Simulation-based optimization of a stochastic supply chain considering supplier disruption: Agent-based modeling and reinforcement learning

A. Aghaie* and M. Hajian Heidary

Department of Industrial Engineering, K.N. Toosi University of Technology, Parsis Street, Mollasadra Street, Vanaq Square, Tehran, 199914344, Iran.

Received 20 June 2017; revised in revised form 6 April 2018; accepted 21 July 2018

KEYWORDS
Supply chain management; Simulation-based optimization; Reinforcement Learning (RL); Demand uncertainty; Supplier disruption.

Abstract. Many researchers and practitioners in recent years have become attracted to the idea of investigating the role of uncertainty in the supply chain management concept. In this paper, a multi-period stochastic supply chain with demand uncertainty and supplier disruption is modeled. In the model, two types of retailers including risk-sensitive and risk-neutral retailers with many capacitated suppliers are considered. Autonomous retailers have three choices to satisfy demands: ordering from primary suppliers, reserved suppliers, and spot market. The goal is to find the best behavior of the risk-sensitive retailer regarding the forward and option contracts during several contract periods based on the profit function. Hence, an agent-based simulation approach has been developed to simulate the supply chain and transactions between retailers and unreliable suppliers. In addition, a Q-learning approach (as a method of reinforcement learning) has been developed to optimize the simulation procedure. Furthermore, different configurations of the simulation procedure are analyzed. The R-netlogo package is used to implement the algorithm. In addition, a numerical example has been solved by the proposed simulation-optimization approach. Several sensitivity analyses are conducted regarding different parameters of the model. A comparison between the numerical results and a genetic algorithm shows the significant efficiency of the proposed Q-learning approach.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The importance of uncertainty and the consequent cost of ignoring it has led to a shift from deterministic configurations of the supply chain to the stochastic models. One of the most important problems in the stochastic supply chain ordering management is the newsvendor (NV) problem. The basic form of the NV problem consists of a buyer and a seller in which the buyer must decide on the amount of ordering from the seller when demand of the customers is not predetermined. In the basic form, the buyer only has the overall information about customer demand such as the distribution function. In addition, the decision is made only in one period. The objective is to optimize the profit of the buyer. Two extensions of the problem have been done by the researchers: the Multi-period NV Problem (MNVP) and the NV Problem with Supplier Disruption (NVPSD). In the MNVP, the buyer(s) decides on the amount of ordering from the seller(s) at the beginning of each period. The buyer(s) decides on the amount of orders based

* Corresponding author. Tel: +98 21 84063363; Fax: +98 21 88674588; E-mail address: Aghaie0kntu.ac.ir (A. Aghaie)

doi: 10.24200/sci.2018.20789
on the uncertain demands of their customers and the remaining inventory from the previous period. In the NVPSD (which often consists of one period), the buyer(s) decides on the amount of orders based on uncertain customer demand and the remaining fixed capacities of the sellers. In the related literature of the NVPSD, it is usually assumed that the network consists of many uncertain sellers and one buyer (e.g., [1-3]). On the other hand, in the literature of the MNVP, some researchers have assumed many buyers and one seller in their network [4]. Thus, inspired by Kim et al. [4] and the related literature of the NVPSD, this study defines a many-to-many relation here. In the new configuration, each buyer decides on the amount of the order from an uncertain seller at the beginning of each time unit. In addition, it is more practical to make a decision within a contract period that consists of several time units while demand varies during each time unit, instead of making decisions at the beginning of each time unit. This has not been elaborated in the context of the NV problem.

Practical applications of the NVPSD arise particularly in the decisions regarding global sourcing. The following example clarifies the importance of the decisions of the buyers in the global sourcing with uncertain suppliers. For instance, an automotive component manufacturer had expected to save 4-5 million dollars a year resulting from sourcing of a product from Asia instead of Mexico. Port congestion and chartering aircraft to fly the products from Asia caused a 20-million-dollar loss [5]. This example and other practical applications of sourcing decision, especially when a contract is signed between a retailer and a supplier, highlight the importance of studying sourcing decisions in an uncertain supply chain (the MNVP and the NVPSD).

Extension of the NVP to the MNVP or NVPSD makes the problem much more challenging. Suppliers with uncertain and limited capacities and inventory positions of the retailers pose a greater challenge to the basic NVP. To the best of our knowledge, the combination of the MNVP and the NVPSD has not been researched before. This combined problem is called MNVP-SD. In addition, to avoid shortages, it is assumed that retailers have two options after the realization of the demand in each time unit: buying from a reserved supplier and if the amount of reservation is not sufficient to satisfy the demand, retailers have another option to buy from the spot market [1]. These options are common in the industries such as semiconductors, telecommunications, and pharmaceuticals. Details of the problem are discussed in Section 3. A two-stage decision-making is required to solve the problem in each time unit, in which an order must be placed before the realization of the demand and subsequent decisions regarding the ordering from the reserved supplier, and the spot market must be made after the realization.

Solving a large-sized NVPSD is computationally not tractable [1-3]. In addition, heuristic approaches are common tools for solving the MNVP [4]. Thus, it could be concluded that solving the MNVPSD by an exact approach or a common optimization software is more difficult. In this regard and considering autonomous retailers, an agent-based Q-learning is developed and implemented to solve the problem. In the following, the basics of agent-based modeling and reinforcement learning are introduced.

1.1. Agent-based modeling
Agent-based modeling is a bottom-up approach among different simulation modeling approaches in which agents interact with each other and, also, with the environment [6]. A gent-based modeling facilitates simulation optimization loop of the related optimization of behavioral parameters [7]. An agent-based simulation model consists of a certain number of agents and their behaviors, affecting their property, other actions, and their environment.

Based on a research, different approaches to developing an ABMS could be divided into four categories [8]: individual ABMS (agents have a prescribed behavior and there is no interaction between agents and the environment), autonomous ABMS (agents have autonomous behavior and there is no interaction between agents and the environment), interactive ABMS (agents have the same behavior as autonomous ABMS, yet the interaction between agents and environment is possible), and adaptive ABMS (behavior of the agents is the same as interactive ABMS, yet agents can change their behavior during the simulation). To make an intelligent network of agents, researchers usually add the learning feature to their models. In this regard, Reinforcement Learning (RL) has been adopted in our modeling.

