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Abstract. Statistical process monitoring, maintenance policy, and production cycle
length are usually investigated separately, while they are three dependent aspects in the
industrial systems. Moreover, most of the papers that have integrated these aspects
simultaneously su�er from three major drawbacks as follows: (1) optimizing the production
cost without considering the time value of money to simplify the model; (2) considering
the �xed shift size while it is a random variable in the real condition; and (3) economic
design of control charts ignoring the statistical properties that lead to a decrease in the
control chart power, extremely. To eliminate these weaknesses, this paper presents an
integrated model of production cycle length, maintenance policy, and economic-statistical
design, considering the time value of money and the stochastic shift size. Furthermore,
to maintain the reliability of the system at an acceptable level, the presented model uses
non-uniform sampling. Finally, three comparative studies on the main contributions are
presented to illustrate the advantages of the model, and sensitivity analysis is implemented
on several parameters to extend insights into the matter.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Quickly changing markets and the extension of product
variety have increased the need for advanced equip-
ment. They should be maintained in a suitable
operational condition to achieve the best output of
production processes. Statistical Process Monitoring
(SPM) and maintenance policy are two common tools
to increase the proportion of conforming products in

*. Corresponding author. Tel.: 98 2532103585
E-mail addresses: a.salmasnia@qom.ac.ir (A. Salmasnia);
z.hajihosseini@stu.qom.ac.ir (Z. Hajihosseini);
mr.namdar@stu.qom.ac.ir (M. Namdar);
Faezemamashli@yahoo.com (F. Mamashli)

doi: 10.24200/sci.2018.5744.1457

such production systems. Therefore, the production
run length, maintenance policy, and SPM are three
dependent issues. Performing the maintenance activ-
ities increases the interval between the occurrence of
two assignable causes and reduces the production rate
of non-conforming items. In other words, the level of
the on-hand inventory increases by performing mainte-
nance activities [1]. Ben-Daya [2] expressed that the
Preventive Maintenance (PM) activities signi�cantly
reduced the quality control costs so that the total
imposed cost on the system decreased in comparison to
the no-PM case. Consequently, it appears necessary to
develop approaches that consider the interdependency
among the three mentioned concepts in the manu-
facturing processes. In spite of the mentioned facts,
most researchers have considered these three concepts
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separately in the literature. For instance, Cheng et
al. [3], Zhou et al. [4], and Costa and Rahim [5] studied
EPQ, maintenance policy, and SPM in their papers,
respectively.

To improve the performance of the manufacturing
process, researchers developed the joint models that
include two of the three mentioned concepts in recent
years. In this regard, Gan et al. [6] focused on
the interaction among maintenance, bu�er inventory,
and spare parts inventory to minimize the long-term
expected cost of a manufacturing system. Wen et al. [7]
integrated predictive maintenance with the traditional
EPQ model, in which the autoregressive integrated
moving average model was adopted to predict the
system's healthy indicator. In addition, Rahim and
Ben-Daya [8] presented a joint model of EPQ and
designed the control chart, in which the e�ects of both
deteriorating product and deteriorating production
process on EPQ model were investigated. Cheng and
Chou [9] analyzed a real-time inventory decision system
considering special rules, such as Western Electric
rules, to detect the out-of-control state. Xiang [10]
proposed a joint model of SPM and PM for a Marko-
vian deterioration process. In the same context, Wu
and Makis [11] designed a chi-square control chart for
the condition-based maintenance. Moreover, several
other papers such as Makis and Fung [12], and Jiang
et al. [13] were conducted on integrating the two of the
three mentioned concepts.

Although considering the three mentioned con-
cepts concurrently has a signi�cant role in decreas-
ing the expected costs of a production system [14],
only a few studies in the literature analyzed them
simultaneously. For example, Bouslah et al. [15]
considered production run length, maintenance policy,
and SPM in a uni�ed model in which the quality
deteriorated over time. Lin et al. [16] proposed an
integrated model of inventory and PM for an imperfect
process with minimal repair, rework, and PM error.
Beheshti Fakher et al. [17] presented a capacitated
lot-sizing problem with imperfect maintenance for the
multi-product systems. They considered a production
system with parallel machines that deteriorate over
time. Moreover, Ben-Daya and Makhdoum [18] and
Nourelfath et al. [19] are the other studies that have
been implemented in this context.

Although the time value of money is an impor-
tant �nancial concept for analyzing costs, there are
only a few studies that considered this concept in
analyzing the production system cost. In this context,
Luciano and Peccati [20] discussed the application of
the adjusted present value approaches to an inventory
problem considering the equity or debt �nancing. Van
der Laan [21] analyzed the e�ect of Net Present
Value (NPV) on a stochastic inventory model that was
integrated with manufacturing and re-manufacturing

activities. Applying Laplace transforms, Disney et
al. [22] extended the EPQ model by analyzing cash
ows from the NPV viewpoint. Several other authors
such as Lin et al. [23] and Beullens and Janssens [24]
proposed the particular mathematical models based on
NPV technique and �nancing concepts.

It is obvious that the control charts are one of
the most practical tools for the statistical process
monitoring. The economic and economic-statistical
approaches are two common ways of designing control
charts. Since the Economic Design (ED) of the control
charts ignores statistical properties, it is evident that
the Economic-Statistical Design (ESD) leads to more
powerful control charts. Duncan [25] proposed the �rst
ED model for an X-bar control chart. Afterward, the
ESD was �rst proposed by Saniga [26]; then, other
authors such as Nenes et al. [27] and Yin et al. [28]
applied this approach to the design of control charts.

More papers that presented the integrated model
of inventory, maintenance, and control chart employed
the �xed sampling interval from the process. For
example, Makis and Fung [12] investigated the e�ect of
machine failures on the optimal lot size in a production
process, while they assumed that sampling intervals
were �xed. Pan et al. [29] presented a joint EPQ
model based on a Shewhart chart for an imperfect
manufacturing process with a �xed sampling interval.
In contrast to the mentioned studies, there are a few
researchers that considered variable sampling interval
in their studies. In this regard, Salmasnia et al. [30] cal-
culated the sampling intervals such that the expected
number of system failures was an identical value at
di�erent intervals. Moreover, in the study of Ben-
Daya [2], the sampling intervals were determined such
that the integrated failure rate for all intervals was the
same.

