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Abstract. In this paper, an e�cient computational solution technique based on the
energy balance equations is presented to perform the dynamic analysis of shear frames, as
an example of a multi-degree-of-freedom system. After deriving the dynamic energy balance
equations for these systems, a new mathematical solution technique called elimination of
discontinuous velocities is proposed to solve a set of coupled quadratic algebraic equations.
The method will be illustrated for the free vibration of a two-story structure. Subsequently,
the damped dynamic response of a three-story shear frame, which is subjected to harmonic
loading, is considered. Finally, the analysis of a three-story shear building under horizontal
earthquake load, as one of the most common problems in earthquake engineering, is
studied. The results show that this method has acceptable and greater accuracy than
other techniques; it is faster than modal analysis and does not require adjusting and
calibrating the stability parameter as compared to a time integration method like the
Newmark method.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Generally, in all engineering �elds that deal with
structural design, understanding the dynamic behavior
of structures is very important [1]. In this context,
although the applications of structural dynamics in
aerospace engineering, civil engineering, engineering
mechanics, and mechanical engineering are di�erent,
the principles and solution techniques are basically the
same [2]. Accordingly, dynamic analysis plays a vital
role in analyzing the dynamic response of buildings [3],
dams [4,5], and bridges [6] to earthquakes. Control
of very tall and slender buildings is among the most
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important issues for civil engineering researchers and
has frequently been investigated in recent years.

Although almost all practical structures are
Multiple-Degree-of-Freedom (MDF) systems because
of the distribution of dynamic properties such as
mass in real systems, so many DOFs are required to
determine the vibrational motion [7]. In addition, as
is known, a greater number of DOFs will increase the
complexity of solving a vibration problem. Thus, in
engineering applications, we prefer to work with fewer
DOFs without losing too much accuracy. For example,
in the modeling of dynamical systems, when much of
the mass of the system is concentrated in the structure
area, simple structures (such as water tank) can be
idealized as a system with a lumped mass (SDF Single-
Degree-of-Freedom (SDF) systems) [8]. Moreover,
under some conditions such as when a mathematical
function can express the variation of the mass and
sti�ness of the structure, the real system is considered
as a generalized SDF system [3]. Furthermore, there
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are other techniques for reducing the dynamical DOFs
of large-order systems under some conditions, e.g., refer
to [9{11]. However, in many cases, in practical engi-
neering works, there lies no possibility of simplifying
a real system to an SDF system; therefore, an MDF
dynamic analysis needs to be conducted.

There are various methods for evaluating the dy-
namic response of MDF systems. For example, in some
particular cases, by applying the mathematical tools
such as Fourier and Laplace integral transforms, an ex-
act solution to these problems can be obtained [12,13].
Moreover, modal analysis is a conventional approach to
evaluating the response of MDF structures, which are
subjected to dynamic loads. One of the disadvantages
of this method is its limitation for structures with non-
linear behavior [1]. However, some researchers have
tried to modify the modal analysis in order to use it for
nonlinear analyses; however, there is no comprehensive
method yet for performing the modal analysis of
nonlinear structures (see, for example, [14{20]). Even
though there exist some techniques to determine the
eigenvalues and eigenvectors of large-order systems
(e.g., refer to [21,22]); as DOFs increase, the calculation
of eigenvalues and eigenvectors is particularly di�cult,
which is another disadvantage of this approach.

In engineering analyses, the most general solution
method for performing dynamic analysis is an incre-
mental method or a step-by-step direct time integration
technique in which the equilibrium equations are solved
at times �t, 2�t, 3�t, etc. [1]. In this category,
Newmark [23], Houbolt [24], and Wilson et al. [25] are
some common implicit methods, and central di�erence
method is one of the well-known explicit methods [26].
Stability and accuracy of these methods are essential
in the practical analysis [27{31]; therefore, it is very
important to use accurate and numerically e�cient
techniques in computer programs [32]. As a result
of the large computational requirements, it can take a
signi�cant amount of time to solve structural systems
with just a few hundred DOFs [26]. In addition,
arti�cial or numerical damping must be added to
most incremental solution methods to obtain stable
solutions. For this reason, engineers must be very
careful with the interpretation of the results [1]. Here,
it should be noted that the arti�cial damping, which is
de�ned as the reduction of the displacement amplitude
with time for an undamped system [33], is di�erent
from the damping property of the structures.

Applying energy balance equations, proposed in
this study, can be an alternative approach to evaluating
the dynamic response of a multi-dimensional system.
In this context, for instance, the energy conservation
and dissipation properties of time-integration methods
were investigated by Acary [34] for the non-smooth
elastodynamics with contact. Even though several
researchers in various �elds such as hydrodynamic [35],

aerospace [36,37], and CFD (Computational Fluid
Dynamics) [38,39] have studied the energy method to
determine the response of their dynamic systems, yet
insigni�cant attention has been paid to this topic in
structural dynamics, except for a few studies that have
often tried to use Hamilton's Principle in order to
calculate the frequency of simple SDF structures (see,
for example [40,41]).

Accordingly, this study aims to present a new
numerical step-by-step method based on the energy
equations for MDF shear frames. The main idea of
this approach was introduced �rst in [42] for linear and
nonlinear SDF systems, and, in the present paper, this
technique is intended to be generalized to linear MDF
structures. This method in the absence of damping
leads to the de-coupled quadratic equations; moreover,
when damping is considered, it leads to a set of cou-
pled quadratic equations. According to the quadratic
form of the algebraic equations at each time step, a
novel mathematical technique called Elimination of
Discontinuous Velocities is presented to detect the real
velocity in every instance.

In this study, shear frames are selected to il-
lustrate the proposed method. The method largely
eliminates the disadvantages of other methods such as
mathematical complexity and time-consuming calcula-
tion of a modal matrix in large-order structures, as well
as stability concerns and adjustment of the analytical
coe�cients in numerical integration methods. It should
be noted that it is possible to extend this approach to
other multi-dimensional structures, too. Furthermore,
while we assume that the structure will behave linearly
in this investigation, it is possible for the proposed
method to be used for nonlinear analyses in future
studies by making certain simple modi�cations.

2. Force versus energy equations

In this section, shear frames are introduced in brief.
Subsequently, the mechanical energy relationships of
these systems are expressed and, by applying the
principle of conservation of energy, the equations of
motion are derived from energy balance relationships of
the system. The principal objective of these relations
is to prove the equivalence of the force and energy
approaches in structural dynamics. Finally, at the end
of this section, the advantages and disadvantages of
applying these methods are compared with each other.

Figure 1 depicts an n-story shear frame (or shear
building) as one of the simplest MDF systems that is
widely used in civil engineering. In this idealization,
the beams and oor systems are rigid in exure, and
several factors such as axial deformation of the beams
and columns and the e�ect of axial force on the sti�ness
of the columns are neglected [8]. In this respect, the
deected building shares many features of a cantilever
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Figure 1. Shear-frame structure.

beam that is deected by shear force only, hence
the name shear building [43], where xi denotes the
displacement of the ith story. Moreover, ki and mi
are the sti�ness and mass of the ith story, respectively.
For these structures, the potential energy of the system
(EP ) can be expressed below by assuming a linear
relationship between force and displacement.

