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Abstract. Many researchers and practitioners in recent years have become attracted to
the idea of investigating the role of uncertainty in the supply chain management concept.
In this paper, a multi-period stochastic supply chain with demand uncertainty and supplier
disruption is modeled. In the model, two types of retailers including risk-sensitive and risk-
neutral retailers with many capacitated suppliers are considered. Autonomous retailers
have three choices to satisfy demands: ordering from primary suppliers, reserved suppliers,
and spot market. The goal is to �nd the best behavior of the risk-sensitive retailer
regarding the forward and option contracts during several contract periods based on the
pro�t function. Hence, an agent-based simulation approach has been developed to simulate
the supply chain and transactions between retailers and unreliable suppliers. In addition,
a Q-learning approach (as a method of reinforcement learning) has been developed to
optimize the simulation procedure. Furthermore, di�erent con�gurations of the simulation
procedure are analyzed. The R-netlogo package is used to implement the algorithm. In
addition, a numerical example has been solved by the proposed simulation-optimization
approach. Several sensitivity analyses are conducted regarding di�erent parameters of the
model. A comparison between the numerical results and a genetic algorithm shows the
signi�cant e�ciency of the proposed Q-leaning approach.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The importance of uncertainty and the consequent cost
of ignoring it has led to a shift from deterministic
con�gurations of the supply chain to the stochastic
models. One of the most important problems in the
stochastic supply chain ordering management is the
newsvendor (NV) problem. The basic form of the
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NV problem consists of a buyer and a seller in which
the buyer must decide on the amount of ordering
from the seller when demand of the customers is not
predetermined. In the basic form, the buyer only
has the overall information about customer demand
such as the distribution function. In addition, the
decision is made only in one period. The objective is
to optimize the pro�t of the buyer. Two extensions
of the problem have been done by the researchers:
the Multi-period NV Problem (MNVP) and the NV
Problem with Supplier Disruption (NVPSD). In the
MNVP, the buyer(s) decides on the amount of ordering
from the seller(s) at the beginning of each period.
The buyer(s) decides on the amount of orders based
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on the uncertain demands of their customers and the
remaining inventory from the previous period. In
the NVPSD (which often consists of one period), the
buyer(s) decides on the amount of orders based on
uncertain customer demand and the remaining �xed
capacities of the sellers. In the related literature of the
NVPSD, it is usually assumed that the network consists
of many uncertain sellers and one buyer (e.g., [1-3]).
On the other hand, in the literature of the MNVP,
some researchers have assumed many buyers and one
seller in their network [4]. Thus, inspired by Kim et
al. [4] and the related literature of the NVPSD, this
study de�nes a many-to-many relation here. In the
new con�guration, each buyer decides on the amount
of the order from an uncertain seller at the beginning
of each time unit. In addition, it is more practical to
make a decision within a contract period that consists
of several time units while demand varies during each
time unit, instead of making decisions at the beginning
of each time unit. This has not been elaborated in the
context of the NV problem.

Practical applications of the NVPSD arise partic-
ularly in the decisions regarding global sourcing. The
following example clari�es the importance of the deci-
sions of the buyers in the global sourcing with uncertain
suppliers. For instance, an automotive component
manufacturer had expected to save 4-5 million dollars
a year resulting from sourcing of a product from Asia
instead of Mexico. Port congestion and chartering air-
craft to 
y the products from Asia caused a 20-million-
dollar loss [5]. This example and other practical appli-
cations of sourcing decision, especially when a contract
is signed between a retailer and a supplier, highlight
the importance of studying sourcing decisions in an
uncertain supply chain (the MNVP and the NVPSD).

Extension of the NVP to the MNVP or NVPSD
makes the problem much more challenging. Suppliers
with uncertain and limited capacities and inventory
positions of the retailers pose a greater challenge to
the basic NVP. To the best of our knowledge, the
combination of the MNVP and the NVPSD has not
been researched before. This combined problem is
called MNVPSD. In addition, to avoid shortages, it is
assumed that retailers have two options after the real-
ization of the demand in each time unit: buying from a
reserved supplier and if the amount of reservation is not
su�cient to satisfy the demand, retailers have another
option to buy from the spot market [1]. These options
are common in the industries such as semiconductors,
telecommunications, and pharmaceuticals. Details of
the problem are discussed in Section 3. A two-stage
decision-making is required to solve the problem in
each time unit, in which an order must be placed before
the realization of the demand and subsequent decisions
regarding the ordering from the reserved supplier, and
the spot market must be made after the realization.

Solving a large-sized NVPSD is computationally
not tractable [1-3]. In addition, heuristic approaches
are common tools for solving the MNVP [4]. Thus,
it could be concluded that solving the MNVPSD by
an exact approach or a common optimization software
is more di�cult. In this regard and considering
autonomous retailers, an agent-based Q-learning is
developed and implemented to solve the problem. In
the following, the basics of agent-based modeling and
reinforcement learning are introduced.

1.1. Agent-based modeling
Agent-based modeling is a bottom-up approach among
di�erent simulation modeling approaches in which
agents interact with each other and, also, with the
environment [6]. Agent-based modeling facilitates sim-
ulation optimization loop of the related optimization of
behavioral parameters [7]. An agent-based simulation
model consists of a certain number of agents and their
behaviors, a�ecting their property, other actions, and
their environment.

Based on a research, di�erent approaches to
developing an ABMS could be divided into four cate-
gories [8]: individual ABMS (agents have a prescribed
behavior and there is no interaction between agents and
the environment), autonomous ABMS (agents have
autonomous behavior and there is no interaction be-
tween agents and the environment), interactive ABMS
(agents have the same behavior as autonomous ABMS,
yet the interaction between agents and environment is
possible), and adaptive ABMS (behavior of the agents
is the same as interactive ABMS, yet agents can change
their behavior during the simulation). To make an
intelligent network of agents, researchers usually add
the learning feature to their models. In this regard,
Reinforcement Learning (RL) has been adopted in our
modeling.

1.2. Reinforcement Learning (RL)
Reinforcement Learning (RL) is a machine learning
approach and is a proper approach to optimizing multi-
agent models [9]. Indeed, an RL algorithm is a learning
mechanism to map the situations to actions [10]. In the
RL, there is a set of states (S), a set of actions (A), and
a reward function (R). In the stochastic environments,
a stochastic subset of the problem could be handled
as a Markov or semi-Markov model [11]. In general, a
Markov process is formulated as follows:

Pr(st+1 = s�; rt+1 = r�j st; at; :::; s0; a0)

= Pr(st+1 = s�; rt+1 = r�j st; at): (1)

The above-mentioned formula shows the memory-less
characteristic of the Markov process, which explains
that the state and reward at time (t+ 1) only depend
on the last time unit (t). RL is an algorithm with the
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ability to solve decision problems with Markov prop-
erty. Basically, the states de�ned in RL algorithm must
have Markov property; in case they do not have Markov
property, RL may represent a good approximation of
the solution [10].