1.2. Reinforcement Learning (RL)
Reinforcement Learning (RL) is a machine learning approach and is a proper approach to optimizing multi-agent models [9]. Indeed, an RL algorithm is a learning mechanism to map the situations to actions [10]. In the RL, there is a set of states (S), a set of actions (A), and a reward function (R). In the stochastic environments, a stochastic subset of the problem could be handled as a Markov or semi-Markov model [11]. In general, a Markov process is formulated as follows:

\[
\Pr(s_{t+1} = s', r_{t+1} = r^* \mid s_t, a_t, \ldots, s_0, a_0) = \Pr(s_{t+1} = s', r_{t+1} = r^* \mid s_t, a_t). \tag{1}
\]

The above-mentioned formula shows the memory-less characteristic of the Markov process, which explains that the state and reward at time \(t+1\) only depend on the last time unit \(t\). RL is an algorithm with the
ability to solve decision problems with Markov property. Basically, the states defined in RL algorithm must have Markov property; in case they do not have Markov property, RL may represent a good approximation of the solution [10].

One of the most popular methods for implementing RL and the optimal set of “action states” is Q-learning (as a model-free algorithm). In this regard, a Q-function must be defined. A Q-function in RL algorithm could be defined as the expected value of the discounted reward gained from a specific set of states and actions:

$$Q(s, a) = E \left(\sum_{t=0}^{T-1} \gamma^t r_{t+1} | s_t = s, a_t = a \right).$$ (2)

Since modeling all the dynamics of the system is not possible in most real-world problems, usually, an estimation of the Q-function is used to model the problem (e.g., by using an iterative Q-learning algorithm). At the end of the learning process, the action with the largest value of Q-function is chosen for all the current states. In Section 4, the learning algorithm is described.

The remaining parts of the paper are organized as follows: In the next section, related works are reviewed. In Section 3, the mathematical formulation of the problem is presented. In Section 4, based on the formulation presented in Section 3, an agent-based RL approach is elaborated. In Section 5, results of applying the proposed framework to an illustrative example are shown. Finally, in the last section, concluding remarks are presented.

2. Literature review

The main focus of this research is to analyze the risk behavior of the retailers in the stochastic supply chain by simulation optimization approaches. To design a stochastic supply chain, the MNVP is extended by multiple uncertain suppliers, and the NVP-SD is extended by multiple periods. Additionally, a simulation optimization approach is developed based on a multi-agent system.

The NV problem is a common problem in the inventory management. Many researchers have studied this problem and developed it in different ways. According to the assumptions considered in this paper, related researches of NV problem, which considered these two assumptions, are reviewed: multi-period modeling and unreliable suppliers.

In the past years, some of the researchers developed the NV with one retailer and multiple unreliable suppliers. There are a few papers regarding the supplier disruption in the NV configuration [12].

Recently, some of the researchers focused more on the NV model with unreliable suppliers. Among them, Ray and Jenamani [2] proposed a one-period NV optimization model with one retailer and many unreliable capacitated suppliers. They solved the problem with a simulation optimization approach using discrete event simulation and genetic algorithm. They asserted that the problem was computationally not tractable by increasing the number of suppliers. Afterwards, Ray and Jenamani [3] proposed a heuristic approach to solve the problem that they developed in their previous work. They suggested that an important future extension of their problem is considering "multiple periods in the modeling". Merzifonluoglu and Feng [12] presented another important research regarding the development of NV model with unreliable suppliers. They proposed a heuristic approach to solve a one-period uncapacitated NV model. They suggested using risk-sensitive (versus risk neutral) modeling. Afterwards, Merzifonluoglu [1] developed the model of Merzifonluoglu and Feng [12] by adding some assumptions such as option contracts. She also modeled the concept of the capacity reservation in the NV model [13,14].

Based on the above researches, our assumptions regarding multiple unreliable capacitated suppliers were adopted from Ray and Jenamani [2]. Merzifonluoglu [1]; in addition, option contract assumption was adopted from Merzifonluoglu [1]. As suggested by Ray and Jenamani [3], the problem of ordering from unreliable capacitated suppliers has been extended to multiple periods in this paper. In the following, related works are presented.

Developing a multi-period model for the NVP is another extension to the common NVP. In this regard, applying utility function, Bonakiz and Sober [15] performed a risk analysis of the MNVP. One of the main parts of the literature (relating to the MNVP) is about the estimation of demand distribution with different approaches. Another main part of the literature is about modeling uncertainties in the NV problem, e.g., uncertainty of the supplier capacity [16], uncertainty of the selling price [17], and uncertainty of the demand [4]. Additionally, Kim et al. [4] developed a MNVP with a distributor and many retailers. Hence, inspired by the extensions of Ray and Jenamani [2] and Merzifonluoglu [1], their assumptions were mixed and, then, a multi-period NV model was developed with many retailers and many unreliable capacitated suppliers considering option contracts. In addition, it was assumed that retailers had a risk-sensitive behavior.

One of the best tools to solve a complex decision-making problem, such as inventory replenishment problems, is simulation optimization. Jalali and Nieuwenhuyse [18] reviewed and classified previous works on the simulation optimization technique in inventory
management. They classified related works into two categories: domain and methodology focused. Based on their classification, domain-focused works mainly contribute to the modeling of the inventory. Works focused on the methodology attempt to solve a simple problem with a new approach. They did not address agent-based simulation optimization works. Hence, in this section, these papers with major emphasis on the agent-based simulation optimization are reviewed.

As clarified in the previous sections and to the best of our knowledge, there is no research in the literature that has modeled a multi-period NVP with many-to-many relationships and uncertain capacitated suppliers. In this research, a new multi-agent RL approach is developed to solve the model.

