
Scientia Iranica B (2019) 26(1), 346{357

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
http://scientiairanica.sharif.edu

Forward kinematics analysis of a novel 3-DOF parallel
manipulator

X. Wua,b;� and Z. Xiea

a. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China.
b. Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg 9200, Denmark.

Received 14 April 2017; received in revised form 24 July 2017; accepted 6 January 2018

KEYWORDS
Parallel manipulator;
Kinematics analysis;
Neural network;
Ant colony
optimization;
Newton iterative
method.

Abstract. A novel spatial parallel manipulator designed to assemble diagnostic
instruments in SG-III is introduced in this paper. Firstly, resorting to screw theory,
mobility analysis is presented for this manipulator. Then, the inverse kinematics problem
is determined by the method of RPY transformation with the singularity analyzed. As
a key issue in parallel manipulators, it is more di�cult to solve the forward kinematics
problem, since it is highly nonlinear and coupled. In this work, three di�erent approaches
are presented to deal with this issue, namely, the back propagation neural network, the
simpli�ed ant colony optimization, and the proposed improved Newton iterative method.
Simulation of each approach is conducted, and their merits and demerits are compared in
detail. It is concluded that the improved Newton iterative method, which can provide good
initial iteration values, shows the best performance in estimation of the nonlinear forward
kinematic mapping of the considered parallel manipulator.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Parallel Manipulators (PMs) are closed-loop mechan-
ical structures composed of a Moving Platform (MP)
coupled to a �xed base by serial limbs. Compared with
serial manipulators, PMs own the advantages of higher
mechanical rigidity, lighter weight, larger load-weight
ratio, better orientation precision, suitable positional
actuators arrangement, and stabile capacity [1-3] and
they have drawn the attention of many researchers and
industries during the past decades.

As well known, PMs with 6-DOF have many
advantages; but, 6-DOF is not always needed in many
industrial applications and PMs with less DOF will
be suitable instead. Many PMs with less 3-DOF
have been presented in recent years, such as Delta
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and Tsai mechanisms with three pure translational
DOFs [3,4], T2R1-type (two translations and one
rotation) PMs providing planar motion [2,5], T1R2-
type spatial PMs [6-8], spherical PMs with three pure
rotational DOFs [9,10], etc.

Su�cient e�orts have been put to kinematics
analysis, as a key issue in PMs, which includes inverse
and forward kinematics. Inverse Kinematics (IK)
analysis of PMs involves mapping a known pose of the
end e�ector on the input of each actuator, which is
usually straightforward and simple, while the Forward
Kinematics (FK) problem is highly nonlinear and cou-
pled [11,12]. Generally, traditional methods for solving
FK problem can be divided into two major categories,
i.e., the closed-form solutions [6,13-17] and the numer-
ical approaches [7,18-24]. The mainly used closed-form
solutions include analytical method [6], Gr�obner basis
method [13], algebraic elimination method [14], dual
quaternions method [15], Geometric approach [16],
vector approach [17], etc. These methods need to
build a complicated mathematical model, while the
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computational process is time-consuming. Moreover,
their generalization is not very good due to the con-
�guration di�erence of PMs, which means they could
not be applied to all PMs. To address these issues,
numerical approaches are proposed, among which the
Newton iterative method [7,21] is the most commonly
employed one. With the development of intelligence
algorithms, such as arti�cial neural network [12,18-
20], genetic algorithm [22], particle swarm optimiza-
tion [23], support vector regression [24], simulated
annealing algorithm [5], etc., they have also been taken
into account for FK analysis.

In order to �nd a method with good performance
to solve the FK problem of the proposed novel PM, sev-
eral approaches are taken into consideration, which in-
clude the Back Propagation Neural Network (BPNN),
the simpli�ed Ant Colony Optimization (ACO), and
the improved Newton iterative method. Comparisons
among these approaches are analyzed in detail.

The rest of this paper is organized as follows.
Section 2 contains a brief description of the novel 3-
DOF PM. The kinematics analyses, including mobility,
inverse kinematics, forward kinematics, and singularity,
are presented in Section 3. Three approaches, namely,
the BPNN, the simpli�ed ACO, and the improved
Newton iterative method, are taken into consideration
for FK analysis in Sections 4 to 6, respectively. Con-
clusions are provided in the �nal section.

2. Manipulator description

SG-III is one of the largest Inertial Con�nement Fusion
(ICF) facilities in the world, which is a football-
stadium-size 48-beam laser constructed to create fusion
conditions with controllable laboratory conditions [25].
As shown in Figures 1 and 2, a precision assembly
platform is designed to install, adjust, and unin-
stall a series of diagnostic instruments in the ICF
facility, and this assembly platform is mainly made
up of three components, namely, the special �xture,

Figure 1. The assembly operation of diagnostic
instruments.

