or a

controller in the MVC (model - view - controller)
design pattern. In such cases, there is no need for
interaction with the user, and the descriptor is able
to present all the required information using the
agreed conventions. Therefore, by using Object-Z
speci�cations, it is possible to develop even large-
scale software systems based on the frameworks
such as grails or Play. These powerful MVC frame-
works, which use Groovy and Scala programming
languages, apply the convention over con�guration
pattern.

References

1. Woodcock, J., Larsen, PG., Bicarregui, J., et al.
\Formal methods: Practice and experience", ACM
Computing Surveys (CSUR), 41(4), p. 19 (2009).

2. Fitzgerald, J., Bicarregui, J., Larsen, P.G., et al.
\Industrial Deployment of Formal Methods: Trends
and Challenges", In Industrial Deployment of System
Engineering Methods, pp. 123-143, Springer (2013).

3. Naja�, M., Haghighi, H., and Zohdi Nasab, T. \A sur-
vey on formal, object-oriented program development
approaches", Scientia Iranica, 22(3), pp. 1001-1007
(2015).

4. Smith, G., The Object-Z Speci�cation Language,
Springer Science & Business Media (2012).

5. Rose, G., Formal Object-Oriented Speci�cation Using
Object-Z, Macmillan, United Kingdom (2000).

6. Woodcock, J. and Davies, J., Using Z: Speci�cation,
Re�nement and Proof, Prentice Hall, NJ (1996).

7. Ramkarthik, S. and Zhang, C. \Generating Java
skeletal code with design contracts from speci�cations
in a subset of object-Z", Computer and Information
Science, 2006 and 2006 1st IEEE/ACIS International
Workshop on Component-Based Software Engineer-
ing, Software Architecture and Reuse. ICIS-COMSAR
2006. 5th IEEE/ACIS International Conference on,
Honolulu, HI, pp. 405-411, IEEE Computer Society
Press (2006).

8. Naja�, M. and Haghighi, H. \An animation approach
to develop c++ code from object-z speci�cations",
Computer Science and Software Engineering (CSSE),
2011 CSI International Symposium on, pp. 9-16, IEEE
(2011).

9. Naja�, M. and Haghighi, H. \An approach to animate
Object-Z speci�cations using C++", Scientia Iranica,
19(6), pp. 1699-1721 (2012).

10. Naja�, M. and Haghighi, H. \An approach to develop
C++ code from object-Z speci�cations", 2nd World
Conference on Information Technology (2011).

11. Ni, X. and Zhang, C. \Converting speci�cations in a
subset of Object-Z to skeletal spec# code for both
static and dynamic analysis", Journal of Object Tech-
nology, 7(8), pp. 165-185 (2008).



3438 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

12. Naja�, M. and Haghighi, H. \A formal mapping from
Object-Z speci�cation to C++ code", Scientia Iran-
ica. Transaction D, Computer Science & Engineering,
Electrical Engineering, 20(6), p. 1953 (2013).

13. Rafsanjani, G.B. and Colwill, S.J. \From Object-Z
to C++: A structural mapping", Z User Workshop,
London 1992, pp. 166-179, Springer (1993).

14. Gri�ths, A. \From Object-Z to Ei�el: a rigorous
development method", Technology of Object-Oriented
Languages and Systems (TOOLS 18), pp. 293-308
(1995).

15. Ramkarthik, S. and Zhang, C. \Generating Java
skeletal code with design contracts from speci�cations
in a subset of object Z", Computer and Information
Science, 2006 and 2006 1st IEEE/ACIS International
Workshop on Component-Based Software Engineer-
ing, Software Architecture and Reuse. ICIS-COMSAR
2006. 5th IEEE/ACIS International Conference on,
pp. 405-411, IEEE (2006).

16. Johnston, W. and Rose, G. \Guidelines for the manual
conversion of Object-Z to C++", SVRC Technical
Report, pp. 93-14 (1993).

17. Fukagawa, M., Hikita, T. and Yamazaki, H. \A
mapping system from Object-Z to C++", Software En-
gineering Conference, 1994. Proceedings., 1994 First
Asia-Paci�c, pp. 220-228, IEEE (1994).

18. Wang, Z., Xie, M., and Zhao, Y. \Transform mecha-
nisms of object-z based formal speci�cation to Java",
Computational Intelligence and Software Engineering,
2009. CiSE 2009. International Conference on, pp. 1-
4, IEEE (2009).

19. Jackson, M. \Developing Ada programs using the
Vienna development method (VDM)", Software: Prac-
tice and Experience, 15(3), pp. 305-318 (1985).

20. Van Katwijk, J., Durr, E., and Goldsack, S. \Hybrid
object-oriented real-time software development with
VDM++", Formal Engineering Methods., 1997. Pro-
ceedings., First IEEE International Conference on, pp.
17-26, IEEE (1997).