3. Problem description

Consider a supply chain with two echelons: retailers and suppliers. Retailers receive demands from customers at the beginning of each time unit and they have to satisfy these demands. In case of shortage, they must pay a certain amount of cost. In order to satisfy demands, retailers sign a forward contract with primary suppliers for a set of constant time units (called a contract period). In other words, at the beginning of each contract period, retailers must decide on the amount of order from the primary supplier for a contract period. Customer demands and supplier capacities are uncertain. Each supplier could sign forward and option contracts with two different retailers. Hence, after demand realization (as suggested by Merzifonluoglu [1]), retailers have two options: 1-ordering from a secondary supplier up to the reserved capacity and 2-buying from the spot market (with a spot price, which increases with an increase in the excess demand). Indeed, if the forward contract is not enough, retailers could use these options. In order to analyze the effect of the risk attitude on the decisions made by retailers, it is assumed that one of the retailers is risk sensitive and other retailers are risk neutral. The system is modeled for certain contract periods (M). The notations of the model are presented below:

Indices:

\[I \] Index of the retailers, \(i \in \{1, ..., I\} \)

\[J \] Index of the suppliers, \(j \in \{1, ..., J\} \)

\[T \] Index of the time horizon, \(t \in \{1, ..., T_1, T_1 + 1, ..., T_2, ..., T_M\} \)

Variables:

\[l_{i,t} \] Inventory position of the retailer \(i \) at time \(t \)

\[a_{i,t} \] The risk sensitivity of the retailer \(i \) at time \(t \) (risk-neutral retailers choose \(a_{i,t} \) equal to zero, the risk-averse retailer chooses negative values, and the risk-taking retailer chooses positive values; values of \(a_{i,t} \) belong to \([-0.6, -0.4, -0.2, 0.2, 0.4, 0.6]\)).

\[y_{i,j,t} \] The ordering amount from the secondary supplier \(j \) by retailer \(i \) at time \(t \)

\[z_{i,t} \] The ordering amount from the spot market by retailer \(i \) at time \(t \)

\[\xi_{i,t} \] The shortage amount for the retailer \(i \) at time \(t \)

Random variables:

\[D_{i,t} \] The customer demand at time unit \(t \) satisfied by the retailer \(i \) (A random normal variable with mean \(\mu_i \) and standard deviation \(\sigma_i \))

\[\pi_{j,t} \] Loss percentage of the capacity of the supplier \(j \) as a result of a disruption in an event at time \(t \)

\[x_{i,j,t} \] Ordering amount of retailer \(i \) at time \(t \) from supplier \(j \) before realization of demand (risk attitude of the retailers has an effect on this variable)

\[\omega \] Spot market price (correlated with the amount of the excess demand not satisfied by primary and secondary suppliers)

Parameters:

\[c_{i,j}^1 \] The cost of ordering from the primary supplier \(j \)

\[c_{i,j}^2 \] The cost of ordering from the secondary supplier \(j \)
The cost of capacity reservation in the supplier j (as a secondary supplier).

The revenue of selling products to customers.

The holding cost paid by retailers per product.

The shortage cost of retailers per product.

A fixed nominal capacity dedicated to the retailer i by the supplier j during the contract period (which resets at the beginning of each time unit).

A fixed nominal capacity of the supplier j, which could be reserved by the retailer i at the beginning of the contract period for a contract period with "$g" time units.

An important part of the model is the effect of the risk behavior of the risk-sensitive retailer on the amount of his/her order as a primary contract. Because of the uncertainty of the demand, the risk-neutral retailer places an order from the primary supplier based on $N(\mu_i, \sigma_i)$, and the risk-sensitive retailer places an order based on $N((1 \pm \alpha_{i,t})\mu_i, (1 - \alpha_{i,t})\sigma_i)$. In other words, $\alpha_{i,t}$ is the coefficient of the risk. For the risk-neutral retailers, $\alpha_{i,t} = 0$. We defined certain amounts of $\alpha_{i,t}$ in this paper: $\alpha_{i,t} \in \{-0.6, -0.4, -0.2, 0.2, 0.4, 0.6\}$. The risk-sensitive retailer uses a wider or tighter distribution than demand. For example, suppose that the demand follows a normal distribution with a mean of 100 and a standard deviation of 20. Results of the numerical simulation show that a retailer with extremely risk-averse behavior ($\alpha = 0.6$) approximately in $\%95$ of the times places an order above the realized demand and a retailer with extremely risk-taking behavior ($\alpha = -0.6$) in $\%95$ of the times places an order under the realized demand. The risk attitude of the retailer towards uncertain demand is depicted in Figure 1(a).

The chromosomes used in order to make a decision in different time units of contract periods are depicted in Figure 1(b). A simple numerical analysis (using 1000 random numbers) shows that the probability of ordering greater than the demand in different values of α is as follows (values in parenthesis show the related probabilities):

- $\alpha = -0.6$ (0.054), $\alpha = -0.4$ (0.253).
- $\alpha = -0.2$ (0.437), $\alpha = 0.2$ (0.557).
- $\alpha = 0.4$ (0.763), $\alpha = 0.6$ (0.952).

Additionally, the behavior of the risk-sensitive retailer affects the amount of the reserved capacity. In other

![Figure 1(a)](image-url)
words, the risk-averse retailer prefers to order more from the primary supplier and less from the secondary supplier. The behavior of a risk-averse retailer is defined as follows: large primary contract and small secondary contract. Likewise, the behavior of a risk-taking retailer is small primary contract and large secondary contract. These behaviors are defined by two parameters: α (introduced before) and β (a percentage of $\text{Cap}_{i,j}^p$ that a retailer reserves in a secondary supplier). In the following, details of the relations between α and β are explained.

If the risk-sensitive retailer decides to order based on $\alpha = -0.6$, the value of parameter β is equal to 1. Likewise, for other values of α, the value of β would be: $\alpha = -0.4 (\beta = 0.8), \alpha = -0.2 (\beta = 0.6), \alpha = 0.2 (\beta = 0.4), \alpha = 0.4 (\beta = 0.2)$, and $\alpha = 0.6 (\beta = 0)$. For the risk-neutral retailer ($\alpha = 0$), the value of β is equal to 0.5.