EK =
1
2
m1v2

1 +
1
2
m2v2

2 + � � �+ 1
2
miv2

i + � � �

+
1
2
mn�1v2

n�1 +
1
2
mnv2

n: (1)

Moreover, the kinetic energy of the structure regarding
vi = dxi=dt (the velocity of the ith mass) is given by
the following:

ET =
1
2
k1(x1)2+

nX
i=2

1
2
ki(xi�xi�1)2+

nX
i=1

1
2
miv2

i : (2)

By neglecting the e�ects of energy dissipations and
using the summation notation, the total energy of the
system (ET ) (the sum of the potential and kinetic
energies) can be written as follows:

ET =
1
2
k1(x1)2+

nX
i=2

1
2
ki(xi�xi�1)2+

nX
i=1

1
2
miv2

i : (3)

From a physical perspective, the law of conservation of
energy states that the total energy of an isolated system
remains constant, which is said to be conserved over
time [44]. Hence, di�erentiating Eq. (3) with respect
to time, we obtain:

dET
dt

= 0; (4)

alternatively:

k1x1v1+
nX
i=2

ki(xi�xi�1)(vi�vi�1)+
nX
i=1

miviai=0;
(5)

where ai is the acceleration of the ith mass, i.e.:

ai =
dvi
dt
: (6)

Expanding the series in Eq. (5) leads to:

k1x1v1 + k2(x2 � x1)v2 + k2(x1 � x2)v1

+ k3(x3 � x2)v3 + k3(x2 � x3)v2 + � � �
+m1v1a1 +m2v2a2 +m3v3a3 + � � � = 0: (7)

By factoring v1; v2; v3; � � � , one can write:

v1[k1x1 + k2(x1 � x2) +m1a1]

+ v2[k2(x2 � x1) +m2a2] + � � �
+ vn[kn(xn � xn�1) +mnan] = 0; (8)

which corresponds to the following matrix form:26664
m1 0 0 0
0 m2 0 0

0 0
. . . 0

0 0 0 mn

37775
8>>><>>>:

�x1
�x2
...

�xn

9>>>=>>>;
+

26664
k1+k2 �k2 0 0
�k2 k2+k3 �k3 0

0 �k3
. . . �kn

0 0 �kn kn

37775
8>>><>>>:
x1
x2
...
xn

9>>>=>>>;=

8>>><>>>:
0
0
...
0

9>>>=>>>; :
(9)

As is clear, Eq. (9) represents the dynamic force
equilibrium equations of an n-story shear frame and,
as previously mentioned, the primary objective of this
part is the proof of the equality of energy and force
balance equations. As a result, it can be noted that
force equilibrium equations can be obtained from the
derivative of energy equations and, mutually, energy
equations might be derived from the integration of force
balance equations. It must be stated that although
these two equations are basically the same, each of
them has its own advantages and disadvantages in
practice. For illustration, see Table 1.

Here, it is important to note that the presented
method in this study includes the linear behavior of
shear frames (as a simple structural system). In other
words, the nonlinear response analysis of general struc-
tures like systems with hysteresis does not fall within
the scope of this work. However, the idea presented in
this research can be the basis for the ultimate goal of
dynamic analysis of large-scale structures with di�erent
types of nonlinearities.
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Table 1. Comparison of the force and energy equilibrium equations mathematically.

Type of equations Advantages Disadvantages

Force equilibrium
Quadratic (non-linear) terms do not exist in

these equations�

Second order of derivative in the equations

that leads to an increase in the number of

unknowns including displacement, velocity,

and acceleration

Energy equilibrium
First order of derivative in the equations that

leads to reducing the number of unknowns,

including: displacement, velocity

Existence of quadratic (non-linear) terms

�: Except in nonlinear analysis

3. Methodology

3.1. Derivation of discretized energy balance
scheme

Now, the energy balance approach is extended for
general forced vibration problems to include the e�ects
of damping, in which damping is assumed to be linear
regarding velocity (viscous damping) in this study. For
this purpose, consider the equations of motion of an
n-DOF shear frame as follows:
m1�x1+(c1+c2) _x1�c2 _x2+(k1+k2)x1�k2x2 =p1;

m2�x2 + (c2 + c3) _x2 � c2 _x1 � c3 _x3 + (k2 + k3)x2

� k2x1 � k3x3 = p2;

...

mi�xi + (ci + ci+1) _xi � ci _xi�1 � ci+1 _xi+1

+ (ki + ki+1)xi � kixi�1 � ki+1xi+1 = pi;

...

mn�1�xn�1 + (cn�1 + cn) _xn�1 � cn�1 _xn�2 � cn _xn

+(kn�1+kn)xn�1�kn�1xn�2�knxn=pn�1

mn�xn+cn _xn�cn _xn�1+knxn�knxn�1 = pn; (10)

where ci and pi denote the damping coe�cient and
external force of the ith mass, respectively.

Integrating the ith equation of Eq. (10) with
respect to xi, we get:Z

(mi�xi + (ci + ci+1) _xi � ci _xi�1 � ci+1 _xi+1

+(ki+ki+1)xi�kixi�1�ki+1xi+1)dxi

=
Z
pidxi: (11)

Each part of Eq. (11) according to the de�nition of
various energies, i.e., the area under the curve of the
load-displacement, implies the changes in a speci�c
type of energy.Z

[mi�xi]dxi| {z }
�EK

+
Z

[(ci+ci+1) _xi�ci _xi�1�ci+1 _xi+1] dxi| {z }
�ED

+
Z

[(ki+ki+1)xi�kixi�1�ki+1xi+1] dxi| {z }
�EP

=
Z
pidxi| {z }

�EF

: (12)

The �rst integral in the Left Hand Side (LHS) repre-
sents the changes of kinetic energy �Ek and, by the
de�nition of velocity, it takes the following form:

�EK =
Z

[mi�xi] dxi
�xidxi=vidvi��������!

Z
mividvi: (13)

Integration from zero to arbitrary time gives:

�EK =
1
2
miv2

i � 1
2
miv2

i(0): (14)

The second integral on the left-hand side expresses the
changes in damped energy (�ED), which is sometimes
also called the energy loss, that is:

�ED=
Z

[(ci+ci+1) _xi�ci _xi�1�ci+1 _xi+1] dxi: (15)

Based on the de�nition of velocity, Eq. (15) can also be
written as follows:

�ED=
tZ

0

�
(ci+ci+1)v2

i �civi�1vi�ci+1vi+1vi
�
dt: (16)
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In addition, the change in potential energy (�EP ) is:

�EP =
Z

[(ki+ki+1)xi�kixi�1�ki+1xi+1] dxi: (17)

By operations equivalent to Eq. (17), it can be shown
that:

�EP =
tZ

0

[(ki+ki+1)xi�kixi�1�ki+1xi+1] vidt; (18)

and, eventually, the changes in energy of the external
loads �EF are given by:

�EF =
Z
pidxi: (19)

Similarly, in terms of velocity, the aforementioned
energy in Eq. (19) becomes:

�EF =
tZ

0

pividt: (20)

Therefore, the energy balance equation for the ith mass
is given as follows:

�Ek + �ED + �EP = �EF : (21)

Here, energy balance equations are written for all of
the masses:

1
2
m1v2

1 � 1
2
m1v2

1(0) +
tZ

0

�
(c1 + c2)v2

1 � c2v2v1
�
dt

+
tZ

0

[(k1 + k2)x1 � k2x2] v1dt =
tZ

0

[p1v1] dt;

1
2
m2v2

2 � 1
2
m2v2

2(0)

+
tZ

0

�
(c2 + c3)v2

2 � c2v1v2 � c3v3v2
�
dt

+
tZ

0

[(k2 + k3)x2 � k2x1 � k3x3] v2dt

=
tZ

0

[p2v2] dt;

...

1
2
miv2

i � 1
2
miv2

i(0)

+
tZ

0

�
(ci+ci+1)v2

i �civi�1vi�ci+1vi+1vi
�
dt

+
tZ

0

[(ki + ki+1)xi � kixi�1 � ki+1xi+1] vidt

=
tZ

0

[pivi] dt;

...

1
2
mn�1v2

n�1 � 1
2
mn�1v2

n�1(0) +
tZ

0

[(cn�1 + cn)v2
n�1

� cn�1vn�2vn�1�cnvnvn�1]dt

+
tZ

0

[(kn�1+kn)xn�1�kn�1xn�2�knxn]vn�1dt

=
tZ

0

[pn�1vn�1] dt;

1
2
mnv2

n � 1
2
mnv2

n(0) +
tZ

0

�
cnv2

n � cnvn�1vn
�
dt

+
tZ

0

[knxn � knxn�1] vndt =
tZ

0

[pnvn] dt:
(22)

Considering the ith mass:

1
2
miv2

i � 1
2
miv2

i(0)

+
tZ

0

[(ci + ci+1)v2
i � civi�1vi � ci+1vi+1vi]dt

+
tZ

0

[(ki + ki+1)xi � kixi�1 � ki+1xi+1]vidt

=
tZ

0

pividt:
(23)

In principle, after discretizing Eq. (23) by using nu-
merical integration methods such as Trapezoidal and
Simpson techniques [12], the correspondent energy
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equation of the ith mass would be evaluated through
Eq. (24) (See Appendix A, for details).