Figure 2. The platform for the assembly of diagnostic
instruments.

Figure 3. Schematic diagram of the 3-SPS/PU PM.

the 3-SPS/PU PM, and the omnidirectional vehi-
cle.

Having a closed-loop structure, as depicted in
Figure 3, the considered 3-SPS/PU manipulator con-
sists of three identical SPS kinematic chains and one
PU kinematic chain, all connecting the MP to the
base. Here, S, P, and U represent the spherical,
prismatic, and universal joints, respectively, and the
three prismatic joints in the SPS kinematic chains
are chosen as the active joints. For the purpose of
kinematic analysis, the �xed frame fO0g is attached
to the isosceles triangle base with its origin located at
the midpoint of the vertical line of D1D2, X0-axis is
pointed along vector

�!
D3O0 and Y0-axis is pointed in

the direction of vector
�!
D1D2, and the local frame fOg

is attached to the MP and de�ned in a similar way.

3. Kinematics analyses

In the kinematics analyses, mobility, inverse kinemat-
ics, forward kinematics, and singularity are considered.

3.1. Mobility analysis
As well known, it is convenient to calculate the number
of DOFs of common spatial mechanisms by traditional
methods, but they cannot indicate the properties of the
DOFs, i.e., whether they are translational or rotational
DOFs [7]. Therefore, screw theory [6] is applied to
analyze the mobility of the proposed 3-SPS/PU PM.

Since the three SPS kinematic chains have iden-
tical topologies, we only take the �rst SPS kinematic
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Figure 4. Kinematic chain of SPS limb.

chain for an example. Local frame fO1g is attached
to spherical joint A1, as described in Figure 4. Here,
complex joints can be replaced with some basic joints
with single DOF, such as S � RRR, U � RR, where
R is a revolute joint. Then, all the kinematic pairs
are represented with screws, and the kinematic screw
system of the �rst SPS limb under the local frame can
be expressed as follows:8>>>>>>>>>><>>>>>>>>>>:

$11 = (1; 0; 0; 0; 0; 0)
$12 = (0; 0; 1; 0; 0; 0)
$13 = (0; 1; 0; 0; 0; 0)
$14 = (0; 0; 0; 0; 1; 0)
$15 = (1; 0; 0; 0; 0; c)
$16 = (0; 0; 1; a; 0; 0)
$17 = (0; 1; 0; 0; 0; 0)

(1)

where a and c are constants, which can be neglected.
It is easy to observe that reciprocal screws of the

SPS limb do not exist, which means the limb does
not exert any constraint on the MP. Employing the
same method for the PU limb, it can be found that
there exist two constraint forces passing through the
universal joint center parallel to axes X0 and Y0. There
also exists a constraint couple parallel to axis Z0. In
other words, the rotation motion about axis Z0 and
translation motion along axes X0 and Y0 of the MP
are constrained.

To sum up, there does not exist any common
constraint between the PU limb and the SPS limbs.
Thus, common constraint � of the considered PM is
zero, i.e., this mechanism is still a six-order screw
system. The rotation of the SPS limb about its own
axis does not a�ect the movement of the MP, which
means it will produce a passive DOF. Usually, an SPS
limb could be replaced with an UPS non-redundant
limb. However, note that all the six spherical joints
in this work are the same, which makes little batch
manufacturing possible; moreover, interchangeability
of the system will also increase. Thus, SPS limbs are
suitable for the proposed PM.

The number of DOFs of this PM can be derived
according to the modi�ed G-K criterion.

M = d(n� g � 1) +
gX
i=1

fi + v � �: (2)

Here, M is the number of DOFs of the mechanism, d

stands for the order of the mechanism, n is the total
number of components, g represents the number of
joints, fi is the DOF of the ith joint, v denotes the
number of redundant constraints, and � represents the
passive DOF. In the proposed PM, d = 6, n = 9,
g = 11, v = 0, and � = 3. Accordingly, it is calculated
that M = 3, i.e., this PM only possesses three DOFs on
account of the constraint of the PU limb; these DOFs
include one translation along Z0-axis and two rotations
about X0-axis and Y0-axis.