One of the most popular methods for implement-
ing RL and the optimal set of \action states" is Q-
learning (as a model-free algorithm). In this regard,
a Q-function must be de�ned. A Q-function in RL
algorithm could be de�ned as the expected value of the
discounted reward gained from a speci�c set of states
and actions:

Q(s; a) = E

0@T�t�1X
�=0

��rt+�+1 j st = s; at = a

1A :
(2)

Since modeling all the dynamics of the system is
not possible in most real-world problems, usually, an
estimation of the Q-function is used to model the prob-
lem (e.g., by using an iterative Q-learning algorithm).
At the end of the learning process, the action with
the largest value of Q-function is chosen for all the
current states. In Section 4, the learning algorithm
is described.

The remaining parts of the paper are organized
as follows: In the next section, related works are
reviewed. In Section 3, the mathematical formulation
of the problem is presented. In Section 4, based on
the formulation presented in Section 3, an agent-based
RL approach is elaborated. In Section 5, results of
applying the proposed framework to an illustrative
example are shown. Finally, in the last section,
concluding remarks are presented.

2. Literature review

The main focus of this research is to analyze the risk
behavior of the retailers in the stochastic supply chain
by simulation optimization approaches. To design a
stochastic supply chain, the MNVP is extended by
multiple uncertain suppliers, and the NVPSD is ex-
tended by multiple periods. Additionally, a simulation
optimization approach is developed based on a multi-
agent system.

The NV problem is a common problem in the
inventory management. Many researchers have stud-
ied this problem and developed it in di�erent ways.
According to the assumptions considered in this paper,
related researches of NV problem, which considered
these two assumptions, are reviewed: multi-period
modeling and unreliable suppliers.

In the past years, some of the researchers devel-
oped the NVP with one retailer and multiple unreliable
suppliers. There are a few papers regarding the
supplier disruption in the NV con�guration [12].

Recently, some of the researchers focused more on
the NV model with unreliable suppliers. Among them,
Ray and Jenamani [2] proposed a one-period NV opti-
mization model with one retailer and many unreliable
capacitated suppliers. They solved the problem with a
simulation optimization approach using discrete event
simulation and genetic algorithm. They asserted that
the problem was computationally not tractable by in-
creasing the number of suppliers. Afterwards, Ray and
Jenamani [3] proposed a heuristic approach to solve the
problem that they developed in their previous work.
They suggested that an important future extension of
their problem is considering \multiple periods in the
modeling". Merzifonluoglu and Feng [12] presented an-
other important research regarding the development of
NV model with unreliable suppliers. They proposed a
heuristic approach to solve a one-period uncapacitated
NV model. They suggested using risk-sensitive (versus
risk neutral) modeling. Afterwards, Merzifonluoglu [1]
developed the model of Merzifonluoglu and Feng [12] by
adding some assumptions such as option contracts. She
also modeled the concept of the capacity reservation in
the NV model [13,14].

Based on the above researches, our assumptions
regarding multiple unreliable capacitated suppliers
were adopted from Ray and Jenamani [2], Merzifon-
luoglu [1]; in addition, option contract assumption was
adopted from Merzifonluoglu [1]. As suggested by
Ray and Jenamani [3], the problem of ordering from
unreliable capacitated suppliers has been extended to
multiple periods in this paper. In the following, related
works are presented.

Developing a multi-period model for the NVP
is another extension to the common NVP. In this
regard, applying utility function, Bouakiz and So-
bel [15] performed a risk analysis of the MNVP. One
of the main parts of the literature (relating to the
MNVP) is about the estimation of demand distribution
with di�erent approaches. Another main part of the
literature is about modeling uncertainties in the NV
problem, e.g., uncertainty of the supplier capacity [16],
uncertainty of the selling price [17], and uncertainty of
the demand [4]. Additionally, Kim et al. [4] developed a
MNVP with a distributor and many retailers. Hence,
inspired by the extensions of Ray and Jenamani [2]
and Merzifonluoglu [1], their assumptions were mixed
and, then, a multi-period NV model was developed
with many retailers and many unreliable capacitated
suppliers considering option contracts. In addition,
it was assumed that retailers had a risk-sensitive
behavior.

One of the best tools to solve a complex decision-
making problem, such as inventory replenishment prob-
lems, is simulation optimization. Jalali and Nieuwen-
huyse [18] reviewed and classi�ed previous works on
the simulation optimization technique in inventory
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management. They classi�ed related works into two
categories: domain and methodology focused. Based
on their classi�cation, domain-focused works mainly
contribute to the modeling of the inventory. Works
focused on the methodology attempt to solve a simple
problem with a new approach. They did not address
agent-based simulation optimization works. Hence, in
this section, those papers with major emphasis on the
agent-based simulation optimization are reviewed.

Nikolopoulou and Ierapetritou [19] used an MILP
formulation to develop an agent-based simulation opti-
mization. They solved a small-scale inventory problem
with their proposed SimOpt framework. Kwon et
al. [20] developed a hybrid multi-agent case-based
reasoning approach. A part of the literature surveyed
ordering problem in the supply chain using RL [21-23].

In addition, Jiang and Sheng [24] developed
a multi-agent RL for a supply chain network with
stochastic demand. Kim et al. [25] presented a multi-
agent framework {considering a reward function{ for
an inventory management problem with uncertain
demand and a service-level constraint. In recent
years, some studies have applied RL to the multi-agent
simulation framework [26-28].

As clari�ed in the previous sections and to the
best of our knowledge, there is no research in the
literature that has modeled a multi-period NVP with
many-to-many relationships and uncertain capacitated
suppliers. In this research, a new multi-agent RL
approach is developed to solve the model.