Aiv2
i(j�t) +Bivi�1(j�t)vi(j�t) + Civi+1(j�t)vi(j�t)

+Divi(j�t) + Ei = 0; (24)

where Ai, Bi, Ci, Di, and Ei are the constant coe�-
cients that are determined by discretizing integrals in
energy balance relations; in the �rst time step where
the Trapezoidal method is used, these coe�cients take
the following forms:

Ai = 0:5mi + 0:5�t(ci + ci+1);

Bi = �0:5�t:ci; Ci = �0:5�t:ci+1;

Di =0:5�t[(ki + ki+1)xi(�t) � ki:xi�1(�t)

� ki+1:xi+1(�t) � pi(�t)];

Ei =� 0:5miv2
i(0) + 0:5�t:vi(0)[(ci + ci+1)vi(0)

� ci:vi�1(0) + ci+1:vi+1(0) + (ki + ki+1)xi(0)

� kixi�1(0) � ki+1xi+1(0) � pi(0)]: (25)

In the time steps after the primary time step, to in-
crease the accuracy of integration by using the Simpson
method, one can write:

Ai = 0:5mi + (�t=3)(ci + ci+1);

Bi = �(�t=3):ci; Ci = �(�t=3):ci+1;

Di =(�t=3)[(ki + ki+1)xi(j�t) � ki:xi�1(j�t)

� ki+1:xi+1(j�t) � pi(j�t)];
Ei =� 0:5miv2

i(0) + (�t=3)fvi(0)[(ci + ci+1)vi(0)

� ci:vi�1(0) + ci+1:vi+1(0) + (ki + ki+1)xi(0)

� kixi�1(0) � ki+1xi+1(0) � pi(0)]

+ 4vi(�t)[(ci + ci+1)vi(�t) � ci:vi�1(�t)

+ ci+1:vi+1(�t) + (ki + ki+1)xi(�t)

� kixi�1(�t) � ki+1xi+1(�t) � pi(�t)]
+ 2vi(2�t)[(ci + ci+1)vi(2�t) � ci:vi�1(2�t)

+ ci+1:vi+1(2�t) + (ki + ki+1)xi(2�t)

� kixi�1(2�t) � ki+1xi+1(2�t) � pi(2�t)]

+ � � �+ vi(j�t)[(ci + ci+1)vi(j�t) � ci:vi�1(j�t)

+ ci+1:vi+1(j�t) + (ki + ki+1)xi(j�t)

�kixi�1(j�t)�ki+1xi+1(j�t)�pi(j�t)]g; (26)

where j denotes the number of steps.

3.2. Solution procedure of coupled quadratic
energy equations

As observed earlier in the previous section, after
discretizing the energy balance equations, a set of
equations in the following quadratic form is obtained:

a1v2
1 + c1v2v1 + d1v1 + e1 = 0

a2v2
2 + b2v1v2 + c2v3v1 + d2v2 + e2 = 0

...

aiv2
i + bivi�1vi + civi+1vi + divi + ei = 0

...

an�1v2
n�1 + bn�1vn�2vn�1 + cn�1vnvn�1

+ dn�1vn�1 + en�1 = 0;

anv2
n+bnvn�1vn+dnvn + en=0: (27)

Mathematically, in solving the previous equations,
there are two main problems:

A) These equations are coupled, meaning that they
are dependent on each other and must be solved si-
multaneously; in other words, one cannot calculate
vi through the ith equation directly. In addition,
it should be noted that, in the absence of damping,
the equations would be de-coupled, viz., damping
is the reason for coupling the equations;

B) The quadratic form of equations implies more than
one velocity at each time step; in other words, from
a physical perspective at every time step, these
relations provide some unreal velocities in addition
to the actual velocity of the structure.

To better understand the above expressions, suppose
that, in a sample 2-DOF structure in a given time step,
a mathematical equation of the form is to be solved as
follows:(

v2
1 + v2v1 + v1 + 1 = 0

2v2
2 + v2v1 + v2 + 2 = 0

(28)

If the terms of v2v1 do not exist, one can obtain
two values of each of v1 and v2 by solving the two
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uncoupled quadratic equations. However, given v2v1,
by combining the equations together and writing them
only in terms of one variable, we have:(

v4
1 + 2v3

1 + 6v2
1 + 3v1 + 2 = 0

2v4
2 + v3

2 + 8v2
2 + 2v1 + 4 = 0

(29)

From Eq. (29), by solving the two fourth-degree equa-
tion, it is apparent that four values for each of v1
and v2 will be obtained. Note that, at any moment,
the velocity of each mass is unique and there is only
one value for the real velocity of the system, while,
in this case, three unrealistic velocities for each mass
have appeared in the equation. Apparently, this
method (direct method) cannot be used to calculate
the velocities at any instants, especially in large DOF
systems; therefore, this study aims to apply a numerical
method to calculate the velocities in each time step.
In this context, as demonstrated in Appendix B,
well-known solution techniques, such as the Newton-
Raphson method, are not e�cient for the system of
equations under consideration in this study. Two main
reasons for the ine�ciency of these methods when
applied to the considered equations in each time step
can be expressed as follows:

a) The need for the derivative of the system of
equations;

b) Complex and time-consuming process of inverting
the Jacobi matrix (speci�cally in large-scale struc-
tures).

3.3. Elimination of discontinuous velocity
technique

The problem of coupled equations exists in many
engineering �elds, particularly in multi-dimensional
systems; hence, many researchers have studied how to
solve these equations (e.g., refer to [45{51]). For the
current study, a novel numerical method is presented in
which the real velocities of the system at any time step
can be easily calculated by removing the unrealistic
velocities from the coupled equations.

In the proposed technique, �rst, the problem of
coupled equations is resolved by neglecting the coupling
terms (terms that are the product of two di�erent
velocities). In this case, by assuming a structure with
n-DOF, an n-quadratic equation is given in terms
of velocity in this study. To solve the problem of
non-linear equations (quadratic in terms of velocity)
and detect the actual velocities of the system at any
time, it is assumed that the variation of velocities
with respect to time is continuous. Therefore, among
the two velocities obtained at any time from the
quadratic equations, the velocity closer to that of the
previous time step is selected as the real velocity of the
structure. Therefore, the name of the method is chosen

as Elimination of Discontinuous Velocities Technique.
At the beginning of this procedure, the coupling terms
are ignored to obtain the velocities. Herein, the values
of continuous velocities are substituted into them, and
this iteration will carry on until the velocities in two
subsequent iterations approach each other. Table 2
gives a summary of the method.

4. Numerical examples and results

Various examples of multi-story shear-frame structures
are analyzed by using the energy method in this sec-
tion. In the �rst example, the vibration of a simple two-
story shear building has been investigated to describe
the procedure of the presented method in detail. In
the next examples, some multi-story shear-frame struc-
tures subjected to harmonic and earthquakes loadings
have been studied. Moreover, the results are compared
with the exact solution and other common methods.

Example 4.1. The free damped vibration of
a two-story shear building. Figure 2 shows a 2-
DOF shear frame where, for convenience, the dynamic
properties of the structure are chosen as follows: m1 =
m2 = k1 = k2 = 1; c1 = 0:06, c2 = 0:16 (all units are
assumed to be compatible). Moreover, the following
initial conditions will be considered in this example:

x0 =
�

1
2

�
; v0 =

�
3
4

�
: (30)

In free-vibration cases, the equation of motion of these
structures can be expressed as follows:

[m] f�xg+ [c] f _xg+ [k]fxg = f0g; (31)

where the mass, damping, and sti�ness matrices are
given below:

Figure 2. Free vibration of a two-story shear frame.
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Table 2. Summary of the step-by-step solution procedure of the presented method.