In addition, to relax the calculations, most studies
have considered a �xed shift size when an assignable
cause occurs in the process in spite of the random
essence of the shift size in the real industrial environ-
ment. In this regard, Wu et al. [31] and Celano et
al. [32] are two of the few studies that investigated the
probability distribution of the random process shifts,
and Celano et al. [32] developed a stochastic shift
model for the ED of control charts. At the end of
this section, Table 1 summarizes the properties of the
existing papers in the literature.

To bridge the existing gaps in the literature, this
study proposes a uni�ed mathematical model that
integrates the concepts of production cycle length,
maintenance policy, and designing the control chart.
Further, the suggested model in contrast to the other
approaches in this �eld optimizes NPV of manufac-
turing costs as one of the common methods for con-
sidering the time value of money subject to statistical
constraints. These costs include the quality loss cost,
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Table 1. Summarized literature review.

Type of
design

Sampling
interval

Time value
of money

Shift size

Papers Integrated concepts EDa ESDb Fixed Vriable Fixed Random

Cheng and Chou [9] Inventory/SPM
p p p

Lin et al. [16] Maintenance/inventory/SPM
p p

Xiang [10] Maintenance/SPM
p p p

Wu et al. [31] SPM
p p p

Beheshti Fakher et al. [17] Maintenance/inventory/SPM
p p

Lin et al. [23] Inventory
p

Pan et al. [29] Maintenance/inventory/SPM
p p p

Nenes et al. [27] SPM
p p p

Duncan [25] SPM
p p p

Zhou et al. [4] Maintenance

Disney et al. [22] Inventory
p

Makis and Fung [12] Inventory/SPM
p p

Salmasnia et al. [30] Maintenance/inventory/SPM
p p p

Ben Daya and Makhdoum [18] Maintenance/inventory/SPM
p p p

Wen et al. [7] Maintenance/inventory

Van der Laan [21] Inventory
p

Saniga [26] SPM
p p p

Rahim and Ben-Daya [8] Inventory/SPM
p p p

Cheng et al. [3] Inventory

Costa and Rahim [5] SPM
p p p

Beullens and Janssens [24] Inventory
p

Nourelfath et al. [19] Maintenance/inventory/SPM
p p

Jiang et al. [13] Maintenance/inventory

Bouslah et al. [15] Maintenance/inventory/SPM
p p

Celano et al. [32] SPM
p p p

Luciano and Peccati [20] Inventory
p

Wu and Makis [11] Maintenance/SPM
p p p

Gan et al [6] Maintenance/inventory

Ben-Daya [2] Maintenance/inventory/SPM
p p p

Yin et al. [28] Maintenance/ SPM
p p p

This paper Maintenance/inventory/SPM
p p p p

aED: Economic Design; bESD: Economic-Statistical Design.

the sampling cost, the maintenance cost, the inventory
holding cost, and the setup cost. Moreover, this
model considers the shift size as a random variable to
make the model more adaptable to the real production
situation and determines the sampling intervals such
that the expected number of system failures is the same
value for all intervals.

The following sections of this research are struc-

tured as follows: Firstly, in the next section, the
problem de�nition is described. Then, the applied no-
tations and assumptions in the problem are introduced
in Sections 2.1 and 2.2, respectively. In Section 3,
the model description including the calculation of
objective function and constraints is explained. Sec-
tion 4 expresses a solution approach for optimizing the
suggested model. Then, to indicate the applicability of
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the proposed model, a numerical example based on a
case study is investigated in Section 5. In addition,
three comparative studies and sensitive analysis are
presented in this section. Finally, in Section 6, the
conclusions and the suggestions for further research
studies are presented.

2. Problem de�nition

The classical studies have focused on the manufac-
turing problem with this assumption that the process
operates in a perfect condition, meaning that all of the
products are awless. However, the process in the real
industrial environments may deteriorate with time and
produce defective items due to a number of factors such
as human mistake, fatigue machine, etc. This paper
investigates an imperfect manufacturing system that
can operate in the in-control or out-of-control states.
The manufacturing system begins its operation from
the in-control state and, over time, may shift to the out-
of-control state due to the occurrence of an assignable
cause. An X-bar Shewhart chart is applied to inform
operators when the process shifts to the out-of-control
state. The production system stops when the control
chart issues a true alarm; otherwise, it continues to
produce items.

In this model, the sampling is performed at times
t1; t2; :::; tm, and PM activities are synchronized with
the sampling. This maintenance policy is applied ac-
cording to Ben-Daya [2] for decreasing the hazard rate
and rejuvenating the production process, as illustrated
in Figure 1. To be speci�c, the process pauses its
operation at the pre-determined times ftl; t2l; t3l; :::g
as a subset of ft1; t2; :::; tmg to carry out the PM
actions. In fact, both PM activity and sampling are
implemented in parallel with frequency l.

This study in contrast to most of the previous
papers integrates production cycle length, SPM, and
maintenance concepts into a uni�ed model. Moreover,
the presented mathematical model sets sampling in-
tervals such that the integrated failure rate over all

Figure 1. E�ect of Preventive Maintenance (PM)
activities on the hazard rate.

sampling intervals is the same value. The purpose
of the proposed model is to minimize the cost of the
manufacturing system that is subject to the statistical
constraints. To make the model results more adaptable
to the actual cost imposed on the manufacturer, this
study considers the time value of money for calculating
the system costs consisting of: (1) the setup cost,
(2) the inventory holding cost, (3) the maintenance
cost, (4) the sampling cost, and (5) the quality loss
cost. According to the above-mentioned descriptions,
the graphical representation of the cost structure is
illustrated in Figure 2.

2.1. Notations
In this subsection, the notations are introduced in
Table 2, separately. These are divided into �ve
parts: indices, decision variables, time parameters, cost
parameters, and process parameters.

2.2. Assumptions and de�nitions
The considered assumptions in the proposed model are
as follows:

1. Quality characteristic has a normal distribution
function with the target value, �0, and standard
deviation, �.

2. The occurrence of an assignable cause leads to a
change in the process mean from �0 to �1 = �0���
without any changes in the variance.

3. The manufacturing process begins in the in-control
state and may shift to the out-of-control state after
a period of time. If the process is in the in-control
state, the production continues until the next sam-
pling; however, if an assignable cause occurs and is
detected by the control chart, the process pauses
until the accumulated on-hand inventory reaches
zero.