3.2. Inverse kinematics
As with the proposed mechanism, the IK problem
involves mapping a known pose (position and orien-
tation) of the MP on the actuated input of each SPS
limb. It can be e�ciently determined by the method
of RPY (roll, pitch, and yaw) transformation, which
is usually applied to describe the IK problem of PMs.
Here, the given pose (�; �; z) represents the pose of the
MP with respect to the �xed frame. Accordingly, the
position vector of point Ai in the �xed frame is:

ai = Ra0i + p; i = 1; 2; 3; (3)

where a0i is the position vector of point Ai in the local
frame, R is the rotation matrix, and p is position vector
of the operation point A4.

a01=[d1;�d2; 0]T ;

a02=[d1; d2; 0]T ;

a03=[�d1; 0; 0]T ;

p=[0; 0; z]T ;

R = R (y; �) R (x; �)

=

24 cos� sin� sin� sin� cos�
0 cos� � sin�

� sin� cos� sin� cos� cos�

35 :
Next, the IK problem of the considered mechanism can
be expressed as follows:

li = kai � dik = fi (�; �; z) ; i = 1; 2; 3; (4)

where di is the position vector of point Di in the �xed
frame.

d1 = [d3;�d4; 0]T ;

d2 = [d3; d4; 0]T ;

d3 = [�d3; 0; 0]T :

By expanding Eq. (4), the IK solutions own a more
detailed description as in Eqs. (5) shown in Box I.

In this case, di is determined by geometrical con-
straints and design dimensions, where d1 = 750 mm,
d2 = 215 mm, d3 = 780 mm, and d4 = 260 mm.
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l1 =
q

(d1 cos� � d2 sin� sin�� d3)2 + (d4 � d2 cos�)2 + (z � d1 sin� � d2 cos� sin�)2; (5a)

l2 =
q

(d1 cos� + d2 sin� sin�� d3)2 + (d2 cos�� d4)2 + (z � d1 sin� + d2 cos� sin�)2; (5b)

l3 =
q

(d3 � d1 cos�)2 + (z + d1 sin�)2: (5c)

Box I

3.3. Forward kinematics
Contrary to IK problem, the FK problem needs to
determine the pose of the MP with given actuated
inputs. IK analysis is the foundation for further study
of FK problem. In order to get the closed-form solution
to FK, algebraic elimination method is considered.

By the pose adjusting requirement, the motion
ranges of the MP are indicated as Eq. (6); the motion
ranges of X0 and Y0-rotations are about �5�, while
Z0-translation varies from 365 mm to 485 mm.8><>:�5� < � < 5�
�5� < � < 5�
365 mm < z < 485 mm

(6)

It can be obtained from the above that z+d1 sin� > 0,
and in view of Eq. (5c), we have:

z =
q
l23 � (d3 � d1cos�)2 � d1 sin�: (7)

Referring to Eqs. (5a) and (5b), the following equation
can be obtained
l21 � l22 = 4d2 sin� (d3 sin� � z cos�) : (8)

Then, substituting Eq. (7) into Eq. (8) gives Eq. (9) as
shown in Box II.

Since �5� < � < 5�, we achieve:

cos� =
p

1� sin2�: (10)

Now, both � and z can be eliminated and analytically
expressed by �. In the following, by substituting
Eqs. (7), (9), and (10) into Eq. (5a), we can obtain
a very huge and complex transcendental equation for
� and li. Obviously, it is di�cult to solve � from this
transcendental equation, which means it is impractical
to get a closed-form solution to the FK problem of the
considered PM.

3.4. Singularity analysis
For general PMs, singularities are con�gurations where
the MP gains or loses DOF [26]. In order to determine
these con�gurations, the relationship between the ve-
locity of the MP and the velocities of the actuators
should be identi�ed. As shown in Figure 3, the position
vector of the operation point A4 can be expressed as:

p = di + lini �Ra0i; i = 1; 2; 3; (11)

where ni is the unit vector parallel to the translation
direction of corresponding prismatic joint. Di�erenti-
ating both sides of Eq. (11) leads to:

_p=!i � lini+ _lini � !p�(Ra0i); i = 1; 2; 3; (12)

where _p = [0; 0; _z]T is the translational velocity of the
operating point on the MP, !i is the angular velocity
of limb i, and !p = [ _�; _�; 0]T is the angular velocity of
the MP. Dot multiplication by ni yields:

_li = ni � _p + ni � (!p � (Ra0i)); i = 1; 2; 3: (13)

Let _x =
h

_z; _�; _�
iT

and _q =
h

_l1; _l2; _l3
iT

be the velocity
vectors of the MP and the actuated joints, respectively.
Accordingly, Eq. (13) can be rewritten in a matrix form
as:

Jq _q = Jx _x; (14)

where Jx and Jq are the direct and inverse Jacobian
matrices, respectively:

Jq = E4�4; (15)

Jx =

24n1k (Ra01 � n1) � i (Ra01 � n1) � j
n2k (Ra02 � n2) � i (Ra02 � n2) � j
n3k (Ra03 � n3) � i (Ra03 � n3) � j

