
Scientia Iranica B (2019) 26(5), 2865{2871

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
http://scientiairanica.sharif.edu

Mathematical modeling of thermal contact resistance
for di�erent curvature contacting geometries using a
robust approach

M.H. Shojaeefard� and K. Tafazzoli Aghvami

School of Mechanical Engineering, Iran University of Science and Technology, Tehran, P.O. Box 16765-163, Iran.

Received 17 April 2018; received in revised form 14 May 2018; accepted 7 July 2018

KEYWORDS
Transient simulation;
Thermal contact
resistance;
Thermal contact
conductance;
Arti�cial neural
network modeling;
Surface interaction.

Abstract. Nowadays, researchers have become interested in acquiring deeper knowledge
concerning Thermal Contact Conductance (TCC) and Thermal Contact Resistance (TCR)
existing among various types of metals during heat transfer occurrence in the nuclear
reactor, thermal control system of spacecraft, and heat exchangers. In the present study,
Arti�cial Neural Network (ANN) coupled with Multi-Layer Perceptron (MLP) modeling
was utilized to predict transient temperature contour on various contacting surfaces such
as at-at, at-cylinder, and cylinder-cylinder. In order to develop an accurate transient
model, the parameters of metals including position, time, and roughness were used as
input parameters, and temperatures of solid bodies were selected as the target parameter
of the model. Modeling results demonstrate that ANN-based modeling outperforms other
numerical methods in terms of accuracy. Moreover, values of Average Absolute Relative
Deviation (AARD) and coe�cient of determination (R2) for the overall data are 0.056 and
0.996, respectively, which prove the accuracy and robustness of the proposed model.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Heat transfer is a key issue for metallic bodies in
contact for designing heat exchangers, nuclear reactor
cooling, control systems for spacecraft, and micro-
electronics cooling. The most important parameters
a�ecting heat transfer across the interface include
contact loading, surface roughness, and thermophysical
and mechanical properties. When two solid bodies are
in touch, their physical contacts are limited to the �nite
number of separated points at their interface [1]. The
real contact area is seen on a microscopic scale, which is
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relatively very small compared to the apparent contact
area. Macro-contact is created due to the surface
curvature of the contacting bodies. The relatively high
temperature di�erence occurs between the interfaces,
because following the ow of heat through the macro
contact, it must pass through the micro-contacts to
conduct from one surface to another [2]. A constriction
on the contact surface in heat transfer is created by
this phenomenon called Thermal Contact Resistance
(TCR) and is de�ned as follows [1,2]:

Rc =
�T
q
; (1)

where �T denotes the temperature drop between two
contacting surfaces, and q is the heat ux, de�ned as
follows [2]:
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q =
d
dA

�
dQ
dt

�
; (2)

where Q and t are heat transfer between surfaces and
time, respectively.

There are experimental, analytical, and numerical
models developed for TCR prediction; however, these
models are not general and are suitable for speci�c
cases [2].

It was found that several parameters such as the
type of contaminant or lubricant, temperature and
interfacial pressure, the geometry of contacting surfaces
on both micro and macro scales, and the type of
contacting materials were the most important factors.
Thermal contact resistance can be measured, while the
system is in the steady state or transient condition [2-
4].

Clausing and Chao (1965) proposed a mode for
thermal contact resistance in a vacuum environment.
Their results showed that the macroscopic constriction
is the dominant parameter. They studied the impact of
material properties, the degree of conformity of mating
surfaces under load, surface �lms, surface roughness,
creep, additional interstitial material, and mean inter-
face temperature. The model predicted the thermal
contact conductance quite well [5]. The assumption
for most of the prediction models of the thermal
contact resistance is at surface due to its simplicity.
Marotta et al. (2001) developed a thermomechanical
model including both microscopic and macroscopic
thermal resistances for non-at roughened surfaces
with non-metallic coatings. Their model forecasts
the thermal contact resistance of several non-metallic
coatings deposited on metallic aluminum substrates
satisfactorily [6]. Mikic and Rohsenow (1966) proposed
a theoretical model to predict the conductance of cylin-
ders and spheres [7]. Thomas and Sayles (1975) studied
the relationship among roughness, atness deviation,
and contact resistance [8]. A new method for solving
this problem is the inverse problem method. However,
authors believe that modeling based on arti�cial intel-
ligence is more accurate than the previously reported
models in the literature.

In this study, Arti�cial Neural Network (ANN)
is used to predict the thermal contact resistance on
contacting surfaces for the cylinder-cylinder, cylinder-
at, and at-at contact surfaces in the transient
condition. The contacting surface is an alloy made of
brass. The length of all specimens is 30 mm with a
diameter of 25 mm. Each specimen has four holes with
a depth of 12.5 mm and a diameter of 0.8 mm. The
diameter of all curved surfaces is 25 mm (see Figure 1).