As mentioned before, in this paper, we are looking for the best decision of the risk-sensitive retailer among other risk-averse retailers (agents). Here, i^* is defined as the index of the risk-sensitive retailer. The objective function is considered as the maximization of the profit of retailer i^*. Thus, the profit function (consists of selling revenue and costs: holding cost, shortage cost, cost of purchasing, and cost of reserving the capacity) is as follows:

$$
\psi = \sum_{i=1}^{I} pD_{i,t} - \sum_{i=1}^{I} \sum_{j=1}^{J} \beta_{i,t} \text{Cap}_{i,j}^p f_j - \sum_{i=1}^{I} \sum_{j=1}^{J} c_j x_{i,j,t} - \sum_{i=1}^{I} \sum_{j=1}^{J} c_j y_{i,j,t} - \sum_{i=1}^{I} q_{i,t} \theta - \sum_{i=1}^{I} \omega z_{i,t} - \sum_{i=1}^{I} h_{i,t}.
$$

As a result of the disruption, in each time unit, available capacities of the suppliers ($\text{Cap}_{i,j}^1, \text{Cap}_{i,j}^2$) may be less than their nominal capacities. At the beginning of each contract period, i.e., $(t \mod g) = 0$, retailers must decide on the amount of the forward contracts based on the updated capacities of the suppliers. Let $\varphi^1_{i,j,t}$ and $\varphi^2_{i,j,t}$ be defined as two binary variables (respectively) relating to the forward/option contract of the supplier j with the retailer i at time t ($t, t' \in T$).

$$
\text{Cap}_{i,j,t}^1 = \varphi^1_{i,j,t}(1 - \pi_{j,t}) \text{Cap}_{i,j}^1,
$$

$$
\sum_{i} \varphi^1_{i,j,t'} = 1 \quad \forall j.
$$

$$
\text{Cap}_{i,j,t}^2 = \varphi^2_{i,j,t}(1 - \pi_{j,t}) \text{Cap}_{i,j}^2,
$$

$$
\sum_{i} \varphi^2_{i,j,t'} = 1 \quad \forall j.
$$

$$
\varphi^1_{i,j,t} + \varphi^2_{i,j,t} = 1 \quad \forall t, j.
$$

$$
\varphi^1_{i,j,t} = \varphi^1_{i,j,t'}, \quad \varphi^2_{i,j,t} = \varphi^2_{i,j,t'},
$$

\[\forall t \in \left[\left\lfloor \frac{t'}{g} \right\rfloor, \left\lfloor \frac{t'}{g} \right\rfloor + 1 \right) g - 1. \]

The above formulas ensure that a retailer only orders from a specific supplier (as a primary supplier) and reserves capacities in a different supplier (as a secondary supplier) during each contract period.

Based on $\varphi^1_{i,j,t}$, the value of $x_{i,j,t}$ could be determined as follows:

$$
0 \leq x_{i,j,t} \leq M \varphi^1_{i,j,t}.
$$

Let $\eta_{i,t}$ be defined as the amount of satisfied order of the retailer i from the primary suppliers:

$$
\eta_{i,t} = \sum_{j} \min(x_{i,j,t}, \text{Cap}_{i,j,t}^1).
$$

In case $x_{i,j,t} < \text{Cap}_{i,j,t}^1$, suppliers add the remaining capacity to their capacities as a secondary supplier ($\text{Cap}_{i,j,t}^2$).

Let $I_{i,j,t} = (D_{i,j,t} - \eta_{i,t} - I_{i,j,t-1})^+$ be defined as the unsatisfied amount of order of the retailer i at time t from the primary supplier ($\{X^+\}$ equal to $(x, 0)$).

Let $\kappa_{i,t}$ be defined as the amount of excess order
of the retailer \(i\) from secondary suppliers (in each time unit, primary suppliers add their remaining primary capacity to their secondary capacity):

\[
\kappa_{i,t} = \sum_j \min(\xi_{i,t}, \tilde{\beta}_{i,t} C \bar{r}_{i,j,t}) \\
+ \sum_i \left(C \bar{p}_{i,j,t}^1 - x_{i,j,t} \right)^+.
\]

(12)

Therefore:

\[
0 \leq \sum_j y_{i,j,t} \leq \kappa_{i,t}.
\]

(13)

Let \(\tau_{i,t} = (D_{i,t} - \xi_{i,t} - \kappa_{i,t})^+\) be defined as unsatisfied order of the retailer \(i\), which is unsatisfied at time \(t\) (after receiving products from primary and secondary suppliers).

It is assumed that retailers compare the cost of shortage with that of purchasing from the spot market and, then, decide on the amount of order from the spot market; indeed, retail agents examine different values for \(\xi_{i,t} \in \{0, 0.1, 0.2, ..., 1\}\). Therefore, the amount of the shortage will be: \(q_{i,t} = \xi_{i,t} \times \tau_{i,t}\), and the amount of order from the spot market will be: \(z_{i,t} = (1 - \xi_{i,t}) \tau_{i,t}\).

The equation of on-hand inventory balance is as follows:

\[
I_{i,t} = (I_{i,t-1} + \eta_{i,t} + \kappa_{i,t} + z_{i,t} - D_{i,t})^+.
\]

(14)

On-hand inventory is used as the state in the agent-based model \((I_{i,0} = 0)\). Previous works in the area of NVPSD or MNVP used a heuristic or metaheuristic method to solve the problem. They also discussed the computational complexity of the problems, especially in large sizes. In addition, as mentioned before, the problem in this paper is MNVPSD and, thus, is more complex than NVPSD or MNV. Hence, an intelligent approach to solving the problem is necessary. The above formulations are modeled by multi-agent simulation software (Netlogo 5.3.1) and, then, by using R-Netlogo package [29], optimization is done in cooperation with the simulation procedure. Detailed discussions are presented in Section 3.1.