35 (16)

sin� =
l21 � l22

4d2(d3 sin� � (
q
l23 � (d3 � d1cos�)2 � d1 sin�)cos�)

: (9)

Box II
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As reported in [27], three di�erent types of singularities
are identi�ed. The �rst type of singularities, termed
the inverse kinematic singularities, occurs when Jq is
not invertible. The second type, called direct kinematic
singularities, arises when Jx is not invertible. The third
type of singularities, termed the combined singularities,
occurs when both Jx and Jq are singular. Obviously,
there only exist direct kinematic singularities since
det(Jq) = 1. The undesired singularities can occur
when Jx is not a full-rank matrix, and some singular
con�gurations are derived in the following cases:

1. When the MP falls on top of the base, i.e., nik =
0 (i = 1; 2; 3), the �rst column of the matrix Jx
will vanish, while the MP gains one DOF. The MP
can still move along the Z0-axis even when all the
actuators are locked. This singular con�guration is
shown in Figure 5(a);

2. When D2 coincides with D1 and � = �90�, as
shown in Figure 5(b), the MP can still move along
the Y0-axis even without actuating the actuators;

3. When one of the vectors ai (i = 1; 2; 3) is located in
the base plane, as shown in Figure 5(c), one row of
the matrix Jx will vanish, which yields det(Jx) = 0;

4. When two of the vectors ni (i = 1; 2; 3) concur with
the common point A4, as shown in Figure 5(d), we
have Ra0i � ni = 0. Accordingly, two rows of the
last two columns of the matrix Jx will vanish; the
rank of the matrix Jx will be smaller than three;

5. When d1=d3 = d2=d4, while the MP and the base
are parallel, the MP can still perform a small
rotation about the instantaneous point G2, even
when all the actuators are locked, as depicted in
Figure 5(e);

6. When the MP and the base are congruent and
parallel to each other, as shown in Figure 5(f), the
MP can still move along the direction norm to Z0-
axis even with all actuators locked.

Therefore, in the above six cases, singularities of
the considered 3-SPS/PU PM occur. Moreover, the
workspace expressed by Eq. (6) is free from singularity.

4. BPNN for forward kinematics

Neural Network (NN) is an adaptive and intelligent
algorithm inspired by human brain, which can approx-
imate an unknown system within numerous intercon-
nected neurons. It possesses many useful capabilities
and properties: input-output mapping, nonlinearity,
adaptability, fault tolerance, evidential response, and
uniformity of analysis and design [18]. The well-
known NN is BPNN, which is trained with super-
vision, and gradient-descent technique is employed
to minimize the error. BPNN involves two passes
through the network; the network's output activities
are generated by the forward pass and the backward
pass propagates the error initially found in the output
nodes back through the network to assign error to
each node that contributed to the initial error [19].
BPNN also owns strong nonlinearity mapping ability,
great self-studying and self-adjusting capability, and
excellent generalization performance. It is considered
as a universal approximator, essential for function-
approximation problems.

Usually, learning samples should be prepared
before determining the structure of BPNN. In this
work, learning samples are comprised of abundant
input-output sets; the inputs q = [l1; l2; l3]T are the
actuated inputs to the SPS limbs and the outputs

Figure 5. Singular con�gurations of the 3-SPS/PU PM.
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Figure 6. Structure of BPNN with one hidden layer.

x = [z; �; �]T are the pose of the MP. All the samples
can be derived directly from the IK solutions.

It can be learnt from Eq. (6) that the orders of
magnitude of di�erent data are not the same, which
may cause great errors in the predictions; therefore,
min-max normalization processing is carried out as

x0r =
xr � xmin

xmax � xmin
; (17)

where xr is the original value, xmin and xmax are the
minimum and maximum values of the data, and x0r is
the value after normalization processing, which belongs
to the interval [0, 1].

As soon as learning samples are ready, we proceed
to choose the structure of BPNN. Generally, BPNN
will perform better with more hidden layers, but it
is inevitably time-consuming; moreover, it is di�cult
to determine the detailed structure, so we just take
BPNN with one hidden layer into account, as depicted
in Figure 6. Since there is no theoretical method to
determine the number of nodes in the hidden layer,
empirical formula and trial and error method [20] will
be employed to deal with this issue, and following rules
are taken into consideration.(

H = O + 0:75I
H < 2I

(18)

where H, I, and O are the numbers of nodes in the
hidden layer, the input layer, and the output layer,
respectively.