4. The duration of the in-control period follows a
Weibull distribution, in which the PDF, CDF, and
hazard rate are de�ned by Eqs. (1){(3), respec-
tively:

f(t) = ��t��1e��t� t; � > 0 ; � � 1; (1)

F (t) = e��t� ; (2)

r(t) =
f(t)
F (t)

=
��t��1e��t�

e��t� = ��t��1: (3)

5. The process is monitored by an X-bar chart with
sample size n at times t1; t2; t3; :::; tm. Eq. (4)
calculates the time of the jth sampling (tj) for
j = 1; 2; ::;m, t0 = 0 where hj is the jth sampling
interval:
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Table 2. Notations.

Notations Description
Indices:
i; j; r; y Indices of the sampling intervals
s Index of Preventive Maintenance (PM) activities

Decision variables:
h1 Length of the �rst sampling interval
k Control limit coe�cient of the X-bar chart
l Frequency in which PM actions should be implemented
m Number of sampling intervals
n Sample size

Process parameters:
A Quality loss index related to the speci�c control limit

ARL0 Average run length when the process is in the in-control state
ARL1 Average run length when the process is in the out-of-control state
ARLl Acceptable lower bound of ARL0

ARLu Acceptable upper bound of ARL1

D Demand rate
f(x) The normal density function of x
f(�) Density function of shift size
hl Lower bound for the �rst sampling interval
hu Upper bound for the �rst sampling interval
Ij Expected inventory level at the end of the jth interval
LCL Lower control limit of the X-bar chart
ml Lower bound for the number of sampling intervals
nl Lower bound of sample size
nu Upper bound of sample size
P Production rate

UCL Upper control limit of the X-bar chart
x Quality characteristic of the Taguchi function
� Pr (exceeding control limits j process is in control)
� Pr (not exceeding control limits j process is out of control)
� Shift size when the process shifts to the out-of-control state
� Tolerance in the Taguchi function
� Scale parameter of the Weibull distribution
�0 Process mean in the in-control state
�1 Process mean in the out-of-control state
�� Mean of shift size
v Shape parameter of the Weibull distribution
� Standard deviation of the quality characteristic

Cost parameters:
Cf Fixed cost of sampling
Cfa Cost of false alarm
Ci Inventory holding cost per unit per time unit
Cin Quality loss cost per time unit when the process is in the in-control state
Cout Quality loss cost per time unit when the process is in the out-of-control state
Cpm Cost of a PM action
Cr Cost to search and repair the assignable cause
Cv Variable cost of sampling

E(Cfa) Expected false alarm cost per production cycle
E(COP ) Expected operation cost per production cycle
E(COpin) Expected operation cost when the process is in the in-control state
E(COpout) Expected operation cost when the process is in the out-of-control state
E(Cr) Expected search and repair cost per production cycle
E(Cs) Expected sampling cost per production cycle
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Table 2. Notations (continued).

Notations Description
Cost parameters:

E(HC) Expected inventory holding cost per inventory cycle
E(PM) Expected Preventive Maintenance (PM) cost per production cycle
E(QC) Expected quality cost per production cycle
ETC Expected total cost of manufacturing system per production cycle
ir Interest rate of cost
S0 Setup cost for each production cycle

Time parameters:
E(TI) Expected length of the inventory period
E(Tin) Expected length of the production cycle that the process is in the in-control state
E(Tout) Expected total length of the production cycle that the process is in the out-of-control state

E(TP ); ETP Expected total length of the production cycle without considering PM times
E(TP+Z1) Expected total length of the production cycle including PM times

f(t) Time to shift Probability Density Function (PDF)
F (t) Time to shift Cumulative Distribution Function (CDF)
r(t) Hazard rate function
tj Time at the end of the jth interval
tsl Time at the beginning of the sth PM activity that is implemented with frequency l
wj Virtual age of production system at time tj
Z1 The expected time to perform a PM
 A constant value for age reduction (rejuvenation)

Figure 2. Graphical representation of cost structure.

tj =
jX
i=1

hi + (s� Z1)

s =

8><>:
� j
l

� � j
l

�
< j

l� j
l

�� 1
� j
l

�
= j

l

(4)

6. The time spent for the sampling is ignorable be-
cause it is very small in comparison with the
inventory cycle time.

7. At time tm, the repair actions are implemented
instead of the sampling to return the process to an
as-good-as-new condition.

8. In this study similar to Wu et al. [31] and Celano
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et al. [32], it is assumed that the magnitude of shift
size is positive and follows a Rayleigh distribution
function.

9. The production cycle ends either with a true alarm
or at time tm.

10. The duration of sampling intervals is calculated
such that the integrated failure rate is the same
value for all intervals. In other words, hj (j =
1; 2; :::;m) must satisfy Eq. (5):Z wj�1+hj

wj�1

r(t)dt =
Z h1

0
r(t)dt: (5)

Thus, hj can be computed by Eq. (6):

hj = (w�1 + w�j�1)
1
� � wj�1

=

"
h�1 +((1�)

j�1X
i=1

hi)�
# 1
�

�(1�)
j�1X
i=1

hi: (6)

Note that hj satis�es the following requirements:

h1 � h2 � ::: � hm; (7)

lim
m!1

mX
j=1

hj =1: (8)

11. PM activities are synchronized with the sampling at
times tl; t2l; t3l; :::, where l is a decision variable. At
the end of these sampling intervals, the production
system ceases at time units Z1 to carry out PM
activities.

Z1j =

(
Z1 if j = l; 2l; 3l; :::
0 otherwise

(9)

12. The implementation of PM activity leads to the
system rejuvenation. The relationship between PM
activities and age reduction is de�ned in Eq. (10),
where wj is the virtual age of production system at
time tj and  is the constant value for age reduction:

w0 = 0

wj = wj�1 + (1� )hj j = 1; 2; :::;m: (10)

13. The manufacturer pays the inventory holding cost
at the end of the cycle.

3. Model description

This section explains the proposed mathematical model
according to the problem de�nition and the assump-
tions. For this purpose, the next subsection calculates
the production cycle length; then, Section 3.2 expresses
the concepts of NPV. Afterwards, Section 3.3 indicates
the cost structure based on NPV and formulates the
sampling cost, the quality loss cost, the maintenance

cost, the inventory holding cost, and the setup cost.
Finally, the last subsection represents clearly the ob-
jective function and constraints.