3. Problem description

Consider a supply chain with two echelons: retailers
and suppliers. Retailers receive demands from cus-
tomers at the beginning of each time unit and they
have to satisfy these demands. In case of shortage,
they must pay a certain amount of cost. In order
to satisfy demands, retailers sign a forward contract
with primary suppliers for a set of constant time
units (called a contract period). In other words, at
the beginning of each contract period, retailers must
decide on the amount of order from the primary
supplier for a contract period. Customer demands and
supplier capacities are uncertain. Each supplier could
sign forward and option contracts with two di�erent
retailers. Hence, after demand realization (as suggested
by Merzifonluoglu [1]), retailers have two options: 1-
ordering from a secondary supplier up to the reserved
capacity and 2- buying from the spot market (with
a spot price, which increases with an increase in the
excess demand). Indeed, if the forward contract is
not enough, retailers could use these options. In
order to analyze the e�ect of the risk attitude on the
decisions made by retailers, it is assumed that one of
the retailers is risk sensitive and other retailers are risk

neutral. The system is modeled for certain contract
periods (M). The notations of the model are presented
below:

Indices:

I Index of the retailers, i 2 f1; :::; Ig
J Index of the suppliers, j 2 f1; :::; Jg
T Index of the time horizon, t 2

f1; :::; T1; T1 + 1; :::; T2; :::; TMg
Variables:

Ii;t Inventory position of the retailer i at
time t

�i;t The risk sensitivity of the retailer i
at time t (risk-neutral retailers choose
�i;t equal to zero, the risk-averse
retailer chooses negative values,
and the risk-taking retailer chooses
positive values; values of �i;t belong to
f�0:6;�0:4;�0:2; 0:2; 0:4; 0:6g).

yi;j;t The ordering amount from the
secondary supplier j by retailer i at
time t

zi;t The ordering amount from the spot
market by retailer i at time t

�i;t The shortage amount for the retailer i
at time t

Random variables:

Di;t The customer demand at time unit t
satis�ed by the retailer i (A random
normal variable with mean �i and
standard deviation �i)

�j;t Loss percentage of the capacity of the
supplier j as a result of a disruption in
an event at time t

xi;j;t Ordering amount of retailer i at time
t from supplier j before realization of
demand (risk attitude of the retailers
has an e�ect on this variable)

! Spot market price (correlated with
the amount of the excess demand not
satis�ed by primary and secondary
suppliers)

Parameters:

c1j The cost of ordering from the primary
supplier j

c2j The cost of ordering from the secondary
supplier j
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fj The cost of capacity reservation in the
supplier j (as a secondary supplier)

p The revenue of selling products to
customers

h The holding cost paid by retailers per
product

� The shortage cost of retailers per
product

Cap1
i;j A �xed nominal capacity dedicated to

the retailer i by the supplier j during
the contract period (which resets at
the beginning of each time unit)

Cap2
i;j A �xed nominal capacity of the

supplier j, which could be reserved by
the retailer i at the beginning of the
contract period for a contract period
with \g" time units.

An important part of the model is the e�ect
of the risk behavior of the risk-sensitive retailer on
the amount of his/her order as a primary contract.
Because of the uncertainty of the demand, the risk-
neutral retailer i places an order from the primary
supplier based on N(�i; �i), and the risk-sensitive
retailer places an order based on N((1 � �i;t)�i; (1 �
�i;t)�i). In other words, �i;t is the coe�cient of the
risk. For the risk-neutral retailers, �i;t = 0. We

de�ned certain amounts of �i;t in this paper: �i;t 2f�0:6;�0:4;�0:2; 0:2; 0:4; 0:6g. The risk-sensitive re-
tailer uses a wider or tighter distribution than demand.
For example, suppose that the demand follows a
normal distribution with a mean of 100 and a standard
deviation of 20. Results of the numerical simulation
show that a retailer with extremely risk-averse behavior
(� = 0:6) approximately in %95 of the times places an
order above the realized demand and a retailer with
extremely risk-taking behavior (� = �0:6) in %95 of
the times places an order under the realized demand.
The risk attitude of the retailer towards uncertain
demand is depicted in Figure 1(a).

The chromosomes used in order to make a decision
in di�erent time units of contract periods are depicted
in Figure 1(b). A simple numerical analysis (using
1000 random numbers) shows that the probability of
ordering greater than the demand in di�erent values of
� is as follows (values in parenthesis show the related
probabilities):

� = �0:6 (0:054); � = �0:4 (0:253);

� = �0:2 (0:437); � = 0:2 (0:557);

� = 0:4 (0:763); � = 0:6 (0:952):

Additionally, the behavior of the risk-sensitive retailer
a�ects the amount of the reserved capacity. In other

Figure 1(a). Di�erent risk attitudes of the risk-sensitive retailer.



A. Aghaie and M. Hajian Heidary/Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 3780{3795 3785

Figure 1(b). Procedure of decision-making for two types of retailers.

words, the risk-averse retailer prefers to order more
from the primary supplier and less from the secondary
supplier. The behavior of a risk-averse retailer is
de�ned as follows: large primary contract and small
secondary contract. Likewise, the behavior of a risk-
taking retailer is small primary contract and large
secondary contract. These behaviors are de�ned by two
parameters: � (introduced before) and � (a percentage
of Cap2

i;j that a retailer reserves in the secondary
supplier). In the following, details of the relations
between � and � are explained.

If the risk-sensitive retailer decides to order based
on � = �0:6, the value of parameter � is equal to 1.
Likewise, for other values of �, the value of � would
be: � = �0:4 (� = 0:8), � = �0:2 (� = 0:6), � = 0:2
(� = 0:4), � = 0:4 (� = 0:2), and � = 0:6 (� = 0). For
the risk-neutral retailer (� = 0), the value of � is equal
to 0.5.

As mentioned before, in this paper, we are looking
for the best decision of the risk-sensitive retailer among
other risk-neutral retailers (agents). Here, i� is de�ned
as the index of the risk-sensitive retailer. The objective
function is considered as the maximization of the pro�t
of retailer i�. Thus, the pro�t function (consists of
selling revenue and costs: holding cost, shortage cost,
cost of purchasing, and cost of reserving the capacity)
is as follows:

 i =
X
t

pDi;t �X
t

X
j

�i;tCap2
i;jfj

�X
t

X
j

c1jxi;j;t �
X
t

X
t

c2jyi;j;t �
X
t

&i;t�

�X
t

!zi;t �X
t

hIi;t: (3)

As a result of the disruption, in each time unit, avail-
able capacities of the suppliers (Cap1

i;j;t; Cap2
i;j;t) may

be less than their nominal capacities. At the beginning
of each contract period, i.e., (t mode g) = 0, retailers
must decide on the amount of the forward contracts
based on the updated capacities of the suppliers. Let

'1
i;j;t and '2

i;j;t be de�ned as two binary variables
(respectively) relating to the forward/option contract
of the supplier j with the retailer i at time t (t; t0 2 T ).