A. Initial calculations:

1. Form dynamic matrices: mass m, damping c, and sti�ness k

2. Form the vectors of initial conditions: initial displacements x0 and velocities v0

3. Select the time step �t

4. Select the tolerance for each iteration e = 10�s (s is a positive integer number)

B. For each time step:

5. Calculate a starting vector for xi and displacement vector at the time of t = i�t

x(1)
i = x0 + dx(1), dx(1) = v0�t

(the superscripts and subscripts refer to the number of iteration and time step, respectively)

6. Calculate the coe�cient of energy balance equation, i.e., Ai, Bi, Ci, Di, for all masses. Note

that the trapezoidal rule for the �rst time step and, subsequently, Simpson rule must be used.

7. Neglect the coupling terms, i.e., Bi = Ci = 0

8. Solve the quadratic equation of energy balance for the velocity of the ith mass using the

corresponding �i and vi = (�D ��)=2A

9. Select a velocity that is closer to the previous time step (call it vi)

(Elimination of Discontinuous Velocities)

10. Calculate a new approximated vector for xi by using the average of new obtained

velocities and initial velocities

x(j)
i = xi�1 + dx(j), dx(j) = 0:5(vi�1 + vi)�t, j = 2; 3; � � �

11. Determine the coupling terms, neglected at �rst

12. Iterate through steps 6 to 11, except step 7, to reach convergence

13. Continue the procedure for subsequent time steps

[m] =
�
1 0
0 1

�
; [c] =

�
0:22 �0:16
�0:16 0:16

�
;

[k] =
�

2 �1
�1 1

�
: (32)

Thus, by multiplying the matrices and vectors, there
are the following governing equations:(

�x1 + 0:22 _x1 � 0:16 _x2 + 2x1 � x2 = 0
�x2 � 0:16 _x1 + 0:16 _x2 � x1 + x2 = 0

(33)

Herein, the Laplace transform method is used to deter-
mine the exact solution of this problem (for details, see
Appendix C).8>>>><>>>>:

x1 =� 0:336e�0:1733t cos(1:608t+ 0:681)
+ 4:445e�0:0167t cos(0:618t� 1:283)

x2 = 0:210e�0:1733t cos(1:608t+ 0:753)
+ 7:180e�0:0167t cos(0:618t� 1:3106)

(34)

4.1. Applying the energy method
By substituting the assumed parameters of this exam-
ple into Eq. (23), the energy balance equations of the

system are given below:8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0:5v2
1 � 0:5v2

1(0) +
tZ

0

[0:22v2
1 � 0:16v2v1]dt

+
tZ

0

[2x1 � x2]v1dt = 0

0:5v2
2 � 0:5v2

2(0) +
tZ

0

[0:16v2
2 � 0:16v1v2]dt

+
tZ

0

[x2 � x1]v2dt = 0

(35)

Now, the integrals in the above equations should
be discretized to obtain the algebraic equations. Since
Simpson rule needs at least three points for integration,
it cannot be used in the �rst time step. Hence, the
trapezoidal method must be applied in the �rst time
step. For the problem at hand, the size of time intervals
is assumed to be �t = 0:1 s and, according to Table 2,
x1 and x2 (dynamic responses of oors at the time of
t = 0:1 s) would be approximated by the Euler formula



M. Jalili Sadr Abad et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1091{1112 1099

as follows:(
x1(0:1) � x1(0) + v1(0) ��t = 1:3
x2(0:1) � x2(0) + v2(0) ��t = 2:4

(36)

The discretized form of Eq. (36) is given below:(
0:511v2

1 � 0:008v2v1 + 0:01v1 � 4:497 = 0
0:508v2

2 � 0:008v2v1 + 0:055v2 � 7:768 = 0
(37)

By neglecting the coupling term, i.e., (�0:008v1v2), two
quadratic equations are given as follows:(

0:511v2
1 + 0:01v1 � 4:497 = 0

0:508v2
2 + 0:055v2 � 7:768 = 0

(38)

Roots of these quadratic equations are:8>>>>>><>>>>>>:
0:511v2

1 + 0:01v1 � 4:497 = 0! v1 = 2:9568;
v1 = �2:9763

0:508v2
2 + 0:055v2 � 7:768 = 0! v2 = 3:5867;

v2 = �3:9649

(39)

By comparing the roots obtained from Eq. (39) with
the velocity in the previous step, v1 = 3, v2 = 4, the
closest velocities to the previous step are selected and
others are omitted:8>>>>>><>>>>>>:

0:511v2
1 + 0:01v1 � 4:497 = 0

! v1 = 2:9568; v1 = �2:9763�

0:508v2
2 + 0:055v2 � 7:768 = 0

! v2 = 3:5867; v2 = �3:9649�

(40)

Now, new values x1 and x2 at t = 0:1 s can be
approximated by using the average of the velocity of
this step and the previous step; hence:8><>:x1 � x1(0) + v1(0)+v1(0:1)

2 ��t = 1:2978

x2 � x2(0) + v2(0)+v2(0:1)
2 ��t = 2:3928

(41)

Here, the coupling term (�0:008v1v2), which was ne-
glected previously, might be given by the substitution
of v1 = 2:9568 and v2 = 3:5867.

v1 =2:9568; v2 =3:5867!�0:008v1v2 =�0:0848: (42)

Moreover, new values of velocities of the system can be
determined as follows:(

0:511v2
1 � 0:008v2v1 + 0:01v1 � 4:497 = 0

0:508v2
2 � 0:008v2v1 + 0:055v1 � 7:768 = 0

�0:008v1v2=�0:0848�������������!
(

0:511v2
1+0:01v1�4:5882=0

0:508v2
2+0:055v1�7:8592=0(43)

Similarly, real velocities are given below:8>>>>>><>>>>>>:
0:511v2

1 + 0:01v1 � 4:5882 = 0! v1 = 2:9867;
v1 = �3:0063�

0:508v2
2 +0:055v1 � 7:8592=0! v2 = 3:8795;

v2 = �3:9878�
(44)

Now, the updated coupling term becomes:

v1 =2:9867; v2 =3:8795!�0:008v1v2 =�0:0927:(45)

A relative error, eji , for velocities as an absolute value
of (vji � vj�1

i )=vj�1
i is introduced for the convergence

criterion, where i and j represent the number of stories
and iterations, respectively. As shown in Table 3, the
procedure can be monitored better by this de�nition.
Note that tolerance is chosen as 10�2 in this case.
Moreover, Figure 3 illustrates the process of conver-
gence, showing the error of analysis versus number of
iterations.

If a computer program is used to continue the
process to t = 10 s, the dynamic response of the system
can be obtained, as shown in Figure 4. This �gure
compares the obtained results of the presented method
against the exact solution of the problem. As shown in
Figure 4, although the size of time intervals �t = 0:1
selected is not very small in this analysis, it can be
seen that the proposed method has excellent accuracy
compared with the exact solution; in other words, the
numerical solution can properly approach the exact
solution of the problem in this case.

Now, by choosing a �xed time interval, which is
deliberately not chosen too small, typically �t = 0:2

Table 3. Convergence of velocities in the �rst step.

Number
of

iterations
v1 e1 v2 e2 emax<0:01

1 2.9568 0.0144 3.5867 0.0358 �
2 2.9867 0.0044 3.8795 0.0301 �
3 2.9872 0.00016 3.8799 0.00009

p

Figure 3. The process of convergence in Example 4.1.
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Figure 4. Comparison of the presented method and the
exact solution in Example 4.1.

Figure 5. Comparison of the dynamic response of the
�rst oor (x1) and various methods (�t = 0:2 s).

Figure 6. Comparison of the dynamic response of the
second oor (x2) and various methods (�t = 0:2 s).

here, this study compares the accuracy and speed of
the analysis of the presented method with those of
other conventional methods (such as modal [52], New-
mark [23]) and combined techniques (such as modal-
Duhamel [53,54] and modal-Newmark) (see Figures 5
and 6). Adjustment factors in the Newmark method,
which are used to improve the accuracy and stability
of the method are respectively selected as follows:
� = 0:5 and � = 1=6 (typically, these values that yield
the linear acceleration method are used in practice).
In addition, the combined modal methods will be
performed also by converting an n-DOF structure to n-
SDF systems and applying numerical techniques such
as Duhamel and Newmark for the structural analysis.
The tolerance of the proposed method is considered to
be 10�2.