3.1. Production cycle time
According to Eq. (11), the expected production cycle
length E(TP ) includes the production time in both the
in-control and out-of-control states.

E(TP ) =
mX
j=1

Pj
j�1Y
i=1

(1� Pi)
 j�1X
s=1

hs + �j

!

+
m�1X
j=1

Pj
j�1Y
i=1

(1� Pi)
"

(1� �)(hj � �j)

+
m�1X
r=j+1

�r�j(1��)

0@ rX
s=j+1

hs+(hj��j)
1A

+ �m�j
� mX
s=j+1

hs + (hj � �j)
�#

+ Pm
m�1Y
i=1

(1� Pi)(hm � �m); (11)

where Pj+1 is the conditional probability of the process
mean shifting to the out-of-control state at (tj ; tj+1)
interval, while it was in the in-control state at the
beginning of the jth sampling interval:

Pj+1 =
F (wj + hj+1)� F (wj)

1� F (wj)
: (12)

Finally, the expected inventory cycle length is given by:

E(TI) =
P
D
� E(TP ): (13)

At the end of this section, to clarify the above-
mentioned descriptions, Figure 3 depicts graphically a
given inventory cycle.

3.2. Time value of money
To make the mathematical model more adaptable to
the real cost imposed on the manufacturer, this study
considers the time value of money in calculating the
system cost. According to the state-of-the-art in the
literature such as El-Kassar et al. [33] and Disney et
al. [22], NPV is selected as a method to calculate the
total cost of the manufacturing system, considering the
time value of money. With respect to the continuous
interest rate, the Present Value (PV) of single future
cash ow (F ) at time t is given by:

PV = F � e�(ir)�t: (14)

For a continuous cash ow per time unit repre-
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Figure 3. Graphical representation of the inventory cycle.

sented by a continuous function f(t) and extended over
a period [0; t], the present value is equal to Eq. (15):

PV =
Z t

0
f(t)e�ir:tdt: (15)

In the next section, the system costs are cal-
culated considering the time value of money with a
continuous interest rate.

3.3. Cost model structure
This section aims to calculate the costs of the manufac-
turing system consisting of the sampling cost, quality
control cost, maintenance cost, inventory holding cost,
and setup cost considering the NPV factor.

3.3.1. Sampling cost
To calculate the expected sampling cost per production
cycle, the probability of sampling must be multiplied
by the sum of the �xed and variable costs of sampling.
It is obvious that, in addition to the sampling in the
in-control state, the sample may be taken in the out-
of-control state due to type-II error. Therefore, both
states are considered in computing this cost, and the
expected sampling cost without considering the time
value of money is as follows:

E(Cs) =(Cf + nCv)
�
1 +

m�2X
j=2

j
jX
s=1

Ps�j�s(1� �)

s�1Y
i=1

(1� Pi) + (m� 1)
�m�1Y
y=1

(1� Py)

+
m�1X
j=1

Pj�(m�1)�j
j�1Y
i=1

(1� Pi)
��
: (16)

According to the above descriptions, Eq. (17) denotes
the expected sampling cost considering the NPV factor:

E(Cs) = (Cf + nCv)
�
e�ir:t1 +

m�2X
j=2

jX
k=1

e�ir:tk

 jX
s=1

Ps�j�s(1��)
s�1Y
i=1

(1�Pi)
!

+
m�1X
y=1

e�ir:ty

�
�m�1Y
i=1

(1�Pi)+
m�1X
j=1

Pj�m�1�j
j�1Y
i=1

(1�Pi)
��
:
(17)

3.3.2. Quality control cost
The quality control cost consists of three parts: (1)
operation cost, (2) cost of the false alarm, and (3)
search and repair cost of the assignable cause. It is
necessary to remember that the manufacturer incurs
the operation cost in both of the in-control and out-of-
control states. However, this cost increases extremely
when the process is in the out-of-control state due to
an increase in the production rate of non-conforming
items. Consequently, the operation cost includes the
quality loss cost in both of in-control and out-of-
control states. Based on the model assumptions, since
this model considers the NPV of operation cost, it is
required to obtain the operation cost in three parts
as follows: (1) the expected quality cost from the
beginning of the process to the �rst PM activity, (2)
the expected quality cost from the �rst PM to the last
PM, and (3) the expected quality cost from the last
PM to the end of the production cycle (tm). Thus,
the expected operation cost in the in-control and out-
of-control states is formulated by Eqs. (18) and (19),
respectively:
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QC1j =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

�
Cout

R tsl
t(s�1)l+Z1

e�ir:tdt
�
e�ir:(t(s�1)l+Z1)

j < (s� 1)l + 1�
Cin

R tj�1+Z1+�j
t(s�1)l+Z1

e�ir:tdt
�
e�ir:(t(s�1)l+Z1) +

�
Cout

R tsl
tj�1+Z1+�j

e�ir:tdt
�
e�ir:(tj�1+Z1+�j)

j = (s� 1)l + 1�
Cin

R tj�1+�j
t(s�1)l+Z1

e�ir:tdt
�
e�ir:(t(s�1)l+Z1) +

�
Cout

R tsl
tj�1+�j e

�ir:tdt
�
e�ir:(tj�1+�j)

j > (s� 1)l + 1

(20)

QC2j =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

 
Cout

R tm
tbml cl+Z1

e�ir:tdt
!
e
�ir:(tbml cl+Z1)

j <
�m
l

�
l + 1�

Cin
R tbml cl+Z1+�j

tbml cl+Z1
e�ir:tdt

�
e
�ir:

 
tbml cl+Z1

!