21. Albalooshi, F. and Long, F. \Multiple view environ-
ment supporting VDM and Ada", IEE Proceedings-
Software, 146(4), pp. 203-219 (1999).

22. Moulding, M. and Newton, A. \Rapid prototyping
from VDM speci�cations using Ada", Automating
Formal Methods for Computer Assisted Prototying,
IEE Colloquium on, pp. 11-21, IET (1992).

23. Chedgey, C., Kearney, S., and Kugler, H.-J. \Using
VDM in an object-oriented development method for
Ada software", VDM'87 VDM-A Formal Method at
Work, pp. 63-76 (1987).

24. O'Neill, D. \VDM development with Ada as the target
language", VDM'88 VDM-The Way Ahead, pp. 116-
123 (1988).

25. Lou, Y. \VDM/C++: a design and implementation
framework", Thesis, Concordia University (1994).

26. Liu, H. and Zhu, B. \Refactoring formal speci�cations
in object-Z", Computer Science and Software Engi-
neering, 2008 International Conference on, pp. 342-
345, IEEE (2008).

27. McComb, T. \Refactoring object-z speci�cations",
FASE, Berlin, Germany, pp. 69-83, Springer (2004).

28. McComb, T. and Smith, G. \Architectural design
in Object-Z", Software Engineering Conference, 2004.
Proceedings. 2004 Australian, pp. 77-86, IEEE (2004).

29. McComb, T. and Smith, G. \Compositional class
re�nement in Object-Z", FM 2006: Formal Methods,
pp. 205-220 (2006).

30. McComb, T. and Smith, G. \A minimal set of refac-
toring rules for Object-Z", Lecture Notes in Computer
Science, 5051, pp. 170-184 (2008).

31. McComb, T. and Smith, G. \Introducing objects
through re�nement", FM 2008: Formal Methods, pp.
358-373 (2008).

32. Rasoolzadegan, A. and Barforoush, A.A. \A new
approach to software development process with formal
modeling of behavior based on visualization", The
Sixth International Conference on Software Engineer-
ing Advances (2011).

33. Rasoolzadegan, A. and Barforoush, A.A. \Reliable yet

exible software through formal model transformation
(rule de�nition)", Knowledge and Information Sys-
tems, 40(1), pp. 79-126 (2014).

34. Ruhroth, T. \Refactoring Object-Z speci�cations",
18th Nordic Workshop on Programming Theory (2006).

35. Smith, G. \Introducing reference semantics via re�ne-
ment", ICFEM, pp. 588-599, Springer (2002).

36. Goldsack, S. and Lano, K. \Annealing and data
decomposition in VDM", ACM Sigplan Notices, 31(4),
pp. 32-38 (1996).

37. Lu, J. \Introducing data decomposition into VDM
for tractable development of programs", ACM Sigplan
Notices, 30(9), pp. 41-50 (1995).

38. Goldsack, S., Durr, E., and Plat, N. \Object rei�cation
in VDM++", ICSE-17: Workshop on Formal Methods
Application in Software Engineering Practice, pp. 194-
201 (1995).

39. Lano, K. and Goldsack, S. \Re�nement of dis-
tributed object systems", Proc. of Workshop on For-
mal Methods for Open Object-Based Distributed Sys-
tems, Boston, MA, pp. 99-114, Springer (1997).

40. Lano, K. and Goldsack, S. \Re�nement, subtyping and
subclassing in VDM++", Theory and Formal Methods,
95, pp. 1-446 (1994).

41. Butler, M., Abrial, J.R., Damchoom, K., et al. \Ap-
plying Event-B and Rodin to the �lestore", VSRNet,
ABZ, 152, pp. 134-152 (2008).

42. Poppleton, M. \The composition of Event-B models",
ABZ, 5238, pp. 209-222 (2008).

43. Silva, R., Pascal, C., Hoang, T.S., et al. \Decom-
position tool for event-B", Software: Practice and
Experience, 41(2), pp. 199-208 (2011).



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3439

44. Hoang, T.S. and Abrial, J.-R. \Event-B decomposition
for parallel programs", International Conference on
Abstract State Machines, Alloy, B and Z, Berlin,
Germany, pp. 319-333, Springer (2010).

45. Hoang, T.S. and Abrial, J.-R. \Event-B development
of the FindP program", Technical Report/ Swiss Fed-
eral Institute of Technology Zurich, Department of
Computer Science, 653, pp. 1-22 (2009).

46. Pascal, C. and Silva, R. \Event-B model decomposi-
tion", DEPLOY Plenary Technical Workshop (2009).

47. Butler, M. \Incremental design of distributed systems
with Event-B", Engineering Methods and Tools for
Software Safety and Security, 22, p. 131 (2009).