3.1. Agent-based modeling

In this paper, we are going to analyze a subsystem (among several subsystems of SCM such as transportation, financial, etc.) of the SCM as an agent-based system. The overall agent-based system (consists of the relations between agents, states, and rewards) is depicted in Figure 2. In this system, each agent is responsible for making decisions about the amount of forward and option contracts (autonomously) by interacting with other agents. The goal is to find the best behavior of the risk-sensitive retailer during several contract periods with regard to the forward and option contracts and based on the profit function. In Figure 2, based on the variables introduced in the

![Figure 2](image-url)

Figure 2. The overall agent-based model (up) and a schematic of the interactions in an RL algorithm (down).
previous section \((x, y, z)\), different flows (orders and goods) of the system are depicted. As explained in the above formulas, flows “\(y\)” and “\(z\)” take place when \(x + H_{t-1} < d\); hence, we depicted \(y\) and \(z\) with dashed arrows. In addition to the direct arrows (orders), reverse arrows show the flow of goods towards retailers. In our agent-based supply chain, environmental uncertainties consist of customer demand and supplier disruptions. As shown in Figure 2, each agent takes an action based on the environment state.

The overall process for each retailer (who orders from a primary supplier and a secondary supplier or the spot market) is shown in the above figure. In the above agent-based model (considering the RL algorithm), agents are autonomous and interact with each other to satisfy constraints and to attain the optimal solution for the objective function. It is notable that a supply chain consists of different mechanisms; however, the main focus of this paper is on the ordering decisions of the risk-sensitive retailer during a certain amount of contract periods.

Customer agents send their demands at the beginning of each time unit to the retailers, and retailers set their amount of fixed orders (primary contract) at the beginning of each contract period. If the resulting state (inventory position of retailer) satisfies the uncertain demand of the customer, \(y\) and \(z\) will be equal to zero. Otherwise, a retailer sends an order to the secondary supplier (reserved at the beginning of the current contract period). If the reserved capacity does not satisfy the remaining demand again, a cost-benefit tradeoff is done to decide whether to order from the spot market or lose the excess demand and pay a certain amount of shortage cost. Supplying agents (when acting as a primary or secondary supplier) are exposed to disruption and may lose some parts of their capacity as a result of disruption. When supplying agents act as the secondary supplier and promise to reserve their capacity for a certain retailer, they satisfy that part of the excess demand that has not exceeded the predetermined capacity. Spot market agents could satisfy all the excess demands upon request (i.e., their capacities are infinite); however, they set their price according to the amount of excess demand requested from them. The correlation between the spot price and demand is explained in Section 5.

4. Simulation-Optimization (SimOpt) approach

In the previous section, the procedure of decision-making in the problem was discussed. In this section, in order to present a solution approach, all decision-making procedures are mapped to a simulation-optimization algorithm.

4.1. Simulation procedure

First of all, the simulation procedure is explained. The overall procedure of the simulation is depicted in Figure 3. Note that, in the simulation procedure, Eqs. (4)-(14), defined in Section 3, will be considered. The simulation of the agent-based model is done by an agent-based simulation software package (Netlogo 5.3.1). The optimization part of the SimOpt algorithm is coded in R-studio in cooperation with Netlogo (R-Netlogo), as discussed in Section 4.3.

4.2. Simulation-based estimation

According to Liu et al. [30], we have performed some

Figure 3. The overall simulation procedure.
analyses on the number of replications of the simulation. Indeed, a two-stage decision-making occurs in each time unit (a decision is made before realizing the demand and a decision is made to place an order from reserved supplier and spot market) for each first stage decision variable; “R” replications are run and the profit function will be calculated based on the results of the replications. In other words, an estimation of the reward function relating to x (i.e., $f(x, z)$) could be calculated as:

$$F(x_i) = \frac{\sum_{j=1}^{R} f(x, z_j)}{R}.$$

Indeed, in the SimOpt algorithm, the same set of realizations (for demand and all other stochastic parameters) is used in each iteration toward the optimization. It was done by using R sets of seeds to generate different sequences of stochastic parameters in the replications. In this regard, four sample sizes are defined for the number of replications: 5, 10, 20, 50, and those are labeled with 1-4. Hence, we call four simulation optimization algorithms such as SimOpt-1-4. In the following section, the RL algorithm is described.

4.3. RL algorithm

4.3.1. States

As mentioned before, although the states of the system do not have Markov property, temporal dynamics (or dynamics occurring in each step of the Markov process) make it possible (and give an appropriate approximations) to estimate the reward in the next step based on the current states and actions. States for different agents are defined as follows: 1) customer agents: S_{c}^{t}, amount of the unsatisfied demand at time unit t; 2) retailer agent: S_{r}^{t}, the inventory position at time t; 3) supplier agent: $[S_{s1}^{t}, S_{s2}^{t}]$, the remaining capacity at time t and remaining reserved capacity at time t; and 4) spot market agent: S_{sp}^{t}, the inventory position of the spot market. It is assumed that the capacity of the spot market is infinite; thus, the state of the spot market always equals infinite. Therefore, system state could be written as follows:

$$S(t) = [S_{c}^{t}, S_{r}^{t}, S_{s1}^{t}, S_{s2}^{t}, S_{sp}^{t}].$$

In order to control the dimension of the above vector, a common approach is used to consider a limited set of cases for each member of the vector, e.g., for S_{c}^{t}, $(-\infty, -1000] \equiv 1, [-1000, -500] \equiv 2, ...$.

It is worthwhile to note that, in the simulation process (as mentioned in the previous section), fixed seeds are used in order to generate random numbers (especially for sampling from random variables). Hence, in each run of the simulation, the initial conditions will be the same as other runs.

4.3.2. Reward

The reward function at time unit “t” is equivalent to the profit gained by the risk-sensitive retailer at time unit t. Therefore, the reward function can be defined as follows:

$$r_{t} = pD_{s_{t}}, \sum_{j} \beta_{s_{t}, j} C_{mp}^{2} f_{j} - \sum_{j} c_{j} x_{s_{t}, j, t} - \sum_{j} c_{j} x_{r_{t}, j, t} - \omega z_{c_{t}, t} - h I_{s_{t}, t}.$$

In addition, ideally, based on Eq. (2), the Q-function could be obtained. However, since the values of the revenue and costs for the future periods could not be calculated, a Q-learning algorithm is usually used to estimate the value of the function. It is described in the forthcoming sections.