+

 
Cout

R tm
tbml cl+Z1+�j e

�ir:tdt
!
e
�ir:

 
tbml cl+Z1+�j

!
j=
�m
l

�
l+1 

Cin
R tj�1+�j
tbml cl+Z1

e�ir:tdt
!
e
�ir:

 
tbml cl+Z1

!
+
�
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Box I
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E(COPout) =
lX
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Pj�l�j+1
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(1� Pi)
��

Cin
Z tj�1+�j

0
e�ir:tdt

�
+
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Z tl

tj�1+�j
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!
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slX
j=1

Pj�sl�j+1
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(1� Pi)�QC1j

+
mX
j=1

Pj�m�j
j�1Y
i=1

(1�Pi)�QC2j ; (19)

where QC1 is the expected quality cost from the �rst
PM to the last PM, and QC2 is the expected quality
cost from the last PM to tm that can be obtained by
Eqs. (20) and (21) as shown in Box I. Finally, the
expected operation cost is calculated through Eq. (22):

E(COP ) = E(COPin) + E(COPout): (22)

Note that, in the mentioned formulas, the beginning
time of the sth PM (tsl) is equal to that of Eq. (23).
Moreover, if an assignable cause occurs during the
jth sampling interval (tj�1; tj), the expected in-control
duration within this interval (�j) is obtained through
Eq. (24):

tsl =
slX
j=1

hj + (s� 1)Z1; (23)

�j =
Z wj�1+hj

wj�1

(t� wj�1)
f(t)

�F (tj)
dt: (24)

Further, the quality cost per time unit when the
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process is in the out-of-control state (Cout) is de�ned
by Eq. (25):

Cout(�) =
A
�2

Z +1

�1
(x� �0)2f(x)dx

� A
�2

Z UCL

LCL
(x� �0)2f(x)dx: (25)

On the other hand, this model assumes that
the shift size follows a Rayleigh distribution with
parameter ��. According to Wu et al. [31], the Rayleigh
distribution �ts properly the random shift size when it
behaves like a unimodal random variable. Hence, the
PDF of � is as follows:

f�(�) =
��
2�2

�
e
���2
4�2
� : (26)

Consequently, the expected value of Cout can be ob-
tained by the following integral:

E [Cout(�)] =
Z 1

0
Cout(�)f�(�)d�: (27)

Moreover, the type-II error is calculated through
Eq. (28); since it is dependent on the shift size, its
expected value is as follows:

� = P (LCL < �X < UCLj�0 + ���0)

= �(K � ��pn)� �(�K � ��pn); (28)

E [�(�)] =
Z 1

0
�(�)f�(�)d�: (29)

It is evident that, in all of the mentioned formulas,
E[Cout(�)] and E[�(�)] are used instead of Cout and �,
respectively.

On the other hand, to compute the cost of the
false alarm, the probability of issuing a false alarm at
a given sampling interval is multiplied by the cost of
each false alarm and NPV factor (e�ir:t). Therefore,
the expected cost of the false alarm is obtained by:

E(Cfa) = �Cfa
m�1X
j=1

e�ir:tj
jY
i=1

(1� Pi): (30)

In addition, to calculate the expected search and repair
cost of the assignable causes [E(Cr)], three elements are
considered: the occurrence time of the assignable cause,
the issuing time of the signal by the chart, and the
repair cost that is implemented at the mth sampling
interval.

E(Cr) =Cr
�
e�ir:tm

� mY
i=1

(1� Pi) + Pm
m�1Y
i=1

(1� Pi)

+
m�1X
y=1

�m�yPy
y�1Y
i=1

(1� Pi)
�

+ (1� �)
m�1X
j=1

e�ir:tj
jX

y=1

Py�j�y

y�1Y
i=1

(1� Pi)
�
: (31)

Eventually, the expected quality cost is de�ned by:

E(QC) = E(COP ) + E(Cfa) + E(Cr): (32)

3.3.3. Maintenance cost
In this study, the PM activity is implemented under
two conditions: (1) the process operates in the in-
control state and (2) the production system shifts to
the out-of-control state and, thus, the type-II error
occurs. Therefore, to obtain the expected maintenance
cost, the occurrence probability of the two mentioned
conditions is multiplied by the number of PM activ-
ities in each condition and the cost of PM activities.
Consequently, the expected PM cost considering NPV
is de�ned by Eq. (33) as shown in Box II.

3.3.4. Inventory holding cost
According to the classical EPQ model, the expected
inventory holding cost is given by:

E(HC) = Ci �
Z E(TI)

0
I(t)dt =Ci � E(A); (34)

where I(t) is the function of the inventory level, and
E(A) denotes the expected area under I(t).

Since this paper supposes that the inventory
holding cost is imposed on the manufacturer at the end
of each cycle, the NPV of E(HC) is:

E(HC) = CiE(A)e�irE(TI): (35)

In the above formulas, E(A) is computed according
to Ben-Daya and Makhdoum [18] and Ben-Daya [2] as
below:

E(A) =
mX
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Uj
j�1Y
i=1

(1� Pi)

+ (1� �)
m�1X
j=1

BjPj
j�1Y
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(1� Pi)

+ �
m�1X
j=1

Pj
j�1Y
i=1

(1� Pi)

�
0@ mX
i=j+1

�i�j�1Ui + �m�jBm

1A
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Box II

+Bm
m�1Y
i=1

(1� Pi); (36)

where Bj is the area under I(t) after tj if the process
is out of control at time tj . The values of Uj and Bj
are de�ned as follows:

Uj =

8>>>>>>>>><>>>>>>>>>:

(2Ij�1 + (P �D)hj)
hj
2 + (Ij�1+(P�D)hj)2

2D
Ij = 0; j = 1; 2; :::;m

(2Ij�1+(P�D)hj)
hj
2 +(Ij�1+(P�D)hj

+Ij)
Z1j

2
Ij > 0; j = 1; 2; :::;m

(37)

Bj =
I2
j

2D
j = 1; 2; ::::;m: (38)

In the above equations, Ij is the inventory level at time
tj + Z1j for j = 1; 2; :::;m� 1, and Im is the inventory
level at time tm. Eqs. (38) and (39) show Ij and Im,
respectively:

Ij = Ij�1 + (P �D)hj �DZ1j ; (39)

Im = Im�1 + (P �D)hm: (40)

3.4. Mathematical model
In this section, with respect to the explained costs
in the previous section, the mathematical model con-
sisting of the objective function and constraints is as
follows:

MinZ : ETC =

S0 + E(HC) + E(PM) + E(QC) + E(Cs)
E(TI)

; (41)

subject to:

ARL0 > ARLl; (41a)

ARL1 < ARLu; (41b)

nl � n � nu; hl � h1 � hu; (41c)

m � ml; (41d)

hj ; k > 0; n;m; l 2 N+; l < m: (41e)

The Expected Total Cost (ETC) per time unit
includes the summation of the setup cost, inventory
holding cost, maintenance cost, quality control cost,
and sampling cost. Moreover, the model constraints
are as follows:

1. According to Eq. (41a), to reduce the number
of false alarms without a�ecting the e�ciency of
control chart, ARL0 must be larger than a pre-
determined lower bound (ARLl).