It is noticeable that the result calculated from
Eq. (18) is used as a reference, so BPNNs with di�erent
nodes in the hidden layer should also be tested; their
performance is represented by root mean square error
(RMSE) as depicted in Figure 7. The BPNN with
the best performance, as indicated, would be selected,
in which the network with fewer hidden layer nodes
will be the best choice, since the number of weights as
well as the training time of the network will increase
with more nodes in the hidden layer [12]. In this case,
we choose 1500 samples for network training and 100
samples for validating, and the RMSE performance is
obtained after 4000 training cycles. Moreover, tangent
sigmoid function is used as activation function of the
hidden layer and linear function for the output layer,

Figure 7. RMSE under di�erent nodes in the hidden
layer.

and Levenberg-Marquardt algorithm is employed to
adjust the weights of the network. It can be learnt
from Figure 7 that the network with 10 nodes in the
hidden layer is the best choice.

Since the structure is determined, the prediction
accuracy of BPNN mainly relies on the size of the learn-
ing samples. In this case, the tested input sample q0 =
[374:338875 mm; 389:064158 mm; 483:366307 mm]T is
derived directly from IK solutions corresponding to
the given pose x0 = [2�; 4�; 430 mm]T of the MP.
As shown in Table 1, aiming at the tested sample
q0, the accuracy of the outputs solved by di�erent
sample sizes is compared. It is found that prediction
error decreases with increment of the sample number,
and it tends to be relatively steady when the sample
number reaches about 1500. Since the accuracy will
not increase signi�cantly and the computations are
inevitably time-consuming as sample number increases,
1500 learning samples are enough for network training.
The prediction accuracy appears to be relatively stable
after about 4000 learning iterations under this situa-
tion, as depicted in Figure 8. In this case, running the

Figure 8. Training performance of BPNN.
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Table 1. Results of BPNN with di�erent sample sizes.

Sample Calculated results Absolute error
number � (deg) � (deg) z(mm) � (deg) � (deg) z (mm)

300 2.006529 4.002701 430.12277 6:5� 10�3 2:7� 10�3 1:2� 10�1

600 1.999497 4.002852 430.024402 5:0� 10�4 2:9� 10�3 2:4� 10�2

1000 1.999932 3.999797 430.005106 6:8� 10�5 2:0� 10�4 5:1� 10�3

1500 2.000063 3.999890 430.003115 6:3� 10�5 1:1� 10�4 3:1� 10�3

2000 1.999660 3.999552 430.004254 3:4� 10�4 4:5� 10�4 4:3� 10�3

Table 2. Results of BPNN for FK.

No.
Target values Calculated results Absolute error

� (deg) � (deg) z (mm) � (deg) � (deg) z(mm) � (deg) � (deg) z(mm)

1 0 2 400 0.000444 1.999810 400.006470 4:4� 10�4 1:9� 10�4 6:5� 10�3

2 1 3 415 1.000500 2.999625 415.005649 5:0� 10�4 3:8� 10�4 5:6� 10�3

3 2 3 435 2.000254 2.999745 434.998385 2:5� 10�4 2:6� 10�4 1:6� 10�3

4 3 5 445 3.002727 4.999393 444.998175 2:7� 10�3 6:1� 10�4 1:8� 10�3

5 5 5 460 4.999837 4.999585 459.996612 1:6� 10�4 4:2� 10�4 3:4� 10�3

simulation on a PC with a 2.6 GHz processor and 8
GB of RAM, the time required for network training
is 80.1941 s, while the time for calculating the FK
problem of the aiming sample q0 is 0.6192 s. Solutions
for the other �ve chosen samples are shown in Table 2.

5. Simpli�ed ACO for forward kinematics

In this section, FK analysis based on ACO is adopted.
General de�nition of ACO is �rst introduced, from
which the simpli�ed ACO for FK analysis is derived.

5.1. Basic ACO
Swarm intelligence algorithms are relatively new ap-
proaches for problem solving that are inspired by
the group behaviors of insects or other animals. By
observing the foraging behavior of ant colony, Dorigo
and Blum [28] found that ant colony could always
�nd the shortest route between the nest and the
food source, which was mainly based on their indirect
communication by depositing pheromone on the trails,
and ACO was proposed by this enlightenment. ACO
is proved to be a useful approach to solve complicated
combinatorial optimization problems; its �rst applica-
tion was to �nd the shortest route to link a number
of cities, which was also called the traveling salesman
problem.