48. Said, M., Butler, M., and Snook, C. \Language and
tool support for class and state machine re�nement
in UML-B", FM 2009: Formal Methods, pp. 579-595
(2009).

49. Said, M.Y. \Methodology of re�nement and decompo-
sition in UML-B", Thesis, University of Southampton
(2010).

50. Abrial, J.-R., Cansell, D., and M�ery, D. \Re�nement
and reachability in event b", ZB 2005: Formal Spec-
i�cation and Development in Z and B, pp. 129-148,
Springer (2005).

51. Abrial, J.-R. and Hallerstede, S. \Re�nement, de-
composition, and instantiation of discrete models:
Application to Event-B", Fundamenta Informaticae,
77(1-2), pp. 1-28 (2007).

52. Hallerstede, S., Leuschel, M., and Plagge, D.
\Re�nement-animation for event-B-towards a method
of validation", ASM, pp. 287-301, Springer (2010).

53. Jones, C. \RODIN deliverable D19 intermediate report
on methodology", Technical Report Series- University
OF Newcastle upon Tyne Computing Science, 990
(2006).

54. Lano, K. and Haughton, H. \Speci�cation in B: An
introduction using the B toolkit", World Scienti�c
(1996).

55. Silva, R. and Butler, M., Supporting Reuse Mech-
anisms for Developments in Event-B: Composition
(2009).

56. Silva, R. and Butler, M. \Supporting reuse of Event-B
developments through generic instantiation", Interna-
tional Conference on Formal Engineering Methods, pp.
466-484, Springer (2009).

57. Abrial, J.-R. \A system development process with
Event-B and the Rodin platform", International
Conference on formal engineering methods, pp. 1-3,
Springer (2007).

58. Stevens, B. \Implementing Object-Z with perfect de-
veloper", Journal of Object Technology, 5(2), pp. 189-
202 (2006).

59. Qin, S. and He, G. \Linking object-z with spec",
Engineering Complex Computer Systems, 2007. 12th
IEEE International Conference on, pp. 185-196, IEEE
(2007).

60. Kimber, T.G. \Object-Z to perfect developer", Thesis,
Department of Computing, Imperial College London
(2007).

61. Derrick, J. and Boiten, E. \Re�nement in Z and
Object-Z. formal approaches to computing and infor-
mation technology", Formal Approaches to Comput-
ing and Information Technology (FACIT), Springer-
Verlag, 21(22), p. 134 (2001).

62. Derrick, J. and Boiten, E. \Re�nement of objects
and operations in Object-Z", In Formal Methods for
Open Object-Based Distributed Systems IV, pp. 257-
277, Springer (2000).

63. Naja�, M. and Haghighi, H. \Re�nement of Object-
Z speci�cations using Morgan's re�nement calculus",
World Academy of Science, Engineering and Tech-
nology, International Journal of Computer, Electrical,
Automation, Control and Information Engineering,
5(11), pp. 1347-1356 (2011).

64. M�ery, D. and Singh, N.K. \Automatic code generation
from Event-B models", Proceedings of the Second
Symposium on Information and Communication Tech-
nology, Hanoi, Vietnam, pp. 179-188, ACM (2011).

65. M�ery, D. and Singh, N.K. \EB2J: Code generation
from Event-B to Java", 14th Brazilian Symposium on
Formal Methods: Short Papers, p. 7 (2011).

66. Edmunds, A., Rezazadeh, A., and Butler, M. \Formal
modelling for ada implementations: tasking Event-B",
Reliable Software Technologies-Ada-Europe 2012, pp.
119-132 (2012).

67. Edmunds, A. and Butler, M. \Linking Event-B
and concurrent object-oriented programs", Electronic
Notes in Theoretical Computer Science, 214, pp. 159-
182 (2008).

68. Edmunds, A. \Providing concurrent implementations
for Event-B developments", Thesis, University of
Southampton (2010).

69. Edmunds, A. and Butler, M. \Tasking Event-B: An
extension to Event-B for generating concurrent code",
PLACES (2011).

70. Edmunds, A. and Butler, M. \Tool support for Event-
B code generation", Workshop on Tool Building in
Formal Methods, Q�uebec, Canada, J. Wiley and Sons
(2010).

71. Rommel, C. \Using Java to control IoT development
costs", Oracle, http://www.oracle.com/us/solutions/
internetofthings/iot-development-cost-wp-
2872509.pdf (2016).

72. Sateanpattanakul, S. and Walairacht, A. \Jgroovy-an
extensible java programming language with groovy",
Advanced Communication Technology (ICACT), 2010
The 12th International Conference on, pp. 1139-1144,
IEEE (2010).

73. Kaewkasi, C. and Gurd, J.R. \Groovy AOP: a dynamic
AOP system for a JVM-based language", Proceedings
of the 2008 AOSD Workshop on Software Engineering
Properties of Languages and Aspect Technologies, p. 3,
ACM (2008).