2. The control chart should issue a signal as soon as
possible after the occurrence of an assignable cause
to decrease the type-II error. Hence, Eq. (41b)
guarantees that ARL1 = 1

1�� is less than the
predetermined value of ARLu.

3. Typically, in the real industrial environments due to
economic reasons, the sample size and the length of
the �rst sampling interval must be limited between
two speci�c lower and upper limits, as given in
Eq. (41c).

4. To assure the continuity of the process, the num-
ber of sampling intervals in a perfect cycle must
be larger than the predetermined value of ml;
Eq. (41d) shows this constraint mathematically.

5. Eq. (41e) ensures that the sample size, the number
of sampling intervals, and the frequency of PM
actions are positive integer values, while the values
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of hj and k are the real numbers. In addition, it
ensures that the frequency of PM actions is less
than m.

4. Solution approach

Since meta-heuristic algorithms can obtain near-
optimal results in an appropriate amount of time for
the complex problems, academic researchers usually
employ these algorithms to solve the complicated mod-
els. In the proposed mathematical model, some of
the decision variables are in the CDF of a standard
normal distribution or in the limits of an integral in
the objective function. Moreover, the solution space
is non-convex due to the simultaneous existence of
both continuous and discrete decision variables in the
mathematical model. According to the mentioned
explanations, the application of the exact methods for
solving mathematical programming (Eq. (40)) is very
di�cult. Consequently, this paper applies a meta-
heuristic algorithm for solving the proposed model
similar to many papers in the literature. For instance,
Faraz and Saniga [34] designed a T 2 control chart with
double warning lines economically and statistically by
Genetic Algorithm (GA). Bashiri et al. [35] presented
an economic statistical design of X-bar chart using
Multi-Objective Genetic Algorithm (MOGA). Chih et
al. [36] utilized Particle Swarm Optimization (PSO) for
the economic statistical design of X-bar control chart.

This study employs the PSO algorithm because
of its acceptable e�ciency in optimizing non-linear
models, unique searching mechanism, and simple con-
cepts [37]. The PSO is one of the most popular
meta-heuristic algorithms that has widely been utilized
recently by some authors such as Niaki et al. [38] and
Hajinejad et al. [39]. In the following section, the PSO
algorithm is explained in detail.

4.1. Particle Swarm Optimization (PSO)
PSO is a population-based algorithm that was �rst

proposed based on the social behavior of birds, bees,
and �shes. This algorithm employs the sharing of
information among the population members called
particles. Each particle in the PSO consists of two
characteristics: (1) �tness value and (2) velocity vector.
The �rst one denotes the valuation of the solution
suitability, while the second one speci�es the particle
direction movement.

The PSO algorithm incorporates local and global
searches to obtain high search e�ciency. It is initialized
with a swarm of particles with random positions and
velocities. Then, the algorithm searches for the optimal
solution by updating particle characteristics according
to the force of inertia and the two \best" values called
personal best (pbest) and global best (gbest). pbest is
the best value experienced by the ith particle, and gbest
is the best solution observed so far. In other words, the
velocity and position of the particle in each iteration
are updated that a�ect three factors: (1) the current
velocity, (2) the personal best, and (3) the global best.
To clarify the PSO algorithm, Table 3 introduces the
parameters of this algorithm briey.

Many papers consider the amount of (c1 + c2)
equal to 4 based on Kennedy et al. [40]. Moreover,
the initial value of w is selected at the interval [0,1]
and decreases to w:wdamp in each iteration to increase
the intensi�cation of the algorithm, where wdamp is a
�xed factor less than 1. Figure 4 illustrates the com-
putational procedure of the PSO algorithm in detail.

4.2. Particle representation
One of the major factors in applying the PSO algorithm
is the particle representation. This study considers a
�ve-dimensional vector of decision variables according
to Eq. (42) as the solution representation:

xti = [h1; k; n;m; l] : (42)

It is remembered that the length of the �rst
sampling interval (h1) and the control limit coe�cient
of the X-bar control chart (k) are two real numbers,

Table 3. Particle Swarm Optimization (PSO) parameters.

PSO parameters Description
N Number of particles in the swarm
xti Position of the ith particle in iteration t
vti Velocity of the ith particle in iteration t

pbestt�1
i Personal best of the ith particle in iteration t

gbestt Best solution founded until iteration t
blo Lower bound of the decision variables (search space)
bup Upper bound of the decision variables (search space)
c1 Recognition learning factor
c2 Social learning factor
w Inertia weight
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Figure 4. Computational procedure of the Particle Swarm Optimization (PSO) algorithm.

while the sample size (n), the number of sampling
intervals (m), and frequency of PM activity (l) are
intrinsically positive integer numbers.

As mentioned earlier, the initial values of h1 and
k are generated randomly from a uniform distribution
between their corresponding lower and upper limits.
Moreover, to generate the initial values of the other
variables, �rstly, random values from a uniform dis-
tribution at the interval [0,1] are selected. Then, n,
m, and l are calculated by Eqs. (43){(45), respectively.
In the subsequent iterations the particle velocity and
particle position are updated according to Figure 5, and
the algorithm stops when the iteration number reaches
a predetermined value.

n=min (nmin+b(nmax�nmin+1)�R1c ; nmax) ; (43)

m=min (mmin+b(mmax�mmin+1)�R2c ;mmax) ;
(44)

l=min (lmin+b(lmax�lmin+1)�R3c ; lmax) ; (45)

where nmin, nmax, mmin, mmax, lmin, and lmax are the
lower and upper limits of n, m, and l, respectively.
Moreover, R1, R2, and R3 are three random numbers
from a uniform distribution at the interval [0,1].