From Figures 5 and 6, it can be observed that the
presented method has better and acceptable accuracy
than other conventional methods used in the dynamic

Table 4. Required time of analysis in Example 4.1.

Method Required time
for analysis (sec)

Newmark 1.511178

Presented Method 1.915323

Modal-Newmark 4.845891

Modal-Duhamel 4.924135

analysis of the MDF structure. In fact, (considering a
constant �t) among all methods, the combined Modal-
Duhamel and the proposed method have been closer to
the exact response to the problem.

Furthermore, in engineering analysis, the time
required to calculate the solution, or the speed of
numerical technique, is one of the factors inuencing
the choice of method. Therefore, in this section, in
accordance with Table 4, the required times required
to conduct the analysis by the various numerical
methods are compared. The results show that the
methods using the modal techniques are very time-
consuming compared to other methods. For example,
the computational time for the proposed approach is
shorter than half of the other modal methods.

It must be stated that although the whole damp-
ing matrices considered in this study are of a classi-
cal/proportional type, it is not generally easy to apply a
conventional modal method for non-classical damping,
because, in this case, the frequencies, the shape-modes,
and damping ratios besides the mass and sti�ness
matrices, depending on the damping matrix of the
system, and the complex modal coordinate must be used
(for more details, see [55{57]). On the other hand, it
is noteworthy that the energy-based method presented
in this research is not subject to any limitations in
this regard, and the classical or non-classical damping
will be analyzed without a particular modi�cation (it
is another advantage of this technique).

Example 4.2. The damped harmonic vibration
of a three-story shear building. A two-DOF shear
frame is depicted in Figure 7 in which, similar to
the previous example, for convenience, the dynamic
properties of the structure are selected as: m1 = m2 =
m3 = k1 = k2 = k3 = 1, c1 = c2 = c3 = 0:1. In
addition, the zero initial conditions are assumed in this
example. The structure is subjected to harmonic loads
as: p1 = cos t, p2 = cos 2t, and p3 = cos 3t (all units
are compatible).

In this case, the equation of motion is given below:

[m] f�xg+ [c] f _xg+ [k]fxg = fpg; (46)

where the mass, damping, and sti�ness matrices are:
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Figure 7. Three-story shear frame under harmonic loads.

[m] =

241 0 0
0 1 0
0 0 1

35 ; [c] =

24 0:2 �0:1 0
�0:1 0:2 �0:1

0 �0:1 0:1

35 ;
[k] =

24 2 �1 0
�1 2 �1
0 �1 1

35 ; fpg =

8<: cos t
cos 2t
cos 3t

9=; : (47)

Hence, the governing equations of this problem are
given by:8><>:�x1 + 0:2 _x1 � 0:1 _x2 + 2x1 � x2 = cos t

�x2�0:1 _x1+0:2 _x2�0:1 _x3�x1+2x2�x3 =cos 2t
�x3 � 0:1 _x2 + 0:1 _x3 � x2 + x3 = cos 3t (48)

As for the previous example, the Laplace transform
method is used to determine the exact solution of the
problem (for details, see Appendix D).

x1 =0:2131 exp(�0:01t) cos(0:4449t+ 0:0330)

� 0:9089 exp(�0:0775t) cos(1:2446t�0:3013)

� 0:5188 exp(�0:1625t) cos(1:7946t+0:5171)

+ 0:9674 cos(t� 0:2936)

+ 0:3286 cos(2t+ 0:9803)

+ 0:002 cos(3t+ 3:9267);

x2 =0:3831 exp(�0:01t) cos(0:4449t+ 0:0282)

+ 0:4042 exp(�0:0775t) cos(1:2446t+ 2:8406)

+ 0:6476 exp(�0:1625t) cos(1:7946t+ 0:517)

+ 0:0962 cos(t+ 4:4169)

+ 0:6581 cos(2t+ 3:7258)

+ 0:0189 cos(3t+ 0:4542);

x3 =0:4772 exp(�0:01t) cos(0:4449t+ 0:0318)

+ 0:7288 exp(�0:0775t) cos(1:2446t� 0:3012)

+ 0:4097 exp(�0:1625t) cos(1:7946t+ 4:0561)

+ 0:9618 cos(t+ 2:9491)

+ 0:2235 cos(2t+ 0:8471)

+ 0:1271 cos(3t+ 3:1911): (49)

4.2. Applying the energy method
By applying Eq. (23), the energy balance equations of
this system are given as follows:

0:5v2
1 +

tZ
0

[0:2v2
1 � 0:1v2v1]dt+

tZ
0

[2x1 � x2]v1dt

=
tZ

0

v1 cos tdt;

0:5v2
2 +

tZ
0

[0:2v2
2 � 0:1v1v2 � 0:1v3v2]dt

+
tZ

0

[2x2 � x1 � x3]v2dt =
tZ

0

v2 cos 2tdt;

0:5v2
3 +

tZ
0

[0:1v2
3 � 0:1v2v3]dt+

tZ
0

[x3 � x2]v3dt

=
tZ

0

v3 cos 3tdt: (50)

After discretizing Eq. (50) and using Table 2, the
same procedure as that in the former example must
be performed. In this case, Figures 8 to 10 show the
obtained results, where the dynamic response of oors,
assuming �t = 0:2 s and e = 0:01, is plotted by using
the various numerical methods vs. exact solution of the
problem.

Figures 8{10 demonstrate that with a �xed size
for time intervals, the proposed method in this study
together with Modal-Duhamel technique is very close
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Figure 8. Comparison of the dynamic response of the
�rst oor (x1) and various methods (�t = 0:2 s).

Figure 9. Comparison of the dynamic response of the
second oor (x2) and various methods (�t = 0:2 s).

Figure 10. Comparison of the dynamic response of the
third oor (x3) and various methods (�t = 0:2 s).

Table 5. Required time of analysis in Example 4.2.

Method Required time
for analysis (sec)

Newmark 1.964039
Presented Method 2.585024
Modal Duhamel 4.850705
Modal-Newmark 4.484707

to the exact solution of the problem, and the methods
using Newmark technique (with � = 0:5 and � = 1=6)
do not show appropriate convergence. Here, similar to
the previous example, the time required for conducting
the analysis of this example is shown in Table 5, where,
similar to the former analysis, the modal techniques
are very time consuming compared with others. In
addition, note that although the Newmark method

Figure 11. Comparison of the accuracy of the proposed
method and two numerical techniques in computing the
Duhamel's integral for the �rst oor.

Figure 12. Comparison of the accuracy of the proposed
method and two numerical techniques in computing the
Duhamel's integral for the second oor.

Figure 13. Comparison of the accuracy of the proposed
method and two numerical techniques in computing the
Duhamel's integral for the third oor.

enjoys a notable speed, its accuracy is not favorable
enough in this case compared to other methods.

According to Figures 8{10, the modal-Duhamel
method is shown to be more accurate than other
approaches. Here, the e�ect of the numerical technique
used in the approximation of the Duhamel integral is
investigated. In this regard, in addition to the �rst-
used Simpson rule, the Trapezoidal rule for computing
the Duhamel integral is also provided in Figures 11{
13. Moreover, it must be mentioned that to prevent
the cluttered graphs, the results of the Newmark and
Modal-Newmark methods are not represented in these
�gures.

Generally, Figures 11{13 show that the accuracy
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Figure 14. Convergence of velocities in a 20-story
shear-building considering the control point at the roof.

of the Duhamel method is strongly dependent on the
numerical method (Simpson with trapezoidal) used in
the approximation of this integral. As compared to
the proposed method, the application of the Simpson
method produces more accurate results and, conversely,
the application of the Trapezoidal rule leads to a
reduction in the accuracy compared with the presented
method.

In the following, to examine the e�ciency of the
proposed method in the case of large-scale structures, a
high-rise 20-story shear frame (as a generalized system
of the structure studied in Example 4.2.) is considered
with the dynamic properties shown below:

mi = 1; ci = 0:1; ki = 1; pi = cos it;

i = 1; 2; � � � ; 20: (51)

Now, by choosing the last node above the structure
(as a control point) and, then, applying the proposed
method, this study plots the roof's velocity in 10
seconds versus two converged velocities, i.e., vroof (1)
and vroof (2), at the end of iterations in the quadratic
energy equation, Eq. (24), as displayed in Figure 14.