Similar to other swarm intelligence optimization
algorithms, heuristic search method is employed by
ACO, where positive feedback and distributed cooper-
ation mechanism are utilized to �nd the optimal route.
Moreover, action choice and pheromone update rule are
the two key rules. As de�ned by Eq. (19), action choice
rule indicates the selection probability of the kth ant

located at node i choosing to move to the next node j
at time t:

P kij(t) =

8><>:
��ij(t)�

�
ij(t)P

s2allowedk

��is(t)�
�
is(t)

; j 2 allowedk

0 others
(19)

where parameters � and � are positive constants used
to amplify the in
uence of pheromone concentrations,
allowedk denotes the neighborhood of node i with
respect to ant k, �ij(t), and �ij(t) represent the
pheromone and heuristic information. The pheromone
update rule is expressed as follows:

�ij(t+ 1) = (1� �)�ij(t) + ��ij(t; t+ 1); (20)

��ij(t; t+ 1)=
mX
k=1

��kij(t; t+ 1); (21)

where ��kij(t; t + 1) is the amount of pheromone
deposited by the kth ant on path (i; j) at time interval
(t; t + 1), which depends on the ants' performance, m
denotes the number of ants, ��ij(t; t + 1) represents
the increment of pheromone, and (1 � �) denotes
the evaporation rate as � is the pheromone decay
parameter.

5.2. Application to forward kinematics
It is well known that basic ACO can be successfully
used to tackle discrete problems, but it is not suitable
for continuous optimization problems. However, there
are classes of problems that require choosing values for
continuous domains, such as the FK problems of PMs;
thus, basic ACO should be extended to continuous
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domains. Generally, extending basic ACO to solve
continuous optimization problems can be attained by
two major methods; the �rst one divides the continuous
domain into several regions, while the second one
uses a continuous probability distribution instead of a
discrete one [29]. In addition, Xie et al. [8] proposed
a simpli�ed ACO for the FK analysis of a 3-RPS PM,
which was inspired by the ACO, but did not follow
it exactly. Especially for transition probability, both
pheromone density and its update rule are rede�ned,
and the simpli�ed ACO will be employed to solve the
FK problem of the considered PM.

Like the basic ACO, the simpli�ed one is an
e�ective method for function optimization problems,
where the optimization objective should be de�ned
�rstly. The essence of the FK problem is to solve a
set of nonlinear equations, which can be obtained from
Eqs. (5a) to (5c) and expressed as follows:

li � fi (�; �; z) = 0; (i = 1; 2; 3) : (22)

Accordingly, the nonlinear equations can be trans-
formed into objective optimization problem as in
Eq. (23), i.e., minimum value of objective function f
(�, �, z) is taken as the aim of the optimization process:

min f (�; �; z) =
3X
i=1

(li � fi (�; �; z))2: (23)

Since the objective function is determined, the con-
straint conditions should also be de�ned, which can be
derived from the required workspace of the considered
PM as expressed in Eq. (6).

The detailed procedure of simpli�ed ACO em-
ployed for FK analysis is taken as follows:

Step 1: Initialize the parameters. Distribute the ant
colony randomly in the workspace to obtain its initial
position.
Step 2: Determine the density of pheromone with
respect to the ith ant after moving k times, as
expressed by Eq. (24), and record the optimum value
�opt (the maximum value of �i;k). Unlike in the basic
ACO, density of pheromone in this method denotes
the pheromone that the ant deposits on its position.

�i;k=� f (�i; �i; zi) : (24)

Step 3: Calculate the transition probability Pi;k of
ant i after moving k times; the transition probability
in the simpli�ed ACO is de�ned as:

Pi;k=
�opt � �i;k

�opt
: (25)

Local searching should be executed if Pi;k < Pc;
otherwise, global searching is taken, where Pc is a
constant de�ned beforehand.

Step 4: Recalculate the density of pheromone �newi;k
in the new position after local searching or global
searching. The ant will move to the new position if
�newi;k > �i;k, otherwise it will remain unchanged.
Step 5: Once iteration is completed, update the
density of pheromone of all the ants according to
Eq. (26), where pheromone decay parameter � is a
prede�ned constant.

�i;k+1= (1��)�i;k + �newi;k : (26)

Step 6: Iterate Step 3 to Step 5 until iteration times,
nc, is greater than prescriptive maximum iteration
times nmax.

Here, initial test input sample, q0, is taken as
an example to illustrate the calculation procedure. To
begin with, the ant colony is distributed randomly in
the workspace, as shown in Figure 9(a), where \*"
denotes the position of the ant, the pseudo-colored
planes represent the lower limit of workspace of corre-
sponding DOF, and the pseudo-color indicates the vari-
ation of the objective function across the workspace.
The ant colony will move over and over guided by
the pheromone to search the best solutions, and the
ants start to gather together after 100 iterations as
depicted in Figure 9(b); the ant colony �nds the
best solutions [2:000707�; 3:999660�; 430:000804 mm]T

after 250 iterations as the ants concentrate on the
same position, as shown in Figure 9(c). Convergence
rate of this simpli�ed ACO can be indicated by the
variation of optimum value of pheromone as depicted
in Figure 9(d); it tends to be stable after about 250
iterations and the time required for the simulation is
2.6524 s.