5. Experimental results

As already mentioned, the aim of the proposed math-

Figure 5. Particle Swarm Optimization (PSO) position
and velocity update [41].

ematical programming is to minimize the ETC per
manufacturing cycle subject to economic and statistical
constraints. In the following section, to demonstrate
the applicability of the suggested model, a numerical
example is de�ned based on a case study extended
from Lee and Rahim [42]. Section 5.2 represents a
comparative study to compare the model performance
with that of the traditional models. In Section 5.3, a
sensitivity analysis is implemented on four parameters
of the model: (1) the shape parameter of the Weibull
distribution (�), (2) the scale parameter of the Weibull
distribution (�) (3) the interest rate (ir), and (4) the
constant value of the age reduction ().
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5.1. Numerical example

This section introduces an industrial example derived
from Lee and Rahim [42] to indicate the applicability
of the proposed model. This example investigates a
wood cutting process, in which the failure of wood-
choppers is generally associated with the equipment
age. The woodchoppers usually break down during the
manufacturing process when the poor-quality lumber
has rocks, nails, or plastics embedded in the trunk. If
no prior investigation has been done, it is likely that the
teeth of the woodchoppers deteriorate earlier than the
expected time and, hence, the process fails completely.
In this situation, the added costs are imposed on the
manufacturing costs because of the machine downtime
and replacement of the cutting blades.

Suppose that the system failure mechanism is ap-
proximately followed by the Weibull distribution with
the scale parameter � = 0:2 and the shape parameter
� = 5. An X-bar chart is employed for monitoring
the quality characteristic, in which samples are taken
from the process with the �xed and variable sampling
costs of about $2 and $0.1, respectively. The expected
time to perform a PM is Z1 = 0:1 time units. It is
also estimated that the setup cost (S0), the inventory
holding cost per unit per time unit (Ci), and cost of
each false alarm (Cfa) are about $2000, $0.1, and $400.
The values of the other main parameters related to the
manufacturing system are recorded briey in Table 4.

Moreover, to make the presented model more
adaptable to the real manufacturing environments, the
sample sizes and the sampling intervals should be lim-
ited. To be speci�c, some industrial applications and
priorities require exerting limitations on the decision
variables and the selection of the lower and upper
bounds for them [43,44]. Furthermore, to ensure the
best protection against false alarms, the value of ARL
should be limited. Accordingly, the mathematical
programming can be rewritten as follows:

Min Z : ETC;

subject to:

ARL0 > 200;

ARL1 < 3;

1 � n � 10;

0:3 � h1 � 0:9;

m � 15;

hj ; k > 0; n;m; l 2 N+; l < m:

Finally, the mathematical model is solved by the
PSO algorithm in MATLAB software. The number of
iterations and population size of PSO are equal to 60
and 10, respectively, which are obtained through the
trial-and-error process. The results of the numerical
example are attained according to Table 5. The
results indicate that the proposed model improves both
economic and statistical measures, considerably.

5.2. Comparative study
To illustrate the e�ciency of the presented model, it
is compared to the several classical models based on
three di�erent aspects: (1) the comparison between
models with �xed and variable sampling intervals, (2)
the comparison between the ED and ESD models, and
(3) the comparison based on the time value of money.

5.2.1. Comparison between models with the �xed and
variable sampling intervals

In this section, to investigate the e�ect of using the
variable sampling intervals on the manufacturer's cost,
the suggested model is compared to a similar model
with the �xed sampling intervals. As mentioned earlier,
the length of sampling intervals in the proposed model

Table 4. Values of the parameters in the numerical example.

Parameter �0 � �� P D A � 

Value 2 2 2 2000 1500 7 0.1 0.1

Parameter S0 Ci Cr Cf Cv Cin Cpm ir

Value 2000 0.1 1000 2 0.1 600 500 0.1

Table 5. The results of the numerical example.

Title Optimal results

Decision variables Statistical measures Economic measures

Parameter m� n� k� h�1 l� ARLin ARLout ETC� ETP �

Value 15 6 3.6212 0.9 8 3410.2 1.2796 102031.9274 16.869
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Figure 6. Graphical representations of the most important results of the comparative study.

Table 6. Comparison between the models with the �xed and variable sampling intervals .

Optimal results

Model ETC E(PM) E(COpin) E(COpout) ETI ETin ETout

Variable sampling intervals 102031.92 175.7554 311.3442 19.7405 22.492 4.8816 11.9872

Fixed sampling intervals 416780.32 212.9536 22.1293 267.7903 38.6762 2.4937 26.5134

Table 7. Comparisons between economic and economic-statistical designs.

Optimal results

Model ARLin ARLout ETP � ETC�

Economic-statistical design 3410.2 1.2796 16.869 102031.92

Economic design 1880.4 1.3093 16.871 101515.05

Improvement (%) 81.36% 2.27%

is calculated such that the integrated hazard rate at
all intervals is the same. However, the sampling
interval in the classical model is �xed regardless of
the increasing failure rate over time. To illustrate
the e�ect of a change in the sampling intervals on
the cost and time criteria, the two mentioned models
are compared together in the aforementioned industrial
example. The obtained results are recorded in Table 6.

According to Table 6, when the sampling inter-
vals are �xed, ETin=ETI and ETout=ETI are equal
0.065 and 0.686, respectively, while these ratios in
the model with variable sampling intervals are 0.217
and 0.532, respectively. Moreover, the values of
E(COpin)/E(COpout) in the models with �xed and
variable sampling intervals are 0.083 and 15.772, re-
spectively. These results indicate that considering
the �xed sampling interval leads to a remarkable
increase in the cost and time of the out-of-control
period. On the other hand, since the variable sampling
interval prevents a decrease in the production system
reliability, the maintenance cost of the proposed model
is about 17.5% less than that of the model with
the �xed sampling interval. Furthermore, the ETC
of the manufacturing system increases dramatically
when the sampling intervals are �xed. To clarify the
above-mentioned results, the most important results

of the comparative study are illustrated graphically in
Figure 6.

5.2.2. Comparison between ED and ESD models
In this section, to con�rm the model e�ectiveness, the
ESD model and ED models are compared together in
terms of economic and statistical criteria, i.e., ARLs
and ETC. For this purpose, the proposed model is
compared to a similar model without considering the
statistical constraints. The results of the comparison
between two ESD and ED models are demonstrated in
Table 7.

As can be seen in Table 7, ETC of the economic-
statistical model is approximately 0.51% more than
that of the economic model, while the values of
ARLin and ARLout improve dramatically by using
ESD model. To consider more details, ARLin and
ARLout in the ESD model are better than those of
the ED model by about 81% and 2.27%, respectively.
To simplify the comparison between the two models,
the economic and statistical criteria for both models
are illustrated in Figure 7.

5.2.3. Comparison based on the time value of money
As mentioned above, the value of money changes over
time because of ination and deation. In this regard,
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Table 8. The e�ect of the time value of money in the suggested model.