From Figure 14, it can be seen that, in this large-
scale system, the roof velocity is properly calculated
from the selection of right velocity based on the
assumption of continuous velocities in time. Although
it appears that future research and studies, especially
by considering the nonlinear behavior in other high-rise
building systems, are necessary to be done to verify the
e�ciency of the given method for the general problems
of structural dynamics.

Example 4.3. The forced damped vibration of
a three-story shear building subjected to an
earthquake. Given a three-story shear frame as
described in Figure 15 and being subjected to ground
motion, EL-Centro earthquake (PGA = 0:3 g) is shown
in Figure 15. In addition, the dynamic characteristics
of the system are: m1 = m2 = m3 = 1, c1 = c2 =
c3 = 0:05, and k1 = k2 = k3 = 10. Moreover, the zero
initial conditions are assumed in this case (all units are
compatible).

Figure 15. Three-story shear building under earthquake
loading.

In this case, due to earthquake loading, by the
de�nition of e�ective force (pe�), the equation of
motion is given below:

[m] f�xg+ [c] f _xg+ [k]fxg = fpe�g ; (52)

where pe� denotes the negative product of the mass
matrix [m], flg is the inuencing coe�cient vector, and
f�xgg is the acceleration vector of ground motion, as
given in the following relation:

fpe�g = �[m]flg f�xgg : (53)

For the problem at hand, the inuencing coe�cient
vector is:

flgT = f1; 1; 1g; (54)

where mass, damping, and sti�ness matrices are given
below:

[m] =

241 0 0
0 1 0
0 0 1

35 ;
[c =

24 0:1 �0:05 0
�0:05 0:1 �0:05

0 �0:05 0:05

35 ;
[k] =

24 20 �10 0
�10 20 �10

0 �10 10

35 : (55)

4.3. Applying the energy method
According to Table 2 and the two examples mentioned
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Figure 16. Comparison of the dynamic response of the
�rst oor (x1) and various methods (�t = 0:2 s).

Figure 17. Comparison of the dynamic response of the
second oor (x2) and various methods (�t = 0:2 s).

Figure 18. Comparison of the dynamic response of the
third oor (x3) and various methods (�t = 0:2 s).

earlier, by applying the energy method and assuming
previous assumptions, except the value of tolerance
being equal to e = 10�4, the dynamic response of
the structure can be plotted. As is clear, in this kind
of problem, there is no closed-form analytical solution
that can compare the results. Thus, only the results
of various numerical methods (at a �xed time interval
equal to 0.02) are plotted in Figures 16 to 18.

Please note that the marked points in Figures 16{
18 do not denote the time steps and are merely selected
to make a distinction between the results. In addition,
the obtained results of Newmark and Modal-Newmark
methods overlap and cannot properly be identi�ed.
According to the �gures, acceptable agreement between
the presented method and other methods can be seen.
Hence, this method can be used for performing the
long-time dynamic analysis of shear frames such as
seismic analyses.

Table 6. Required time of analysis in Example 4.3.

Method Required time
for analysis (sec)

Newmark 18.405511
Presented method 20.076837
Modal-Newmark 25.035491
Modal-Duhamel 28.462937

Figure 19. A Single-Degree-of-Freedom (SDF) system for
accuracy and stability analysis of numerical analyses.

Once again, to compare the speed of analyses,
Table 6 shows the time required to analyze the third
example of this investigation. Similar to the previous
examples, it can be observed that, at a constant time
interval, the proposed method regarding computational
time is ranked second after Newmark method.

At the �rst glance, although the times (durations)
given in Table 6 may look great for a small 3-DOF
structure, it should be mentioned here that these times
should include the execution time of all the commands
written within the MATLAB program (e.g., time-
consuming syntaxes like (xlsread)). In other words,
these values do not indicate the real time of the
implementation of the integration schemes and are used
only for making a comparison between di�erent types
of methods.

4.4. Stability and accuracy analysis
Here, the e�ects of time step size on the accuracy and
stability of the presented method are discussed. In this
regard, Bathe [58] proposed a technique based on the
free response analysis of a simple SDF system, as shown
in Figure 19. For simplicity, the following parameters
in a compatible unit system are assumed as follows:
m = 1, k = 4�2, x0 = 0, and v0 = 1. The free response
of this system (exact solution of the problem) can be
written as follows:

x(t) = (sin 2�t)=2�: (56)

With respect to this exact response, the values for the
period and amplitude of the vibrational motion are
equal to TExact = 1 and AExact = 1=2� respectively.
Obviously, the numerical solution obtained from the
presented method will di�er from these values. There-
fore, it would be appropriate to de�ne the two following
parameters:

RT = j(TExact � TNum)=TExactj ; (57)
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Figure 20. The e�ects of the di�erent time step size on
the accuracy and stability of the presented method.

and:

RA = j(AExact �ANum)=AExactj ; (58)

where RT and RA represent the numerical error in
period and amplitude characteristics of the vibrational
system, respectively. TNuml and ANum also are the
period and amplitude obtained from the numerical
method, which are the functions of the size of the time
step, �t, used to discretize time. Thus, considering
di�erent values of the time step, one can plot the
parameters RT and RA, as shown in Figure 20.

According to Figure 20, as the time step increases
(with an increase in the numerical error in the system
response), the accuracy of the solution reduces, as
expected. For example, when the time step size
is �t = 0:1, the relative errors in the period and
amplitude of the system are equal to about 1.5% and
13%, respectively. In general, the results of this section
show greater sensitivity to the amplitude of motion
than the period (this is in line with the results of [27]).

Moreover, based on a closer observation of this
�gure, by increasing the value of time step, numerical
errors increase signi�cantly at a certain value (about
0.1 to 0.15), indicating that instability occurs in the
numerical solution. For example, in the case of �t =
0:15, the use of about 6{7 points for the approxi-
mation of a complete sine wave led to a signi�cant
error. Therefore, selecting an appropriate value of �t
is essential in practice, because such a larger value
can cause instability by eliminating the precision of
solution. On the other hand, small �t also increases
the computational time. Consequently, an optimum
size for time step should be used in practical dynamic
analyses.

5. Conclusions

In this paper, a novel step-by-step solution technique
based on the energy method was presented for the
dynamic analysis of shear frames as one of the ap-
plicable structures in practice. Rather than working
with the equation of motions, this method solved

the energy balance relationships, as characterized by
some advantages such as the reduction of unknowns.
The proposed method for analyzing various examples
including harmonic and earthquake loading was pre-
sented and performed. The main implications of the
study can be listed as follows:

� The proposed method enjoys higher accuracy than
other common methods (e.g., it is more accurate
than Newmark method);

� Compared to other time integration methods such
as Newmark, the proposed method gives a chance to
avoid the necessity of selecting and calibrating the
velocity and acceleration adjustment parameters ,
�;

� Modal methods, which have shown good accuracy in
combination with Duhamel's Integral, has complex
mathematic relationships, particularly with increas-
ing the degrees of freedom of the structure; in
addition, as observed in this study, they are more
time consuming than other techniques;

� The presented method, with a simple mathematical
algorithm, has good accuracy and speed of analysis.
By setting an allowable tolerance threshold (usually
in the range of 0.01-0.0001), the method can be used
in practical dynamic analyses of shear frames.

Finally, it should be noted that the ideas expressed in
this research have the capability to be applied to other
engineering structures and also non-linear systems with
some modi�cations.
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Appendix A. Discretization of integral energy
equations

A.1. Trapezoidal rule
The value of

R�t
0 f(t)dt can be evaluated by the

Trapezoidal rule:

�tZ
0

f(t)dt ' �t
2

[f(0) + f(�t)]: (A.1)

Recall Eq. (23):

1
2
miv2

i � 1
2
miv2

i(0) +
tZ

0

[(ci + ci+1)v2
i � civi�1vi

� ci+1vi+1vi]dt+
tZ

0

[(ki + ki+1)xi � kixi�1

� ki+1xi+1]vidt =
tZ

0

pividt: (23 rep.)