4.3.3. Actions

In the agent-based framework, for each agent, a set of state actions is defined. The states have been explained before. In this section, actions of different agents are explained: 1) customer agents: demand based on the normal distribution; 2) retailer agents: orders from suppliers, values of x and y; 3) supplier agents: amount of satisfied demand by the primary and secondary suppliers; 4) the spot market agent: satisfied excess demand of the retailer. A customer’s demand is defined as a random normal variable. The value of x depends on the risk attitude of the retailer (as explained in Section 3). The value of y is determined by the learning mechanism. The value of the supplier action depends on the constraints explained in Section 3. The value of an action of the spot market is equal to the amount of excess demand requested from the spot market. A decision between shortage and ordering from spot market is determined by the learning mechanism.

4.3.4. Q-learning algorithm

In this section, the proposed Q-learning algorithm is presented to estimate the Q-function. One of the most important challenges of the performance of RL is efficient exploitation and exploration. In the initial steps, more explorations are required and, in further steps, more exploitations must occur. The exploration and exploitation are defined in the Algorithm 1 by parameter Ω.

After taking an action, the system enters a new state. As a result of performing Q-learning algorithm, $Q(s, a)$ matrix is formed for each set of state actions. The convergence of the RL algorithms was surveyed by a wide range of researchers. In the above learning algorithm, χ is the learning coefficient. It is a usual coefficient and has a performance like the other similar uses of learning coefficients (e.g., the same as the learning coefficient in the exponential smoothing forecasting). Indeed, it gives a weight to the old
estimations in contrast with the recent results. The stopping criterion of the problem is considered as the maximum iteration.

As shown in Figure 3, the above algorithm is a part of the SimOpt algorithm. Indeed, in each time unit, all the states for the action made at the beginning of the contract period are calculated. At the end of the contract period, the best action is selected and, again, the simulation will run and states are calculated until the next contract period. The procedure will stop whenever the stopping criterion is met. In the next section, a numerical example is solved by using the proposed Q-learning algorithm, and the results are compared with a genetic algorithm-based Sim Opt.

5. Numerical example

In this section, the results of implementing the proposed Q-learning algorithm are compared with those of another SimOpt algorithm in which Q-learning changes into a common genetic algorithm. Generally, our data from Merzifonluoglu were adopted [1]. Because of some additional assumptions in this paper in contrast with the base paper, some parts of data have been modified. Additional assumptions of our model include multiple retailers, multiple periods, and time-based disruptions. Details of the numerical example are defined in the Table 1.

Additionally, the probability of disruption is considered as a uniform distribution between [0.01, 0.05]. The disruption effect (or the length of the disruption) is assumed as a uniform distribution between [0, 2] time units. The maximum number of disrupted suppliers is assumed as a uniform distribution between [0, 1]. The same as the case of Merzifonluoglu [1], it is assumed that the demand and the spot price are correlated with parameter $\rho(\rho > 0)$, such that: $\mu_1 = \mu$; $\mu_2 = \mu\rho^2$; $\sigma_{11} = \sigma$; $\sigma_{22} = \sigma^2$; $\sigma_{12} = \sigma_{21} = \rho\sigma\sigma^2$.

The coefficient of the correlation is assumed equal to 0.2. Different problem instances are defined based on the common NV problem. Problem instances are numbered according to the number of suppliers and retailers. The basic problem instance in this paper is NV10-10, in which the first number shows the number of suppliers and the second one shows the number of retailers. The number of contract periods and the number of time units in each contract period are 20 and 11, respectively.

Values for λ, χ, and δ by using the simulation were determined as 0.3, 0.2, and 0.4, respectively. Results
Table 2. Results of the algorithms with different replications ($\times 10^4$).

<table>
<thead>
<tr>
<th>NV instances</th>
<th>SimOpt-1</th>
<th>SimOpt-2</th>
<th>SimOpt-3</th>
<th>SimOpt-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best</td>
<td>Avg</td>
<td>Sec</td>
<td>Best</td>
</tr>
<tr>
<td>NV10-5</td>
<td>17.049</td>
<td>16.540</td>
<td>61</td>
<td>18.046</td>
</tr>
<tr>
<td>NV10-10</td>
<td>17.000</td>
<td>16.782</td>
<td>119</td>
<td>18.010</td>
</tr>
<tr>
<td>NV20-20</td>
<td>17.039</td>
<td>16.775</td>
<td>250</td>
<td>18.043</td>
</tr>
<tr>
<td>NV100-50</td>
<td>17.258</td>
<td>17.039</td>
<td>708</td>
<td>18.273</td>
</tr>
<tr>
<td>NV100-100</td>
<td>17.198</td>
<td>16.754</td>
<td>953</td>
<td>18.203</td>
</tr>
</tbody>
</table>

Figure 4. The progress of the learning through the SimOpt-3 algorithm (NV10-10-1).

were obtained by a PC with Intel(R) Corei7, 3.1 GHz CPU, and 6 GB RAM.

As discussed in Section 4.2, we have defined four SimOpt algorithms with different replication numbers in the simulation procedure. Table 2 shows the results of applying these algorithms on the problem.

Results show that SimOpt-3 is the most proper SimOpt algorithm in terms of accuracy and time. Thus, in the remaining parts of the paper, we only discuss the results given from SimOpt-3.

The result of applying the algorithm (for 100 iterations) to the problem NV10-10-1 is depicted in Figure 4.

As shown in Figure 4, the algorithm converges to a near-optimal profit of the risk-sensitive retailer in 200 iterations. The best profit resulting from applying the algorithm to the problem is 20028766.

To show the efficiency of the proposed RL algorithm, results are compared with those of another popular metaheuristic based on the simulation procedure. Genetic Algorithm (GA) is a meta-heuristic and evolutionary algorithm that has been used in the literature to optimize many complex problems. It works with some procedures such as mutation and crossover, originally inspired by genetic science. Results of the SimOpt-RL are compared with those of a simulation-based Genetic Algorithm (SimOpt-GA) applied to the problem. Hence, GA (instead of RL) is used to optimize the simulation procedure explained in Section 4.1. The GA used in this paper is the same as the algorithms used by the related works [2,9,21].

We defined NV10-10-1 as the problem with 10 suppliers and 10 retailers (i.e., 1 risk-sensitive and 9 risk-neutral retailers) where retailers have an option to buy from spot market. The problem NV10-10-2 is defined as a problem in which spot market option is not considered.