In order to test and verify the e�ectiveness of
the simpli�ed ACO, the same �ve chosen samples as
discussed in Section 4 are taken into consideration and
the results are shown in Table 3.

6. Improved Newton iterative method for
forward kinematics

Newton iterative method is a relatively conventional
and mature method for solving nonlinear problems, and
it is employed by many researchers to solve the FK
problem of common PMs. Unlike the two approaches
discussed above, initial iteration values should be
chosen before data processing. Here, the calculated
results within Newton iterative method aiming at the
tested input sample, q0, corresponding to di�erent
initial iteration values are shown in Table 4.

It can be learnt from the �fth set of data in Table 4
that initial iteration values will a�ect the calculated
results, and they may lead to local optimal values; thus,
it is very important to obtain good initial iteration
values.
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Figure 9. Simpli�ed ACO for the FK problem: (a) Initial position distribution of the ant colony, (b) position distribution
of the ant colony after 100 iterations, (c) position distribution of the ant colony after 250 iterations, and (d) optimum
value of pheromone.

Table 3. Results of the simpli�ed ACO for FK.

No.
Target values Calculated results Absolute error

� (deg) � (deg) z (mm) � (deg) � (deg) z (mm) � (deg) � (deg) z (mm)

1 0 2 400 -0.000894 1.999991 400.000569 8:9� 10�4 9:0� 10�6 5:7� 10�4

2 1 3 415 1.000058 2.999680 415.000142 5:8� 10�5 3:2� 10�4 1:4� 10�4

3 2 3 435 2.000159 2.999536 435.000848 1:6� 10�4 4:6� 10�4 8:5� 10�4

4 3 5 445 2.999281 5.000331 445.000245 7:2� 10�4 3:3� 10�4 2:5� 10�4

5 5 5 460 4.999436 5.000051 459.999375 5:6� 10�4 5:1� 10�5 6:3� 10�4

Table 4. Results of Newton iterative method for FK.

No.
Initial iteration values Calculated results Absolute error

� (deg) � (deg) z(mm) � (deg) � (deg) z (mm) � (deg) � (deg) z (mm)

1 -5 0 370 1.999998 3.999999 430.000005 2:0� 10�6 1:0� 10�6 5:0� 10�6

2 -1 1 390 1.999999 3.999998 430.000002 1:0� 10�6 2:0� 10�6 2:0� 10�6

3 0 2 420 1.999999 3.999999 430.000001 1:0� 10�6 1:0� 10�6 1:0� 10�6

4 2 3 450 1.999998 4.000000 430.000001 2:0� 10�6 0 1:0� 10�6

5 3 5 480 3.000000 5.000000 480.000000 1.0 1.0 5:0� 101

In order to overcome this drawback, we propose
the improved Newton iterative method, by which good
initial iteration values can be obtained. Since � and
� are small, we can perform the following �rst-order
small-angle approximations: sin� � �, cos� � 1,

sin� � �, cos� � 1; note that angles � and � are
in radians in this section. Thus, Eqs. (5a), (7), and (9)
can be rewritten as:

z =
q
l23 � (d3 � d1)2 � d1�; (27)
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� =
l21 � l22

4d2(d3� �
q
l23 � (d3 � d1)2 + d1�)

: (28)

Referring to Eqs. (5a) and (5b), we can also obtain the
following equation:

l21 + l21
2

=(d1 � d3)2 + (d4 � d2)2 + (z � d1�)2

+ d3
2�

2 ��2 + 1
�
: (29)

Substituting Eqs. (27) and (28) into Eq. (29) yields:

4d1E2�4 � 4d1CE(2d1 + E)�3 + (AE2 +D

+ 4d2
1C

2 + 8d1EC2 + E2C2)�2

� 2C(AE + 2d1C2 + EC2)� +AC2

+D + C4 = 0; (30)

where:

A = (d1 � d3)2 + (d4 � d2)2 � (l21 + l22)=2;

C =
q
l23 � (d1 � d3)2;

D = (l21 � l22)2=16;

E = d1 + d3:

Eq. (30) is a polynomial of degree 4 in �, which can be
solved by Ferrari's Method or by resorting to the built-
in function Roots in Matlab. Accordingly, substituting