Cap1
i;j;t = '1

i;j;t0(1� �j;t)Cap1
i;j ; (4)X

i

'1
i;j;t0 = 1 8j; (5)

Cap2
i;j;t = '2

i;j;t0(1� �j;t)Cap2
i;j ; (6)X

i

'2
i;j;t0 = 1 8j; (7)

'1
i;j;t0 + '2

i;j;t0 = 1 8i; j; (8)

'1
i;j;t = '1

i;j;t0 ; '2
i;j;t = '2

i;j;t0 ;

8t 2
��
t0
g

�
g;
��

t0
g

�
+ 1
�
g � 1

�
: (9)

The above formulas ensure that a retailer only orders
from a speci�c supplier (as a primary supplier) and re-
serves capacities in a di�erent supplier (as a secondary
supplier) during each contract period.

Based on '1
i;j;t, the value of xi;j;t could be deter-

mined as follows:

0 � xi;j;t �M'1
i;j;t: (10)

Let �i;t be de�ned as the amount of satis�ed order of
the retailer i from the primary suppliers:

�i;t =
X
j

min(xi;j;t; Cap1
i;j;t): (11)

In case xi;j;t < Cap1
i;j;t, suppliers add the remain-

ing capacity to their capacities as a secondary supplier
(Cap2

i;j;t).
Let �i;t = (Di;t � �i;t � Ii;t�1)+ be de�ned as the

unsatis�ed amount of order of the retailer i at time t
from the primary supplier ((X+) equal to (x; 0)).

Let �i;t be de�ned as the amount of excess order
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of the retailer i from secondary suppliers (in each time
unit, primary suppliers add their remaining primary
capacity to their secondary capacity):

�i;t =
X
j

min(�i;t; �i;tCap2
i;j;t

+
X
i

(Cap1
i;j;t � xi;j;t)+): (12)

Therefore:

0 �X
j

yi;j;t � �i;t: (13)

Let �i;t = (Di;t � �i;t � �i;t)+ be de�ned as unsatis�ed
order of the retailer i, which is unsatis�ed at time t
(after receiving products from primary and secondary
suppliers).

It is assumed that retailers compare the cost of
shortage with that of purchasing from the spot market
and, then, decide on the amount of order from the spot
market; indeed, retail agents examine di�erent values
for �i;t 2 (0; 0:1; 0:2; :::; 1). Therefore, the amount of
the shortage will be: &i;t = �i;t��i;t, and the amount of
order from the spot market will be: zi;t = (1� �i;t)�i;t.

The equation of on-hand inventory balance is as
follows:
Ii;t = (Ii;t�1 + �i;t + �i;t + zi;t �Di;t)+: (14)

On-hand inventory is used as the state in the agent-

based model (Ii;0 = 0). Previous works in the area
of NVPSD or MNVP used a heuristic or metaheuristic
method to solve the problem. They also discussed the
computational complexity of the problems, especially
in large sizes. In addition, as mentioned before,
the problem in this paper is MNVPSD and, thus,
is more complex than NVPSD or MNVP. Hence, an
intelligent approach to solving the problem is necessary.
The above formulations are modeled by multi-agent
simulation software (Netlogo 5.3.1) and, then, by
using R-Netlogo package [29], optimization is done in
cooperation with the simulation procedure. Detailed
discussions are presented in Section 3.1.

3.1. Agent-based modeling
In this paper, we are going to analyze a subsystem
(among several subsystems of SCM such as transporta-
tion, �nancial, etc.) of the SCM as an agent-based
system. The overall agent-based system (consists of
the relations between agents, states, and rewards) is
depicted in Figure 2. In this system, each agent is
responsible for making decisions about the amount
of forward and option contracts (autonomously) by
interacting with other agents. The goal is to �nd
the best behavior of the risk-sensitive retailer during
several contract periods with regard to the forward
and option contracts and based on the pro�t function.
In Figure 2, based on the variables introduced in the

Figure 2. The overall agent-based model (up) and a schematic of the interactions in an RL algorithm (down).
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previous section (x; y; z), di�erent 
ows (orders and
goods) of the system are depicted. As explained in
the above formulas, 
ows \y" and \z" take place when
\x+It�1 < d"; hence, we depicted y and z with dashed
arrows. In addition to the direct arrows (orders),
reverse arrows show the 
ow of goods towards retail-
ers. In our agent-based supply chain, environmental
uncertainties consist of customer demand and supplier
disruptions. As shown in Figure 2, each agent takes an
action based on the environment state.

The overall process for each retailer (who orders
from a primary supplier and a secondary supplier
or the spot market) is shown in the above �gure.
In the above agent-based model (considering the
RL algorithm), agents are autonomous and interact
with each other to satisfy constraints and to attain
the optimal solution for the objective function. It
is notable that a supply chain consists of di�erent
mechanisms; however, the main focus of this paper is
on the ordering decisions of the risk-sensitive retailer
during a certain amount of contract periods.

Customer agents send their demands at the
beginning of each time unit to the retailers, and
retailers set their amount of �xed orders (primary
contract) at the beginning of each contract period.
If the resulting state (inventory position of retailer)
satis�es the uncertain demand of the customer, y and
z will be equal to zero. Otherwise, a retailer sends an
order to the secondary supplier (reserved at the begin-
ning of the current contract period). If the reserved
capacity does not satisfy the remaining demand again,
a cost-bene�t tradeo� is done to decide whether to
order from the spot market or lose the excess demand
and pay a certain amount of shortage cost. Supplying

agents (when acting as a primary or secondary
supplier) are exposed to disruption and may lose some
parts of their capacity as a result of disruption. When
supplying agents act as the secondary supplier and
promise to reserve their capacity for a certain retailer,
they satisfy that part of the excess demand that has
not exceeded the predetermined capacity. Spot market
agents could satisfy all the excess demands upon
request (i.e., their capacities are in�nite); however,
they set their price according to the amount of excess
demand requested from them. The correlation between
the spot price and demand is explained in Section 5.

4. Simulation-Optimization (SimOpt)
approach

In the previous section, the procedure of decision-
making in the problem was discussed. In this section,
in order to present a solution approach, all decision-
making procedures are mapped to a simulation-
optimization algorithm.

4.1. Simulation procedure
First of all, the simulation procedure is explained.
The overall procedure of the simulation is depicted
in Figure 3. Note that, in the simulation procedure,
Eqs. (4)-(14), de�ned in Section 3, will be considered.
The simulation of the agent-based model is done by
an agent-based simulation software package (Netlogo
5.3.1). The optimization part of the SimOpt algorithm
is coded in R-studio in cooperation with Netlogo (R-
Netlogo), as discussed in Section 4.3.