In addition, as proposed by Liu et al [30], to show the efficiency of the proposed SimOpt-RL algorithm, the results of the SimOpt are compared with a case in which all stochastic parameters are equal to their expected values, called Expected Value Method (EVM). Table 3 shows the comparisons.

Results show the impact of the correlation (decreasing), the number of contract periods (increasing), and the number of time units (decreasing) on the reward values. Additionally, Gaps #1 and #2 represent the gap between the best values of SimOpt-RL and SimOpt-GA (respectively) with the best value of the EVM. Gaps #3 and #4 show the gap between the average values of SimOpt-RL and SimOpt-GA (respectively) with the average value of EVM. Moreover, Table 4 shows the effect of different disruption probabilities on the objective function and fill rate (profit values in Tables 4 and 5 are scaled out similar to those in the previous tables).

A sensitivity analysis is done regarding the effect of different values for deviation of the parameters: standard deviation of the demand (σ_d), standard deviation of the disruption effect (σ_δ^+), and standard deviation of the spot price (σ_p^-). Table 5 shows different cases defined for the sensitivity analysis.

Table 6 shows the sensitivity results of different
<table>
<thead>
<tr>
<th>ρ</th>
<th>Contract Time period</th>
<th>Units</th>
<th>SimOpt-RL Best</th>
<th>SimOpt-RL Avg</th>
<th>SimOpt-RL sec</th>
<th>EVM Best</th>
<th>EVM Avg</th>
<th>Gap1%</th>
<th>Gap2%</th>
<th>Gap3%</th>
<th>Gap4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV10-10-1</td>
<td>0.2</td>
<td>5</td>
<td>15.892</td>
<td>15.602</td>
<td>91</td>
<td>15.045</td>
<td>14.728</td>
<td>166</td>
<td>15.895</td>
<td>15.618</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>16.810</td>
<td>16.353</td>
<td>130</td>
<td>16.016</td>
<td>15.109</td>
<td>235</td>
<td>16.827</td>
<td>16.358</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>17.957</td>
<td>17.027</td>
<td>234</td>
<td>16.577</td>
<td>15.738</td>
<td>413</td>
<td>17.973</td>
<td>17.038</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>5</td>
<td>15.732</td>
<td>15.338</td>
<td>95</td>
<td>15.072</td>
<td>14.069</td>
<td>173</td>
<td>15.749</td>
<td>15.347</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>16.476</td>
<td>16.034</td>
<td>127</td>
<td>15.701</td>
<td>14.944</td>
<td>224</td>
<td>16.486</td>
<td>16.046</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>17.689</td>
<td>16.783</td>
<td>242</td>
<td>16.862</td>
<td>15.640</td>
<td>434</td>
<td>17.706</td>
<td>16.793</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>5</td>
<td>15.481</td>
<td>15.153</td>
<td>91</td>
<td>14.521</td>
<td>13.827</td>
<td>164</td>
<td>15.495</td>
<td>15.168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>16.218</td>
<td>15.820</td>
<td>122</td>
<td>15.440</td>
<td>14.967</td>
<td>225</td>
<td>16.234</td>
<td>15.832</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>17.380</td>
<td>16.579</td>
<td>248</td>
<td>16.104</td>
<td>15.048</td>
<td>452</td>
<td>17.380</td>
<td>16.590</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>5</td>
<td>15.193</td>
<td>14.867</td>
<td>104</td>
<td>14.475</td>
<td>13.526</td>
<td>183</td>
<td>15.207</td>
<td>14.877</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>16.013</td>
<td>15.526</td>
<td>118</td>
<td>15.366</td>
<td>14.427</td>
<td>212</td>
<td>16.026</td>
<td>15.543</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>17.159</td>
<td>16.364</td>
<td>244</td>
<td>16.281</td>
<td>15.134</td>
<td>442</td>
<td>17.176</td>
<td>16.375</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NV10-10-2</td>
<td>5</td>
<td>17.799</td>
<td>17.688</td>
<td>96</td>
<td>16.797</td>
<td>16.189</td>
<td>171</td>
<td>17.801</td>
<td>17.697</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>17.949</td>
<td>17.808</td>
<td>104</td>
<td>16.646</td>
<td>16.763</td>
<td>191</td>
<td>17.959</td>
<td>17.811</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>18.617</td>
<td>17.102</td>
<td>225</td>
<td>18.028</td>
<td>16.201</td>
<td>395</td>
<td>18.620</td>
<td>17.103</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>18.777</td>
<td>18.560</td>
<td>161</td>
<td>17.309</td>
<td>16.848</td>
<td>286</td>
<td>18.794</td>
<td>18.584</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>18.870</td>
<td>18.747</td>
<td>203</td>
<td>17.755</td>
<td>17.198</td>
<td>365</td>
<td>18.880</td>
<td>18.770</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>5</td>
<td>19.575</td>
<td>18.051</td>
<td>355</td>
<td>18.767</td>
<td>16.572</td>
<td>645</td>
<td>19.590</td>
<td>18.055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>19.485</td>
<td>19.264</td>
<td>211</td>
<td>18.205</td>
<td>17.502</td>
<td>373</td>
<td>19.499</td>
<td>19.294</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>19.515</td>
<td>19.317</td>
<td>298</td>
<td>18.464</td>
<td>17.891</td>
<td>534</td>
<td>19.547</td>
<td>19.340</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>5</td>
<td>19.307</td>
<td>17.908</td>
<td>390</td>
<td>18.160</td>
<td>16.543</td>
<td>715</td>
<td>18.962</td>
<td>17.922</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>20.972</td>
<td>19.128</td>
<td>522</td>
<td>19.765</td>
<td>17.284</td>
<td>916</td>
<td>20.680</td>
<td>19.131</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>5</td>
<td>20.792</td>
<td>19.720</td>
<td>609</td>
<td>19.252</td>
<td>18.162</td>
<td>372</td>
<td>19.625</td>
<td>19.303</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>20.660</td>
<td>19.422</td>
<td>302</td>
<td>18.415</td>
<td>18.122</td>
<td>533</td>
<td>19.671</td>
<td>19.429</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>20.382</td>
<td>18.821</td>
<td>536</td>
<td>17.973</td>
<td>17.292</td>
<td>946</td>
<td>20.393</td>
<td>18.856</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 3. A comparison between different approaches to solving NV10-10 problem ($\times 10^3$).
values for the mentioned cases. Results show the decreasing effect of the wider deviations on the values of the profit and fill rate.