Now, considering Eq. (23) and based on the trapezoidal
rule, the integrals in this expression can be discretized
by Eqs. (A.2)-(A.4) as shown in Box I.

Substituting Eqs. (A.2){(A.4) into Eq. (23) and

rearranging with regard to velocities yields the follow-
ing:

Aiv2
i(�t) +Bivi�1(�t)vi(�t) + Civi+1(�t)vi(�t)

+Divi(�t) + Ei = 0; (24 rep.)

where:

Ai = 0:5mi + 0:5�t(ci + ci+1);

Bi = �0:5�t:ci; Ci = �0:5�t:ci+1;

Di =0:5�t[(ki + ki+1)xi(�t) � ki:xi�1(�t)

� ki+1:xi+1(�t) � pi(�t)];
Ei =� 0:5miv2

i(0) + 0:5�t:vi(0)[(ci + ci+1)vi(0)

� ci:vi�1(0) + ci+1:vi+1(0) + (ki + ki+1)xi(0)

� kixi�1(0) � ki+1xi+1(0) � pi(0)]: (25 rep.)

A.2. Simpson rule
Consider the jth time step, i.e., t = j�t (j = 2; 3; � � � ).

In this case,
R t

0 f(t)dt can be approximated by the
composite Simpson rule as follows:

�tZ
0

�
(ci+ci+1)v2

i (t)�civi�1(t)vi(t)�ci+1vi+1(t)vi(t)
�| {z }

f(t)

dt=
�t
2

8>><>>:h(ci+ci+1)v2
i(0)�civi�1(0)vi(0)�ci+1vi+1(0)vi(0)

i| {z }
f(0)

+
h
(ci + ci+1)v2

i(�t) � civi�1(�t)vi(�t) � ci+1vi+1(�t)vi(�t)
i| {z }

f(�t)

9>>=>>; ;
(A.2)

�tZ
0

[(ki + ki+1)xi(t)� kixi�1(t)� ki+1xi+1(t)] vi(t)| {z }
f(t)

dt =
�t
2

8><>:�(ki + ki+1)xi(0) � kixi�1(0) � ki+1xi+1(0)
�
vi(0)| {z }

f(0)

+
�
(ki + ki+1)xi(�t) � kixi�1(�t) � ki+1xi+1(�t)

�
vi(�t)| {z }

f(�t)

9>=>; ;
(A.3)

�tZ
0

[pi(t)vi(t)]| {z }
f(t)

dt =
�t
2

8><>:pi(0)vi(0)| {z }
f(0)

+ pi(�t)vi(�t)| {z }
f(�t)

9>=>; : (A.4)

Box I
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j�tZ
0

f(t)dt '�t
6

[f(0) + 4f(�t) + 4f(2�t) + � � �

+ 4f((j�1)�t) + f(j�t)]: (A.5)

Similar to the previous case, the discretized form of
Eq. (23) using Simpson rule is given by Eqs. (A.6)-(A.8)
as shown in Box II. Hence, by inserting Eqs. (A.6){
(A.8) in Eq. (23) and simplifying them, one can obtain
the discretized form of energy equations.

Aiv2
i(�t) +Bivi�1(�t)vi(�t) + Civi+1(�t)vi(�t)

+Divi(�t) + Ei = 0; (24 rep.)

where:

Ai = 0:5mi + (�t=3)(ci + ci+1);

Bi = �(�t=3):ci; Ci = �(�t=3):ci+1;

Di =(�t=3)[(ki + ki+1)xi(j�t) � ki:xi�1(j�t)

� ki+1:xi+1(j�t) � pi(j�t)];
Ei =� 0:5miv2

i(0) + (�t=3)fvi(0)[(ci + ci+1)vi(0)

� ci:vi�1(0) + ci+1:vi+1(0) + (ki + ki+1)xi(0)

� kixi�1(0) � ki+1xi+1(0) � pi(0)]

+ 4vi(�t)[(ci + ci+1)vi(�t) � ci:vi�1(�t)

+ ci+1:vi+1(�t) + (ki + ki+1)xi(�t)

� kixi�1(�t) � ki+1xi+1(�t)

� pi(�t)] + 2vi(2�t)[(ci + ci+1)vi(2�t)

� ci:vi�1(2�t) + ci+1:vi+1(2�t)

+ (ki + ki+1)xi(2�t) � kixi�1(2�t)

j�tZ
0

�
(ci+ci+1)v2

i (t)�civi�1(t)vi(t)�ci+1vi+1(t)vi(t)
�| {z }

f(t)

dt=
�t
6

8>><>>:h(ci+ci+1)v2
i(0)�civi�1(0)vi(0)�ci+1vi+1(0)vi(0)

i| {z }
f(0)

+ 4
h
(ci + ci+1)v2

i(�t) � civi�1(�t)vi(�t) � ci+1vi+1(�t)vi(�t)
i| {z }

f(�t)

+ � � �

+
h
(ci + ci+1)v2

i(j�t) � civi�1(j�t)vi(j�t) � ci+1vi+1(j�t)vi(j�t)
i| {z }

f(j�t)

9>>=>>; ;
(A.6)

j�tZ
0

[(ki + ki+1)xi(t)� kixi�1(t)� ki+1xi+1(t)] vi(t)| {z }
f(t)

dt =
�t
6

8><>:�(ki + ki+1)xi(0) � kixi�1(0) � ki+1xi+1(0)
�
vi(0)| {z }

f(0)

+ 4
�
(ki + ki+1)xi(�t) � kixi�1(�t) � ki+1xi+1(�t)

�
vi(�t)| {z }

f(�t)

+ � � �

+
�
(ki + ki+1)xi(j�t) � kixi�1(j�t) � ki+1xi+1(j�t)

�
vi(j�t)| {z }

f(j�t)

9>=>; ;
(A.7)

�tZ
0

[pi(t)vi(t)]| {z }
f(t)

dt =
�t
6

8><>:pi(0)vi(0)| {z }
f(0)

+4 pi(�t)vi(�t)| {z }
f(�t)

+ � � �+ pi(j�t)vi(j�t)| {z }
f(j�t)

9>=>; : (A.8)

Box II
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� ki+1xi+1(2�t) � pi(2�t)] + � � �
+ vi(j�t)[(ci + ci+1)vi(j�t) � ci:vi�1(j�t)

+ ci+1:vi+1(j�t) + (ki + ki+1)xi(j�t)

� kixi�1(j�t)�ki+1xi+1(j�t)�pi(j�t)]g:
(26 rep.)

Appendix B. The Newton-Raphson method for
solving Eq. (37)

Two functions (f1, f2) for each equation in Eq. (37)
are de�ned as follows:

f1 = 0:511v2
1 � 0:008v2v1 + 0:01v1 � 4:497 = 0;

f2 = 0:508v2
2 � 0:008v2v1 + 0:055v2 � 7:768 = 0:

(37 rep.)

Then, by extending the Newton-Raphson method to
the system of equations, to �nd the root of f1 and f2,
one may write the following sequence [59]:

fvgi+1 = fvgi � [J]�1
i ffgi i = 0; 1; 2; � � � : (B.1)

Here, the subscript i represents the iteration number
to achieve the convergence criterion; fvg is the vector
of unknowns (velocities); ffg is the vector of functions;
[J] denotes the Jacobian matrix.

fvg=
�
v1
v2

�
; ffg=

�
f1
f2

�
; [J]=

24@f1
@v1

@f1
@v2

@f2
@v1

@f2
@v2

35 :
(B.2)

In this case, the inverse form of the Jacobian matrix
can be expressed as follows:

[J]�1 =�
1:022v1�0:008v2+0:01 �0:008v1�0:008v2 1:016v2�0:008v1+0:055

��1

:
(B.3)

The simpli�cation of the previous equation yields the
following:

[J]�1 =
1
D�

500(8v1�1016v2�55) �4000v1�4000v2 �1000(511v1�4v2+5)

�
;

D =4088v2
1 + 4064v2

2 � 51917v1v2 � 28065v1

� 4860v2 � 275: (B.4)

Assuming the velocities of the previous step as the
initial approximation, we can estimate the roots of
Eq. (37) as follows:

fvg0 =
�

3
4

�
: (B.5)

Eq. (B.5) may be expressed as:

i=0��! fvg1 = fvg0 � [J]�1
0 ffg0; (B.6)

results in:

fvg1 =
�

3
4

�
�
�
0:3285 0:0019
0:0026 0:2442

��
0:0360
0:4640

�
! fvg1 =

�
2:9873
3:8866

�
: (B.7)

By inserting the obtained value in the sequence of
Eq. (B.1) and continuing calculations until convergence
is achieved, the accuracy of the solution can be in-
creased. Note that this quantity, [J]�1, within the
Modi�ed Newton Raphson is determined only once in
the iteration and is assumed to be constant during the
next iterations [60].