4.2. Simulation-based estimation
According to Liu et al. [30], we have performed some

Figure 3. The overall simulation procedure.
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analyses on the number of replications of the simula-
tion. Indeed, a two-stage decision-making occurs in
each time unit (a decision is made before realizing the
demand and a decision is made to place an order from
reserved supplier and spot market) for each �rst stage
decision variable; \R" replications are run and the
pro�t function will be calculated based on the results
of the replications. In other words, an estimation of
the reward function relating to x (i.e., f(x; ")) could
be calculated as:

F (xi) =

RP
j=1

f(x; "j)

R
:

Indeed, in the SimOpt algorithm, the same set of
realizations (for demand and all other stochastic pa-
rameters) is used in each iteration toward the opti-
mization. It was done by using R sets of seeds to
generate di�erent sequences of stochastic parameters
in the replications. In this regard, four sample sizes
are de�ned for the number of replications: 5, 10, 20,
50, and those are labeled with 1-4. Hence, we call four
simulation optimization algorithms such as SimOpt-
1-4. In the following section, the RL algorithm is
described.

4.3. RL algorithm
4.3.1. States
As mentioned before, although the states of the system
do not have Markov property, temporal dynamics
(or dynamics occurring in each step of the Markov
process) make it possible (and give an appropriate
approximations) to estimate the reward in the next
step based on the current states and actions. States
for di�erent agents are de�ned as follows: 1) customer
agents: Sct , amount of the unsatis�ed demand at time
unit t; 2) retailer agent: Srt , the inventory position at
time t; 3) supplier agent: [Sts;1; Sts;2], the remaining
capacity at time t and remaining reserved capacity at
time t; and 4) spot market agent: Sspt , the inventory
position of the spot market. It is assumed that the
capacity of the spot market is in�nite; thus, the state
of the spot market always equals in�nite. Therefore,
system state could be written as follows:

S(t) = [Stc; Str; [Sts;1; Sts;2]; Stsp]:

In order to control the dimension of the above vector,
a common approach is used to consider a limited set
of cases for each member of the vector, e.g., for Srt ,
(�1;�1000) � 1; [�1000;�500) � 2; :::.

It is worthwhile to note that, in the simulation
process (as mentioned in the previous section), �xed
seeds are used in order to generate random num-
bers (especially for sampling from random variables).
Hence, in each run of the simulation, the initial
conditions will be the same as other runs.

4.3.2. Reward
The reward function at time unit \t" is equivalent to
the pro�t gained by the risk-sensitive retailer at time
unit t. Therefore, the reward function can be de�ned
as follows:

rt =pDi�;t �X
j

�i�;tCap2
i�;jfj �

X
j

c1jxi�;j;t

�X
j

c2jyi�;j;t �
X
t

&i�;t� � !zi�;t � hIi�;t:

In addition, ideally, based on Eq. (2), the Q-function
could be obtained. However, since the values of the
revenue and costs for the future periods could not be
calculated, a Q-learning algorithm is usually used to
estimate the value of the function. It is described in
the forthcoming sections.

4.3.3. Actions
In the agent-based framework, for each agent, a set of
state actions is de�ned. The states have been explained
before. In this section, actions of di�erent agents are
explained: 1) customer agents: demand based on the
normal distribution; 2) retailer agents: orders from
suppliers, values of x and y; 3) supplier agents: amount
of satis�ed demand by the primary and secondary
suppliers; 4) the spot market agent: satis�ed excess
demand of the retailer. A customer's demand is de�ned
as a random normal variable. The value of x depends
on the risk attitude of the retailer (as explained in
Section 3). The value of y is determined by the learning
mechanism. The value of the supplier action depends
on the constraints explained in Section 3. The value of
an action of the spot market is equal to the amount
of excess demand requested from the spot market.
A decision between shortage and ordering from spot
market is determined by the learning mechanism.

4.3.4. Q-learning algorithm
In this section, the proposed Q-learning algorithm is
presented to estimate the Q-function. One of the
most important challenges of the performance of RL
is e�cient exploitation and exploration. In the initial
steps, more explorations are required and, in further
steps, more exploitations must occur. The exploration
and exploitation are de�ned in the Algorithm 1 by
parameter 
.

After taking an action, the system enters a new
state. As a result of performing Q-learning algorithm,
Q(s; a) matrix is formed for each set of state actions.
The convergence of the RL algorithms was surveyed
by a wide range of researchers. In the above learn-
ing algorithm, � is the learning coe�cient. It is a
usual coe�cient and has a performance like the other
similar uses of learning coe�cients (e.g., the same as
the learning coe�cient in the exponential smoothing
forecasting). Indeed, it gives a weight to the old
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Algorithm 1. Reinforcement learning.

Table 1. Parameters of the model.

Di;t � N(�i; �i) (demand) N(1000, 100)
�j;t � N(��j ; ��j ) (disruption intensity) [U(0.01, 0.03), U(0.0001, 0.003)]
! � N(�!; �!) (spot price) N(250,40)
cj (ordering cost of primary, secondary suppliers) U(196, 198), 165
fj (cost of reservation) 40
p (price of the product) 300
h (holding cost) 10
� (shortage cost) 10
Cap1

j (�xed capacity of primary suppliers) 1000
Cap2

j (�xed possible reservation capacity) 200

estimations in contrast with the recent results. The
stopping criterion of the problem is considered as the
maximum iteration.

As shown in Figure 3, the above algorithm is a
part of the SimOpt algorithm. Indeed, in each time
unit, all the states for the action made at the beginning
of the contract period are calculated. At the end of
the contract period, the best action is selected and,
again, the simulation will run and states are calculated
until the next contract period. The procedure will
stop whenever the stopping criterion is met. In the
next section, a numerical example is solved by using
the proposed Q-learning algorithm, and the results are
compared with a genetic algorithm-based SimOpt.

5. Numerical example

In this section, the results of implementing the pro-
posed Q-learning algorithm are compared with those of
another SimOpt algorithm in which Q-learning changes
into a common genetic algorithm. Generally, our data
from Merzifonluoglu were adopted [1]. Because of some
additional assumptions in this paper in contrast with
the base paper, some parts of data have been modi�ed.
Additional assumptions of our model include multiple

retailers, multiple periods, and time-based disruptions.
Details of the numerical example are de�ned in the
Table 1.