2. Data collection

This investigation is a computational study; therefore,

all of the experimental data used in this study were
extracted from literature [1,9-11]. Extracted data con-
tain 287 total experimental data that belong to various
parameters of roughness, position, and time, resulting
in di�erent temperatures. It is clear that parameters of
roughness, position, and time are considered as input
parameters of the model, and temperature is the target
of the predictive modeling.

3. ANN modeling

Arti�cial Neural Network (ANN) has been developed
based on human brain. An arti�cial neural network
similar to human brain has many small processing
modules (called neurons) that are connected to each
other, the same as network. In order to determine
how the outputs and inputs of a system are related,
an ANN can be applied. An ANN consists of the
neurons, the computational blocks that are similar to
biological brain cells and are simple units building the
related layers and that their computational relations
help determine the network performance [12-14]. A set
of neurons is organized in a layer, and their outputs are
weighed and utilized as inputs for the forward layer. By
using trials and errors, the number of layers and brain
cells in each layer can be calculated [15-17]. In addition,
there exists an activation function (transfer function)
in the input, hidden, and output layers for each neuron.
These activation functions can have di�erent forms to
de�ne the type of ANN. Some of them are presented in
the form of Eqs. (3) to (6):

Linear function:

f(x) = x: (3)

Hyperbolic-tangent sigmoid function:

f(x) =
2

1 + e�2x � 1: (4)

Logarithmic sigmoid function:

f(x) =
1

1 + e�x : (5)

Exponential function:

f(x) = 10�x: (6)

3.1. Error Back Propagation (EBP) learning
approach

In the current investigation, a multi-layer neural net-
work has been employed to model the relationships
between the output and input variables. A simple
demonstration of this type of network is shown in
Figure 2. In the �rst stage, training, the output of the
network is compared with the target value (results of
experiments), and the calculated error of the network is
back-propagated to the previous layers [18,19]. Then,
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Figure 1. Schematic of di�erent contact con�gurations.

the weights will be tuned using these propagated
errors. This training approach is called the Error Back-
Propagation (EBP) [12,20].

To describe how the EBP has been practiced and

Figure 2. Architecture of an ANN, showing the
relationship between the input variables and the output
variable.

for the sake of simplicity without loss of generality, it
has been assumed that the network has only two layers:
one input and one output. Each input is multiplied by
weights of the input layer neurons (wih) and is added
to a bias value (bh) to form the activation (ah). This
statement can be written in the vector form as follows:

a = WT I +B; (7)

where I is the input vector, W is the weight matrix
of the �rst layer, B is the vector containing biases of
input layer neurons, and a is the vector of each neuron
activation. After calculating activations of all input
neurons, outputs of all of them are estimated using a
transfer function as follows:

Oh =
2

1 + e�2ah
� 1; (8)

where Oh is the output of input neuron number h.
These computed values will be weighed and added to
biases again to establish the activations of the output
layer (ao). The linear transfer function is applied, and
output, O, is calculated. Then, the error is computed
as the di�erence between the calculated outputs and
their corresponding experimental results known as the
target data. This process builds the forward step
of the back-propagation scheme, and the estimated
errors are back propagated through the network to tune
weights. Weights are tuned using generalized delta rule
as follows:

Wnew = Wold � �EO; (9)

where Wnew is the tuned weight, Wold is the weight
before tuning, � is the learning rate, usually chosen in



2868 Shojaeefard and Tafazzoli Aghvami/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2865{2871

the range [0 1], and E is the estimated error. Weight
tuning will be completed for all connections. Errors for
all train data are accumulated, and the algorithm will
be run until the terminal conditions (predetermined
value) are met. ANN modeling of this research was
completed by MATLAB software and ANN toolbox.

4. Modeling the temperature of surface of
contacting surfaces using ANN

4.1. Structural selection of ANN
A well-trained multilayer network was utilized to pre-
dict temperature (K) as output by considering consum-
ing time (s), position (cm), and roughness parameters
as inputs. The Damped Least-Squares (DLS) method
was used as the training procedure. Hyperbolic tangent
sigmoid (Eq. (4)), logarithmic sigmoid (Eq. (5)), and
exponential (Eq. (6)) functions were respectively se-
lected as the activation functions of input, hidden, and
output layers for each neuron. The optimum structure
in the given network, which has been obtained following
the trial-and-error experiment, consists of nine neurons
for input layer, one neuron for output, and six and three
neurons for two hidden layers, respectively.