Appendix C. Derivation of the exact solution
of Example 4.1 by Laplace transform

Considering Eq. (33):(
�x1 + 0:22 _x1 � 0:16 _x2 + 2x1 � x2 = 0
�x2 � 0:16 _x1 + 0:16 _x2 � x1 + x2 = 0

(33 rep.)

Taking Laplace transform and allowing F = L(x1) and
G = L(x2), we can get:

L�!

8>>>><>>>>:
s2F � sx1(0) � _x1(0) + 0:22sF � 0:22x1(0)� 0:16sG+ 0:16x2(0) + 2F �G = 0

s2G� sx2(0) � _x2(0) � 0:16sF + 0:16x1(0)
+ 0:16sG� 0:16x2(0) � F +G = 0

(C.1)

where s is the transformed variable and the zero
subscript denotes the initial value at t = 0.

Imposing the initial conditions and solving this
system algebraically for F and G, we obtain the
following:

F =
s3 + 3:38s2 + 4:1296s+ 7:06

s4 + 0:38s3 + 3:0096s2 + 0:22s+ 1

G =
2s3 + 4:76s2 + 6:3792s+ 11:22

s4 + 0:38s3 + 3:0096s2 + 0:22s+ 1
(C.2)
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Eq. (C.2) may be written in terms of partial fractions
as follows:

F =
�0:1307� 0:106i

s� (�0:1733 + 1:608i)

+
�0:1307 + 0:106i

s� (�0:1733� 1:608i)

+
0:6307� 2:1314i

s� (�0:0167 + 0:618i)

+
0:6307 + 2:1314i

s� (�0:0167� 0:618i)

G =
0:0766 + 0:0718i

s� (�0:1733 + 1:608i)

+
0:0766� 0:0718i

s� (�0:1733� 1:608i)

+
0:9234� 3:4692i

s� (�0:0167 + 0:618i)

+
0:9234 + 3:4692i

s� (�0:0167� 0:618i)
(C.3)

Consequently, by taking the inverse transform and
simplifying it, displacements of the system (x1, x2) will
be given by:

L�1���!

8>>>>><>>>>>:
x1 =� 0:336e�0:1733t cos(1:608t+ 0:681)

+ 4:445e�0:0167t cos(0:618t� 1:283)

x2 =0:210e�0:1733t cos(1:608t+ 0:753)
+ 7:180e�0:0167t cos(0:618t� 1:3106)

(C.4)

Appendix D. Derivation of the exact solution
of Example 4.2 by the Laplace transform

The following governing equations will be solved by the
Laplace transform method:8><>:�x1 + 0:2 _x1 � 0:1 _x2 + 2x1 � x2 = cos t

�x2�0:1 _x1+0:2 _x2�0:1 _x3�x1+2x2�x3 = cos 2t
�x3 � 0:1 _x2 + 0:1 _x3 � x2 + x3 = cos 3t (48 rep.)

By F = L(x1), G = L(x2), and H = L(x3) and
considering the Laplace transform, we have:8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

s2F � sx1(0) � _x1(0) + 0:2sF � 0:2x1(0)

� 0:1sG+ 0:1x2(0) + 2F �G =
s

s2 + 1

s2G� sx2(0) � _x2(0) � 0:1sF + 0:1x1(0)
+ 0:2sG� 0:2x2(0) � 0:1sH + 0:1x3(0)

� F + 2G�H =
s

s2 + 4

s2H � sx3(0) � _x3(0) � 0:1sG+ 0:1x2(0)

+ 0:1sH � 0:1x3(0) �G+H =
s

s2 + 9

(D.1)

Imposing the zero initial condition and obtaining F , G,
and H, we have:8>>>>>>>>><>>>>>>>>>:

(s2 + 0:2s+ 2)F + (�0:1s� 1)G+ (0)H = s
s2+1

(�0:1s� 1)F + (s2 + 0:2s+ 2)G+ (�0:1s� 1)H
=

s
s2 + 4

(0)F + (�0:1s� 1)G+ (s2 + 0:1s+ 1)H = s
s2+9

(D.2)

Rearranging yields Eq. (D.3) as shown in Box III,
where:

A=1000s12+500s11+19060s10+8201s9+125870s8

+ 41614s7 + 369360s6 + 81049s5 + 491630s4

+ 57936s3 + 266080s2 + 10800s+ 36000: (D.4)

Eq. (D.4) may be written in terms of partial fractions
as follows:

F =
0:213s� 0:001

s2 + 0:02s+ 0:198
+
�0:868s� 0:403

s2 + 0:155s+ 1:555

+
�0:451s+ 0:387

s2 + 0:325s+ 3:247
+

0:926s+ 0:28
s2 + 1

+
0:1830s� 0:546

s2 + 4
+
�0:002s+ 0:006

s2 + 9
;

8>>>>>><>>>>>>:
F = 1000s9+400s8+17030s7+5500s6+88280s5+17300s4+145490s3+9800s2+49000s

A

G = 1000s9+500s8+15050s7+5800s6+62430s5+15300s4+110620s3+12400s2+62000s
A

H = 1000s9+500s8+10060s7+4200s6+40480s5+17300s4+12100s3+13200s2+66000s
A

(D.3)

Box III
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G =
0:383s� 0:001

s2 + 0:02s+ 0:198
+
�0:386s� 0:179

s2 + 0:155s+ 1:555

+
0:563s� 0:483

s2 + 0:325s+ 3:247
+
�0:028s+ 0:092

s2 + 1

+
�0:549s+ 0:726

s2 + 4
+

0:017s+�0:025
s2 + 9

;

H =
0:477s� 0:002

s2 + 0:02s+ 0:198
+

0:696s+ 0:323
s2 + 0:155s+ 1:555

+
�0:25s+ 0:215

s2 + 0:325s+ 3:247
+
�0:944s� 0:184

s2 + 1

+
0:148s� 0:335

s2 + 4
+
�0:127s+ 0:019

s2 + 9
: (D.5)

Finally, by taking the inverse transform and simplifying
it, the displacements of the system (x1, x2, x3) will be
given by:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

x1 =0:2131 exp(�0:01t) cos(0:4449t+0:0330)
� 0:9089 exp(�0:0775t) cos(1:2446t�0:3013)
� 0:5188 exp(�0:1625t) cos(1:7946t+0:5171)
+0:9674 cos(t�0:2936)+0:3286 cos(2t+0:9803)
+ 0:002 cos(3t+ 3:9267)

x2 =0:3831 exp(�0:01t) cos(0:4449t+0:0282)
+ 0:4042 exp(�0:0775t) cos(1:2446t+2:8406)
+ 0:6476 exp(�0:1625t) cos(1:7946t+0:517)
+ 0:0962 cos(t+ 4:4169)
+ 0:6581 cos(2t+ 3:7258)
+ 0:0189 cos(3t+ 0:4542)

x3 =0:4772 exp(�0:01t) cos(0:4449t+0:0318)
+ 0:7288 exp(�0:0775t) cos(1:2446t�0:3012)
+ 0:4097 exp(�0:1625t) cos(1:7946t+4:0561)
+ 0:9618 cos(t+ 2:9491)
+ 0:2235 cos(2t+ 0:8471)
+ 0:1271 cos(3t+ 3:1911)

(49 rep.)
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