3440 F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441

74. You, J., Junquan, L., and Xia, S. \A survey of formal
methods using in software development", Information
Science and Control Engineering 2012 (ICISCE 2012),
IET International Conference on, Shenzhen, pp. 1-4
(2012).

75. Wang, Z., Xia, M., and Zhao, Y. \Transform mecha-
nisms of object-Z based formal speci�cation to Java",
Computational Intelligence and Software Engineering,
2009. CiSE 2009. International Conference on, pp. 1-
4, IEEE, Computer Society Press (2009).

76. Charatan, Q. and Kans, A., Formal Software Develop-
ment from VDM To Java, Palgrave Macmilan (2003).

77. \The VDM++ to Java code generator",
http://www.vdmtools.jp/en/modules/tinyd2/i
ndex.php?id=2/javacgmanppa4E.pdf (2013).

78. Rafsanjani, G. and Colwill, S.J. \From Object-Z to
C++: A structural mapping", In Z User Workshop,
London 1992, pp. 166-179, Springer, London, UK
(1992).

79. Fukagawa, M., Hikita, T., and Yamazaki, H. \A
mapping system from object-Z to C++", Software
Engineering Conference, 1994. Proceedings., 1994 First
Asia-Paci�c, Tokyo, pp. 220{228, IEEE Computer
Society Press (1994).

80. Naja�, M. and Haghighi, H. \A formal mapping
from Object-Z specication to C++", Scientia Iranica.
Transactions D, Computer Science & Engineering,
20(6), pp. 1953 (2013).

81. Kiczales, G., Lamping, J., Mendhekar, A., et al.
\Aspect-oriented programming", European Confer-
ence on Object-Oriented Programming, pp. 220-242,
Springer (1997).

82. Klein, D., Grails: A Quick-Start Guide, Progmatic
Bookshelf (2009).

83. B�achle, M. and Kirchberg, P. \Ruby on rails", IEEE
Software, 24(6), pp. 105-108 (2007).

84. Koenig, D., King, P., Laforge, G., et al., Groovy in
Action, Manning (2007).

85. Barclay, K. and Savage, J., Groovy Programming: An
Introduction for Java Developers, Morgan Kaufman
(2010).

86. Fowler, M. \Inversion of control containers and the
dependency injection pattern", http://martinfowler.
com/articles/injection.html (2004).

87. Kimbler, G.T., Object-Z to Perfect Developer, Imperial
College, London (2007).

88. Adamovich, A. and Fiandesio, L. \Implementing mul-
tiple inheritance in Groovy", In Groovy 2 Cookbook, A.
Adamovich and L. Fiandesio, Eds., Packt Publishing
Ltd. (2013).

89. Adamovich, A. and Fiandesio, L. \Concurrent pro-
gramming in Groovy", In Groovy 2 Cookbook, A.
Adamovich and L. Fiandecio, Eds., Packt Publishing
Ltd. (2013).

Appendix A

In the CreditCards class (Listing A.1), the common-
Limit constant de�nes the limitation shared by all
credit cards. The cards set contains the de�ned credit
cards. The add operation schema de�nes a new card
for a customer. The delete operation schema discards
an invalid credit card. The transfer operation schema
transfers a certain amount of money from one card to
another.

Listing A.1. CreditCards speci�cation.



F. Zaker et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3415{3441 3441

Listing B.1. The mapping of the CreditCards class.

Appendix B

Listing B.1 shows implementation of the CreditCards
class based on the CreditCard class and its sub-classes.
In this class, the cards set is of the Set type and
accepts elements of the CreditCard type. Similar to
other classes mapped in Section 5, the properties and
functions of this class are easily implemented based
on the proposed mapping rules.

Biographies

Farzin Zaker received his MSc degree in Computer
Engineering-Software from Shahid Beheshti University,
Tehran, Iran in 2013 and is currently a PhD student
in the Faculty of Computer Science and Engineering
at Shahid Beheshti University, Tehran, Iran. His
main research interests include formal methods in
the software development life cycle and distributed

autonomic systems.

Hassan Haghighi received his PhD degree in Com-
puter Engineering-Software from Sharif University of
Technology, Iran in 2009 and is currently an Associate
Professor in the Faculty of Computer Science and En-
gineering at Shahid Beheshti University, Tehran, Iran.
His main research interests include formal methods in
the software development life cycle, software testing,
and software architecture.

Eslam Nazemi received his PhD degree in Industrial
Engineering and Information Technology in 2005 and
is currently an Associate Professor in the Faculty of
Computer Science and Engineering at Shahid Beheshti
University, Tehran, Iran. His main research interests
include self-* software engineering, large scale soft-
ware development and self- adaptive software qual-
ity.