In the remaining part of this section, the resulted risk behavior of the risk-sensitive retailer is discussed according to the best solution obtained.

Figure 5 shows the accumulated profit during 20 contract periods of the best solutions of two algorithms in NV10-10-1 problem.

Based on the analyses presented in Tables 3, 4, and 6 and Figures 2 and 3, the efficiency of the proposed SimOpt-RL algorithm is shown. Therefore, in the remaining part of this section, the detailed results of the RL algorithm in different cases of the NV10-10-1 are discussed. Based on the cases introduced in this section, the following NV10-10-1 problem instances (NV10-10-1-P1) are considered, as shown in Table 7.

Figure 6 shows the results of the best and average solutions of the SimOpt-RL for these four problem instances.

According to the results shown in Figure 6, it could be concluded that decisions related to the risk attitude of the risk-sensitive retailer have an important effect on the performance of the RL algorithm.
Table 7. Different problem instances of NV10-10-1 problem.

<table>
<thead>
<tr>
<th></th>
<th>NV10-10-1-PI,1</th>
<th>NV10-10-1-PI,2</th>
<th>NV10-10-1-PI,3</th>
<th>NV10-10-1-PI,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract periods 1-10</td>
<td>Higher Higher</td>
<td>Lower Lower</td>
<td>Higher Lower</td>
<td>Lower Higher</td>
</tr>
<tr>
<td>Contract periods 11-20</td>
<td>Lower Lower</td>
<td>Higher Higher</td>
<td>Lower Higher</td>
<td>Higher Lower</td>
</tr>
</tbody>
</table>

Figure 6. Risk attitude of the risk-sensitive retailer in the best (left) and average (right) solutions of the SimOpt-RL in different problem instances.

impact on the profit (reward) function. Additionally, more deviations of the demand and disruption intensity result in more risk-averse behavior. Furthermore, demand deviation has a greater effect on the risk averseness of the retailer rather than disruption intensity deviation. In the first two cases with high demand deviations, the retailer shows an extremely risk-averse behavioral pattern in approximately 30% of the times, while, in the last two cases with lower demand deviations, the retailer is extremely risk averse in 5% of the times. Extreme risk-taking behavior is only obtained by the lower demand and disruption deviations. These results could help a decision-maker in an uncertain environment (on both sides of the supply chain) to make a decision with an acceptable average reward.

6. Conclusions

The importance of decision-making in an uncertain supply chain has led researchers to develop intelligent approaches to solve complex problems in an efficient manner. The NV problem is a popular problem that has been extended in many different ways in the past years. However, in recent years, the NV problem with multiple unreliable suppliers is a type of problem
that has received much attention [1-3,12-14]. The complexity of the obtained problem has forced the researchers to adopt heuristic or intelligent approaches. The main idea of our model was derived initially from previously mentioned works. A configuration proposed by Merzifonluoglu [1] consists of one retailer and many suppliers that are subjected to disruptions. In this configuration, retailers sign forward and option contracts before demand realization and can buy products from the spot market after the realization. These options are common in industries such as semiconductors, telecommunications, and pharmaceuticals. In this paper, a new model was developed based on this configuration. In addition to demand uncertainty and supplier disruptions, a multi-period, multi-agent model with many-to-many relations between risk-sensitive retailers and capacitated suppliers was developed. Further, an RL method (as an optimization approach) was presented to solve it. Different simulation configurations (with different numbers of realization) were examined on different scales of the problem. Results showed an acceptable performance of the SimOpt algorithm in contrast with the non-stochastic algorithm. Moreover, results of the SimOpt-RL were compared with those of a SimOpt algorithm based on the genetic algorithm. Several sensitivity analyses were carried out regarding different parameters (including the number of contract periods, the number of time units in each contract period, standard deviations of demands, and disruptions). Moreover, details of the decisions were obtained based on a sample problem (NV10-10-1). For the future studies, considering multiple products in the problem would be an interesting idea and a more challenging design. In addition, considering negotiation process and transportation assumptions is another suggestion in order to extend the work presented in this paper.

Nomenclature

NV Newsvendor
NVP Newsvender Problem
NVPD Newsvender Problem with Supplier Disruption
MNVPD Multi-period Newsvendor Problem with Supplier Disruption
ABMS Agent-Based Modeling and Simulation
RL Reinforcement Learning
SimOpt Simulation Optimization
SimOpt-RL Simulation Optimization based on Reinforcement Learning

SimOpt-GA Simulation Optimization based on Genetic Algorithm
SimOpt – X Simulation Optimization approach with 5, 10, 20, 50 replications in each simulation run, $X \in \{1, 2, 3, 4\}$

NV10-10-1 A newsvendor problem with 10 suppliers and 10 retailers (i.e. 1 risk-sensitive and 9 risk-neutral retailers) in which retailers have an option to buy from the spot market.

NV10-10-2 A newsvendor problem with 10 suppliers and 10 retailers (i.e. 1 risk-sensitive and 9 risk-neutral retailers) in which the spot market option is neglected.

NV10-10-1_P1, X Different problem instances defined based on the NV10-10-1. $X \in \{1, 2, 3, 4\}$

EVM Expected Value Method

References

9. Avci, M.G. and Solim, H. “A multi-objective, simulation-based optimization framework for supply

Biographies

Abdollah Aghaie is a Professor of Industrial Engineering at K.N. Toosi University of Technology in Tehran, Iran. He received his BSce from Sharif University of Technology in Tehran, MSc from New South Wales University in Sydney, and PhD from Loughborough University in U.K. His main research interests lie in modeling and simulation, supply chain management, social networks, knowledge management, and risk management.

Mojtaba Hajian Heidary is a PhD student of Industrial Engineering at K.N. Toosi University of Technology, Department of Industrial Engineering, Tehran, Iran. His main research interests are supply chain management and computer simulation.