Additionally, the probability of disruption is con-
sidered as a uniform distribution between [0.01, 0.05].
The disruption e�ect (or the length of the disruption) is
assumed as a uniform distribution between [0, 2] time
units. The maximum number of disrupted suppliers is
assumed as a uniform distribution between [0, J]. The
same as the case of Merzifonluoglu [1], it is assumed
that the demand and the spot price are correlated with
parameter �(� > 0), such that: �1 = �; �2 = �!;
�11 = �; �22 = �!; �12 = �21 = ���!.

The coe�cient of the correlation is assumed equal
to 0.2. Di�erent problem instances are de�ned based
on the common NV problem. Problem instances are
numbered according to the number of suppliers and
retailers. The basic problem instance in this paper is
NV10-10, in which the �rst number shows the number
of suppliers and the second one shows the number of
retailers. The number of contract periods and the
number of time units in each contract period are 20
and 11, respectively.

Values for �, �, and � by using the simulation were
determined as 0.3, 0.2, and 0.4, respectively. Results
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Table 2. Results of the algorithms with di�erent replications (�106).

NV
instances

SimOpt-1 SimOpt-2 SimOpt-3 SimOpt-4

Best Avg Sec Best Avg Sec Best Avg Sec Best Avg Sec

NV5-5 16.988 16.550 27 17.998 17.535 31 20.019 19.504 69 26.082 25.411 119
NV10-5 17.049 16.540 61 18.046 17.507 91 20.040 19.442 146 26.021 25.244 357
NV10-10 17.000 16.782 119 18.010 17.778 190 20.029 19.771 295 26.086 25.750 751
NV15-10 17.022 16.662 174 18.031 17.650 281 20.050 19.626 451 26.106 25.554 1126
NV20-20 17.039 16.775 250 18.043 17.763 385 20.050 19.739 585 26.072 25.667 1456
NV50-20 17.148 16.749 368 18.156 17.733 560 20.171 19.701 878 26.217 25.606 2259
NV50-50 17.066 16.858 533 18.081 17.861 847 20.111 19.866 1324 26.202 25.882 3341
NV100-50 17.258 17.039 708 18.273 18.042 1156 20.304 20.047 1755 26.397 26.063 4464
NV100-100 17.198 16.754 953 18.203 17.733 1498 20.212 19.690 2376 26.239 25.562 6002

Figure 4. The progress of the learning through the
SimOpt-3 algorithm (NV10-10-1).

were obtained by a PC with Intel(R) Corei7, 3.1 GHz
CPU, and 6 GB RAM.

As discussed in Section 4.2., we have de�ned four
SimOpt algorithms with di�erent replication numbers
in the simulation procedure. Table 2 shows the results
of applying these algorithms on the problem.

Results show that SimOpt-3 is the most proper
SimOpt algorithm in terms of accuracy and time.
Thus, in the remaining parts of the paper, we only
discuss the results given from SimOpt-3.

The result of applying the algorithm (for 100
iterations) to the problem NV10-10-1 is depicted in
Figure 4.

As shown in Figure 4, the algorithm converges to
a near-optimal pro�t of the risk-sensitive retailer in 200
iterations. The best pro�t resulting from applying the
algorithm to the problem is 20028766.

To show the e�ciency of the proposed RL al-
gorithm, results are compared with those of another
popular metaheuristic based on the simulation pro-
cedure. Genetic Algorithm (GA) is a meta-heuristic
and evolutionary algorithm that has been used in the
literature to optimize many complex problems. It
works with some procedures such as mutation and

crossover, originally inspired by genetic science. Re-
sults of the SimOpt-RL are compared with those of
a simulation-based Genetic Algorithm (SimOpt-GA)
applied to the problem. Hence, GA (instead of RL)
is used to optimize the simulation procedure explained
in Section 4.1. The GA used in this paper is the same
as the algorithms used by the related works [2,9,21].

We de�ned NV10-10-1 as the problem with 10
suppliers and 10 retailers (i.e., 1 risk-sensitive and 9
risk-neutral retailers) where retailers have an option
to buy from spot market. The problem NV10-10-2 is
de�ned as a problem in which spot market option is
not considered.

In addition, as proposed by Liu et al [30], to show
the e�ciency of the proposed SimOpt-RL algorithm,
the results of the SimOpt are compared with a case in
which all stochastic parameters are equal to their ex-
pected values, called Expected Value Method (EVM).
Table 3 shows the comparisons.

Results show the impact of the correlation (de-
creasing), the number of contract periods (increas-
ing), and the number of time units (decreasing) on
the reward values. Additionally, Gaps #1 and #2
represent the gap between the best values of SimOpt-
RL and SimOpt-GA (respectively) with the best value
of the EVM. Gaps #3 and #4 show the gap between
the average values of SimOpt-RL and SimOpt-GA
(respectively) with the average value of EVM. More-
over, Table 4 shows the e�ect of di�erent disruption
probabilities on the objective function and �ll rate
(pro�t values in Tables 4 and 5 are scaled out similar
to those in the previous tables).

A sensitivity analysis is done regarding the e�ect
of di�erent values for deviation of the parameters: stan-
dard deviation of the demand (�), standard deviation
of the disruption e�ect (��), and standard deviation
of the spot price (�!). Table 5 shows di�erent cases
de�ned for the sensitivity analysis.

Table 6 shows the sensitivity results of di�erent
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Table 3. A comparison between di�erent approaches to solving NV10-10 problem (�106).

� Contract
period

Time
units

SimOpt-RL SimOpt-GA EVM Gap1% Gap2% Gap3% Gap4%

Best Avg sec Best Avg sec Best Avg
NV10-10-1 0.2 5 5 15.892 15.602 91 15.043 14.728 166 15.895 15.618 0.02 5.36 0.10 5.70

10 16.810 16.353 130 16.019 15.109 235 16.827 16.358 0.10 4.80 0.03 7.64
20 17.957 17.027 234 16.577 15.758 413 17.973 17.038 0.09 7.77 0.07 7.52

10 5 17.777 17.454 152 16.985 16.088 267 17.803 17.460 0.15 4.60 0.03 7.86
10 18.800 18.318 217 18.215 16.610 386 18.808 18.344 0.04 3.15 0.14 9.45
20 18.937 17.908 390 18.160 16.543 715 18.962 17.922 0.13 4.23 0.08 7.69

20 5 19.818 19.562 203 18.912 18.488 365 19.823 19.577 0.03 4.60 0.07 5.56
10 20.025 19.767 290 19.102 18.436 520 20.041 19.790 0.08 4.69 0.11 6.84
20 20.672 19.128 522 19.763 17.284 916 20.680 19.131 0.04 4.43 0.01 9.65