� into Eqs. (28) and (29), we can get the solutions
to � and z, where the solutions within the workspace
are the initial iteration values needed. Aiming at
the same tested sample, q0, good initial iteration
values xc0 = [1:9931�; 3:9949�; 430:1412 mm]T can be
obtained. Then, putting xc0 into the original Newton
iterative method, we can get the FK solutions as
[1:9999996�; 3:9999999�; 430:0000011 mm]T . It should
be noted that the following equation is chosen as the
convergence criterion:8><>:jzn+1 � znj < eps
j�n+1 � �nj < eps
j�n+1 � �nj < eps

(31)

where zn, �n, and �n are the solutions after iterations
for n times; zn+1, �n+1, and �n+1 are the solutions
after iterations for n + 1 times; and eps = 1 � 10�5 is
chosen as the stopping criterion. By this method, the
�nal FK solutions are obtained after iterations for 3
times, and the computational time required is 1.1635 s
when running the simulation on the same PC.

In order to validate the e�ectiveness of this
method, the solutions to the other six chosen samples
are shown in Table 5. The previous �ve samples in the
table are within the workspace, while the sixth sample
is beyond the workspace. It can be learnt that the
samples within the workspace can obtain good initial
iteration values, and the accuracy of the calculated
results is high enough. Meanwhile, the sample beyond
the workspace cannot get good initial iteration values,
leading to a poor computational accuracy, which means

Table 5. Results of the improved Newton iterative method with good initial iteration values.

Target values
(Initial iteration values)

Calculated results Absolute error

No. �(deg) � (deg) z(mm) � (deg) � (deg) z(mm) � (deg) � (deg) z (mm)

1 0 2 400 0 1.9999998 400.0000027 0 2:0� 10�7 2:70�6

( 0 1.9994 400.0346 )

2 1 3 415 0.9999999 3.0000000 414.9999998 1:0� 10�7 0 2:0� 10�7

(0.9982 2.9979 415.0782)

3 2 3 435 2.0000000 2.9999999 435.0000003 0 1:0� 10�7 3:0� 10�7

(1.9961 2.9976 435.0802)

4 3 5 445 2.9999975 4.9999992 445.0000098 2:5� 10�6 8:0� 10�7 9:8� 10�6

(2.9830 4.9800 445.2237)

5 5 5 460 4.9999961 4.9999994 460.0000082 3:9� 10�6 6:0� 10�7 8:2� 10�6

(4.9672 4.9878 460.2467)

6 45 45 450 45.130702 44.977326 450.263333 1:3� 10�1 2:3� 10�2 2:6� 10�1

(61.17889 43.6536 439.7541)
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the improved Newton iterative method cannot be
applied to PMs with motions of great rotation angles.

7. Conclusions

In this work, a novel PM with 3-SPS/PU structure
designed to assemble diagnostic instruments in SG-
III was proposed. On the basis of screw theory,
mobility analysis was presented. Then, the IK analysis
was derived in closed-form by the method of RPY
transformation. By the singularity analysis, some
singular con�gurations were revealed, which should be
avoided in design.

In order to �nd a method with good performance
to solve the FK problem of the proposed novel PM,
three di�erent approaches, namely, the BPNN, the
simpli�ed ACO, and the improved Newton iterative
method, were taken into consideration. By comparison,
it was found that each of these three approaches had
advantages and drawbacks. The prediction accuracy of
BPNN was the lowest among the three methods, which
only reached the level of 10�3. Moreover, su�cient
learning samples were required to reach the expected
precision, and it needed a long time for network train-
ing. However, it possessed the highest computational
speed after the network training was �nished, which
took only 0.6192 s. Likewise, in the simpli�ed ACO,
both computational accuracy and computational time
were at the mid-level, but it was more convenient
to be applied to the common FK problem, since
it did not need to choose initial iteration values or
train the learning samples. Finally, the improved
Newton iterative method, which could provide good
initial values, had the highest computational accuracy,
which reached the level of 10�6, and its computational
speed was high, which required 1.1635 s. To sum up,
the improved Newton iterative method would be the
best choice to solve the FK problem of the proposed
mechanism. It can also be applied to solve the FK
problem of similar PMs with motions of small rotation
angles.
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Nomenclature

li Actuated input of the ith SPS limb

d1 Displacement between points A3 and
A4

d2 Half of the displacement between
points A1 and A2

d3 Displacement between points D3 and
O0

d4 Half of the displacement between
points D1 and D2

p Position vector of point O in the �xed
frame fO0g

R Rotation matrix from the local frame
fOg to the �xed frame fO0g,

ai;a0i Position vectors of Ai in the local
frame fOg and the �xed frame fO0g

z Coordinate of MP with respect to the
�xed frame fO0g

�; � Orientation angles of MP with respect
to the �xed frame fO0g
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