Furthermore, based on all 287 sets of experimental
data, 26 were picked out to evaluate network ability in
forecasting the temperature, and the others are used for
the training procedure (approximately 10%). It should
be mentioned that in order to construct a network, an
in-house MATLAB code was developed. The weights
and biases with respect to each layer are presented in
Table 1.

5. Results and discussion

In order to evaluate the performance of the selected
ANN, Root Mean Squared Error (RMSE) and coe�-
cient of determination (R2) were applied as criteria,
which are expressed below:

RMSE =

vuut 1
N

NX
i=1

�
zactual
i � zpredicted

i

�2
; (10)

R2 = 1�
NP
i=1

�
zactual
i � zpredicted

i

�2

NP
i=1

�
zactual
i � zactual

�2
; (11)

where zactual
i denotes the ith experimental tempera-

ture, which has been extracted from literature, zactual

represents the average of actual data, zpredicted
i is the

forecasted temperature value by the model, and N is
the total number of experimental data. It should be
noted that authors selected RMSE over common MSE
as a criterion to assess the model.

The values of root mean squared error and coe�-
cient of determination for di�erent processes of training
and testing and, also, for the overall data are reported
in Table 2. Since the reported values for R2 and
RMSE are close to 1 and 0, respectively, it can be
concluded that the prediction of this model shows a
high degree of accuracy; thus, the selected ANN can be
trusted. In order to �nd the most e�ective parameter
in thermal contact conductance and temperature distri-
bution in solid bodies with various contacting surfaces,
sensitivity analysis has been implemented. Modeling
results reveal that the roughness parameter is the most
e�ective one that has a direct relation with temperature
distribution and reverse relation with thermal contact
conductance.

A comparison between model output and exper-

Table 2. Statistical parameters.

Parameters AARD R2

Flat-Flat 0.042614 0.996987394
Flat-Cylinder 0.075725728 0.999848863
Cylinder-Cylinder 0.054438686 0.999926104
Total 0.056961054 0.996762361

Table 1. Weight and bias of layers in the proposed ANN network.

Weight to layer 1 Weight to layer 2 Bias to layer 1 Bias to layer 2
4.8024 {0.81675 2.0155 {0.33084 {6.3627 0.6154
2.4355 0.10391 {0.91506 0.50689 {3.9994 {
{1.6578 0.17021 3.7496 {0.15722 0.72731 {
0.89536 0.12785 3.7827 {0.77351 {1.3464 {
{1.2227 0.079443 0.55339 0.5787 {1.6448 {
{3.4585 0.020737 4.2148 0.50509 {1.4907 {
{0.37401 5.5576 {4.0305 {0.26484 {3.4919 {
0.89147 4.9334 {0.36294 {1.4452 5.2269 {
{0.29383 5.2732 {3.5636 0.057309 3.0969 {
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imental temperature has been made in the training
stage, and the results are presented in Figure 3. As
can be observed, the model forecasted the temperature
with high precision in this stage. Afterwards, the model

Figure 3. Comparison between experimental and
predicted values of temperature along the two species.

has been evaluated by predicting the test dataset, and
a high degree of accuracy has been observed, which
concludes the model validation. The results are shown
in Figure 4. The predicted values by the neural network
model are put on experimental data, as shown in Fig-
ure 3. The predicted values by the ANN-based model
are close to y = x line, as shown in Figure 5. Therefore,
as shown by the �nal results of Figure 5, the new
neural network model is reliable enough to predict the
temperature. Finally, an overall assessment for the rel-
ative deviation has been conducted, and the outcomes
are presented in Figure 6. Relative deviations of the
simulation results from experimental data are bounded
between -1% to 1%, which is acceptable for ANN-based
modeling. According to these �gures, the model has
shown an excellent ability to estimate the temperature
value, and ANN-based modeling is robust for the
prediction of temperature on the surface of the two con-
tacting solid bodies with various contacting curvatures.

6. Conclusion

An e�ort has been made for the �rst time to develop
an ANN model to predict temperature distribution
and thermal contact conductance between solid bodies

Figure 4. Scatter plot for the training, validation, and testing steps.
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Figure 5. Scatter plot for the experimental versus
predicted values of temperature for the two contacting
surfaces with various contact curvatures.

Figure 6. Relative deviation for the predicted values of
temperature from experimental data.

with various curvature contacts using four fundamental
variables of metal type and environmental conditions in
order to facilitate data collection by engineers wherever
it is needed such as designing process of heat transfer
between contacting surfaces. The developed ANN
showed a promising performance in forecasting the
temperature distribution of these speci�c solid bodies
in the investigated range of environmental conditions
by researchers. This study unveiled that a well-
trained, �ne structure of the selected ANN has its
unique merits such as quick functionality, low cost, and
precise prediction ability for the required value. The
proposed model was developed for the �rst time and
its acceptable performance was veri�ed.
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