0.4 5 5 15.732 15.338 95 15.072 14.069 173 15.749 15.347 0.11 4.30 0.06 8.33
10 16.476 16.034 127 15.701 14.944 224 16.486 16.046 0.06 4.76 0.08 6.87
20 17.689 16.783 242 16.862 15.640 434 17.706 16.793 0.09 4.77 0.06 6.87

10 5 17.556 17.220 160 16.893 16.119 289 17.572 17.236 0.09 3.86 0.10 6.48
10 18.450 17.953 221 17.671 16.450 408 18.467 17.969 0.09 4.31 0.09 8.45
20 18.729 17.640 388 17.411 15.905 713 18.743 17.662 0.07 7.11 0.13 9.95

20 5 19.593 19.279 209 18.252 18.162 371 19.625 19.303 0.16 7.00 0.13 5.91
10 19.660 19.422 302 18.415 18.122 533 19.671 19.429 0.06 6.39 0.03 6.73
20 20.382 18.821 526 19.077 17.722 946 20.395 18.856 0.06 6.46 0.18 6.01

0.6 5 5 15.481 15.153 91 14.521 13.827 164 15.495 15.168 0.09 6.28 0.10 8.84
10 16.218 15.820 122 15.440 14.967 225 16.234 15.832 0.10 4.89 0.08 5.46
20 17.380 16.579 248 16.104 15.048 452 17.389 16.590 0.05 7.39 0.07 9.29

10 5 17.229 17.036 169 16.595 15.332 312 17.238 17.040 0.05 3.73 0.03 10.02
10 18.246 17.643 213 17.592 15.924 381 18.264 17.652 0.10 3.68 0.05 9.78
20 18.532 17.463 367 17.375 16.526 643 18.562 17.489 0.16 6.39 0.15 5.51

20 5 19.354 18.971 211 18.302 17.237 375 19.363 18.991 0.05 5.48 0.11 9.23
10 19.314 19.161 313 18.660 17.631 550 19.351 19.191 0.19 3.57 0.16 8.13
20 20.060 18.555 519 19.051 16.707 938 20.089 18.565 0.14 5.17 0.05 10.01

0.8 5 5 15.193 14.867 104 14.475 13.526 183 15.207 14.877 0.09 4.81 0.07 9.08
10 16.013 15.526 118 15.366 14.427 212 16.026 15.543 0.09 4.12 0.11 7.18
20 17.159 16.364 244 16.281 15.134 442 17.176 16.375 0.10 5.21 0.07 7.57

10 5 16.965 16.708 176 15.733 15.700 312 16.975 16.724 0.06 7.32 0.09 6.12
10 17.957 17.386 207 16.798 16.114 379 17.962 17.389 0.03 6.48 0.02 7.33
20 18.197 17.252 369 16.890 15.599 654 18.200 17.262 0.01 7.19 0.06 9.64

20 5 19.025 18.656 219 17.681 16.865 401 19.038 18.680 0.07 7.13 0.13 9.72
10 18.981 18.786 316 17.694 17.162 567 19.006 18.804 0.13 6.91 0.10 8.73
20 19.673 18.259 528 18.975 16.754 955 19.693 18.266 0.10 3.65 0.04 8.27

NV10-10-2 | 5 5 17.799 17.688 96 16.797 16.189 171 17.801 17.697 0.01 5.64 0.05 8.52
10 17.949 17.808 104 16.646 16.763 191 17.959 17.811 0.06 7.31 0.02 5.89
20 18.617 17.102 225 18.028 16.201 395 18.620 17.103 0.01 3.18 0.01 5.28

10 5 18.777 18.569 161 17.309 16.848 286 18.794 18.584 0.09 7.91 0.08 9.34
10 18.870 18.747 203 17.755 17.198 365 18.890 18.770 0.10 6.01 0.12 8.37
20 19.575 18.051 355 18.767 16.572 645 19.590 18.055 0.07 4.20 0.02 8.21

20 5 19.485 19.264 211 18.205 17.502 373 19.499 19.294 0.07 6.64 0.16 9.29
10 19.515 19.317 298 18.464 17.891 534 19.547 19.340 0.16 5.54 0.12 7.49
20 20.170 18.726 517 18.624 16.944 926 20.178 18.733 0.04 7.70 0.04 9.55
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Table 4. Sensitivity analysis of di�erent disruption probabilities.

NV10-10-1 NV10-10-2
Disruption
probability

RL GA RL GA

Pro�t Fill rate (%) Pro�t Fill rate (%) Pro�t Fill rate (%) Pro�t Fill rate (%)
Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

U(0.001, 0.005) 25.924 25.224 98.1 95.1 25.137 24.325 94.8 91.8 19.710 19.510 92.5 88.9 18.981 18.773 89.2 85.6
U(0.005, 0.01) 24.033 23.527 92.3 89.4 23.175 22.710 86.8 85.4 18.269 17.630 89.8 83.0 17.555 16.941 82.8 79.8
U(0.01, 0.03) 22.243 20.966 83.7 81.7 21.526 20.201 80.7 78.7 16.830 16.294 79.4 76.5 16.207 15.790 76.4 73.9
U(0.03, 0.05) 20.551 19.485 77.2 75.4 19.864 18.709 74.5 72.9 15.516 14.937 73.7 71.1 14.988 14.476 70.8 68.4

Table 5. Di�erent cases of sensitivity analysis.

Lower Low High Higher
� 10 50 150 250
�� U(0.0001, 0.0005) U(0.0005, 0.001) U(0.003, 0.005) U(0.005, 0.01)
�! 10 25 50 60

Table 6. Sensitivity results of �, ��, and �!.
NV10-10-1 NV10-10-2

RL GA RL GA
Pro�t Fill rate (%) Pro�t Fill rate (%) Pro�t Fill rate (%) Pro�t Fill rate (%)

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

� Lower 23.105 22.852 98.9 95.7 22.342 22.156 95.9 92.0 22.619 22.346 93.5 89.7 21.920 21.510 89.8 86.6
Low 21.538 21.427 97.9 94.9 20.876 20.691 94.7 91.1 21.005 20.854 92.5 88.6 20.311 20.212 88.9 85.5
High 18.374 18.165 95.6 93.4 17.809 17.455 92.0 90.5 17.905 17.691 91.0 86.9 17.284 17.095 87.7 84.3

Higher 16.996 16.627 95.9 92.6 16.338 15.974 92.7 89.7 16.445 16.360 90.6 86.3 15.800 15.717 87.3 83.4

�� Lower 21.582 21.378 97.6 94.5 20.892 20.552 94.2 91.0 21.071 20.918 92.8 88.8 20.389 20.134 89.9 85.5
Low 20.896 20.629 97.5 94.7 20.266 19.880 93.9 90.9 20.436 20.233 92.4 88.6 19.691 19.566 89.2 85.7
High 19.082 18.875 95.9 93.6 18.468 18.163 92.7 90.0 18.754 18.441 91.1 87.0 18.106 17.744 87.5 83.8

Higher 18.509 18.183 96.7 93.5 17.861 17.528 93.3 89.9 18.000 17.714 90.7 86.8 17.451 17.019 87.6 83.5

�! Lower 22.033 21.898 97.7 95.0 21.338 21.153 94.0 91.5 - - - - - - - -
Low 21.055 20.922 97.5 95.0 20.355 20.210 94.3 91.5 - - - - - - - -
High 18.947 18.608 95.8 93.0 18.232 17.911 92.3 90.1 - - - - - - - -

Higher 17.871 17.704 96.2 93.5 17.222 17.016 92.7 90.6 - - - - - - - -

values for the mentioned cases. Results show the
decreasing e�ect of the wider deviations on the values
of the pro�t and �ll rate.

In the remaining part of this section, the resulted
risk behavior of the risk-sensitive retailer is discussed
according to the best solution obtained.

Figure 5 shows the accumulated pro�t during 20
contract periods of the best solutions of two algorithms
in NV10-10-1 problem.

Based on the analyses presented in Tables 3,
4, and 6 and Figures 4 and 5, the e�ciency of the
proposed SimOpt-RL algorithm is shown. Therefore, in
the remaining part of this section, the detailed results
of the RL algorithm in di�erent cases of the NV10-
10-1 are discussed. Based on the cases introduced
in this section, the following NV10-10-1 problem in-
stances (NV10-10-1-PI) are considered, as shown in
Table 7.

Figure 6 shows the results of the best and average

Figure 5. Comparison of the best solutions of RL and
GA SimOpt algorithm regarding accumulated rewards in
NV10-10-1.

solutions of the SimOpt-RL for these four problem
instances.

According to the results shown in Figure 6, it
could be concluded that decisions related to the risk
attitude of the risk-sensitive retailer have an important
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Table 7. Di�erent problem instances of NV10-10-1 problem.

NV10-10-1-PI,1 NV10-10-1-PI,2 NV10-10-1-PI,3 NV10-10-1-PI,4
� �� � �� � �� � ��

Contract periods 1-10 Higher Higher Lower Lower Higher Lower Lower Higher
Contract periods 11-20 Lower Lower Higher Higher Lower Higher Higher Lower

Figure 6. Risk attitude of the risk-sensitive retailer in the best (left) and average (right) solutions of the SimOpt-RL in
di�erent problem instances.

impact on the pro�t (reward) function. Additionally,
more deviations of the demand and disruption intensity
result in more risk-averse behavior. Furthermore,
demand deviation has a greater e�ect on the risk
averseness of the retailer rather than disruption in-
tensity deviation. In the �rst two cases with high
demand deviations, the retailer shows an extremely
risk-averse behavioral pattern in approximately 30%
of the times, while, in the last two cases with lower
demand deviations, the retailer is extremely risk averse
in 5% of the times. Extreme risk-taking behavior is
only obtained by the lower demand and disruption
deviations. These results could help a decision-maker

in an uncertain environment (on both sides of the
supply chain) to make a decision with an acceptable
average reward.

6. Conclusions

The importance of decision-making in an uncertain
supply chain has led researchers to develop intelligent
approaches to solve complex problems in an e�cient
manner. The NV problem is a popular problem that
has been extended in many di�erent ways in the past
years. However, in recent years, the NV problem
with multiple unreliable suppliers is a type of problem
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that has received much attention [1-3,12-14]. The
complexity of the obtained problem has forced the
researchers to adopt heuristic or intelligent approaches.
The main idea of our model was derived initially from
previously mentioned works. A con�guration proposed
by Merzifonluoglu [1] consists of one retailer and many
suppliers that are subjected to disruptions. In this con-
�guration, retailers sign forward and option contracts
before demand realization and can buy products from
the spot market after the realization. These options are
common in industries such as semiconductors, telecom-
munications, and pharmaceuticals. In this paper, a
new model was developed based on this con�guration.
In addition to demand uncertainty and supplier disrup-
tions, a multi-period, multi-agent model with many-
to-many relations between risk-sensitive retailers and
capacitated suppliers was developed. Further, an RL
method (as an optimization approach) was presented
to solve it. Di�erent simulation con�gurations (with
di�erent numbers of realization) were examined on
di�erent scales of the problem. Results showed an
acceptable performance of the SimOpt algorithm in
contrast with the non-stochastic algorithm. Moreover,
results of the SimOpt-RL were compared with those of
a SimOpt algorithm based on the genetic algorithm.
Several sensitivity analyses were carried out regarding
di�erent parameters (including the number of contract
periods, the number of time units in each contract
period, standard deviations of demands, and disrup-
tions). Moreover, details of the decisions were obtained
based on a sample problem (NV10-10-1). For the future
studies, considering multiple products in the problem
would be an interesting idea and a more challenging
design. In addition, considering negotiation process
and transportation assumptions is another suggestion
in order to extend the work presented in this paper.

Nomenclature

NV Newsvendor
NVP Newsvendor Problem
NVPSD Newsvendor Problem with

Supplier Disruption
MNVPSD Multi-period Newsvendor

Problem with Supplier
Disruption

ABMS Agent-Based Modeling and
Simulation

RL Reinforcement Learning
SimOpt Simulation Optimization
SimOpt-RL Simulation Optimization

based on Reinforcement
Learning

SimOpt-GA Simulation Optimization
based on Genetic Algorithm

SimOpt�X Simulation Optimization
approach with 5, 10, 20, 50
replications in each simulation run,
X 2 f1; 2; 3; 4g

NV10-10-1 A newsvendor problem with 10
suppliers and 10 retailers (i.e. 1 risk-
sensitive and 9 risk-neutral retailers) in
which retailers have an option to buy
from the spot market

NV10-10-2 A newsvendor problem with 10
suppliers and 10 retailers (i.e. 1
risk-sensitive and 9 risk-neutral
retailers) in which the spot market
option is neglected

NV10-10-1
-PI, X

Di�erent problem instances de�ned
based on the NV10-10-1, X 2
f1; 2; 3; 4g

EVM Expected Value Method
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