Optimal results

Model E(PM) E(QC) E(HC) ETP ETC

With considering time value of money 175.7554 1834.6 2290900 16.869 102031.92

Without considering time value of money 201.4433 32589 21718000 17.297 1231127.44

Figure 7. Results of the comparison between Economic Design (ED) and Economic-Statistical Design (ESD) models.

Figure 8. The comparison between the two models with and without considering the time value of money.

this section presents a comparative study between
the presented model and a similar model without
considering the time value of money. For this purpose,
several cost parameters of the model are calculated
with and without considering the time value of money.
The results of the two models are represented in
Table 8.

As shown in Table 8, all types of costs in this
study signi�cantly change when considering the time
value of money. Therefore, in countries with high in-
ation, the calculation of the ETC without considering
the time value of money is highly misleading because an
increase in interest rate decreases the NPV of money.
At the end of this section, the costs of both models are
represented graphically in Figure 8.

5.3. Sensitivity analysis
According to the literature on production, this section
analyzes the e�ect of the four major parameters on
ETC, ETP, and the decision variables of the model.
The considered parameters include the shape parame-
ter of the Weibull distribution (�), the scale parameter
of the Weibull distribution (�), interest rate (ir), and
the age reduction parameter (). The variations in
the ETC, ETP, and decision variables are investigated
by changing one of the parameters while keeping other
parameters �xed. It must be noticed that the most
important item in the sensitivity analysis is ETC
that directly a�ects the pro�t of a company, and its
sensitivity to the parameters can play an important role
in making decisions by a manufacturer. The obtained
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Table 9. The results of sensitivity analysis.

Decision variables
Parameter Value m n k h1 l ETC ETP

�
3 15 7 3.4296 0.9 1 11364.7931 34.2758
5 15 6 3.6212 0.9 8 102031.9274 16.869
7 15 3 3.4641 0.9 8 224177.5128 11.7957

�
0.2 15 6 3.6212 0.9 8 102031.9274 16.869
1 15 3 3.7478 0.7333 2 127947.1505 14.2075

1.5 15 3 3.7503 0.6755 2 136760.9179 13.0976

ir
0.1 15 6 3.6212 0.9 8 102031.9274 16.869
0.3 15 4 3.7706 0.9 8 1284.5895 13.2357
0.5 15 2 3.1493 0.9 15 147.2781 16.8474


0.1 15 6 3.6212 0.9 8 102031.9274 16.869
0.3 15 5 3.8018 0.9 8 100946.2008 16.9157
0.5 15 2 3 0.9 2 91188.784 19.3686

Figure 9. E�ect of the shape parameter on ETC� and
ETP �.

Figure 10. E�ect of the shape parameter on the decision
variables.

results of sensitivity analysis are reported in Table 9
and Figures 9{16.

5.3.1. E�ect of the shape parameter
As shown in Figure 9, the value of ETC increases
as the shape parameter of the Weibull distribution
increments from 3 to 5 and from 5 to 7, while the
value of the expected production cycle length decreases
in these situations. Figure 10 illustrates that as the

Figure 11. E�ect of the scale parameter on ETC� and
ETP �.

Figure 12. E�ect of the scale parameter on the decision
variables.

parameter � increases from 3 to 7, the optimal values
of h1 and m remain �xed while n decreases. On the
other hand, a reduction in the control chart limit leads
to an improvement in the type-II error probability. As
a result, an increase in the shape parameter leads to the
simultaneous reduction of sample size and control chart
limit and enhances both of the economic and statistical
criteria. Moreover, the design variable k is insensitive
to �, and the small variation in k occurs only because
of the random nature of PSO algorithm.
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Figure 13. E�ect of interest rate on ETC� and ETP �.

Figure 14. E�ect of interest rate on the decision
variables.

Figure 15. E�ect of the age reduction parameter on
ETC� and ETP �.

Figure 16. E�ect of the age reduction parameter on the
decision variable.

5.3.2. E�ect of the scale parameter
According to Figure 11, as expected, when the scale
parameter (�) increases, the occurrence probability
of the assignable cause grows and ETP decreases,
remarkably. For example, as � varies from 0.2 to
1.5, the value of ETC increases to about 35000 units.
It is obvious that an increase in the scale parameter
leads to a higher risk of machine failure. Thus, it is

expected that both of the expected maintenance cost
and ETC increase. Figure 12 illustrates that as the
parameter � increases from 0.2 to 1.5, the optimal
value of h1 decreases. In other words, with growing
�, the probability of the system failure increases and
the sampling intervals decrease.

5.3.3. E�ects of the interest rate
Figure 13 illustrates that the interest rate in contrast
to the other parameters has an inverse relationship
with the ETC. Since costs are calculated by the NPV
method, the cost reduces dramatically with an increase
in the interest rate. According to the expectations,
as interest rate increases, the optimal value of ETC
decreases to approximately 102000 units.

5.3.4. E�ect of the age reduction parameter
As expected, when the age reduction parameter in-
creases, the total cost decreases; however, the produc-
tion cycle length increases. It is reasonable that with an
increase in the age reduction parameter, the probability
of failure decreases and, consequently, the expected
production cost reduces when the process is in the out-
of-control state. On the contrary, the production cycle
length increases because of a reduction in the system
age after implementing PM activities. Furthermore,
as illustrated in Figure 16, incremental changes in the
constant value of the age reduction cause m and h1 to
remain unchanged and k to vary mildly. In addition,
as the age reduction parameter increases, n and l
decrease due to a greater reduction in the virtual age
system.

6. Conclusion

The major aim of this study is to bridge the gap
between the simpli�ed assumptions in the perfect
manufacturing models and the real production situ-
ations. Accordingly, this research presented a joint
model of production cycle length, maintenance, and
the economic-statistical design of control chart that
monitors an imperfect production process, considering
stochastic shift size. In contrast to most of the studies
in the literature, the model considered the time value
of money for calculating the system costs. In addition,
this paper employed a variable sampling interval such
that the integrated hazard rate would be the same value
over all the intervals. Finally, the model e�ciency
was analyzed by a comparative study based on an
industrial example, and the sensitivity analysis was
implemented to recognize the e�ects of the parameters
on the objective function and decision variables. The
results of the comparative study indicated that:

1. The cost and time of the out-of-control state in the
proposed model were less than those of the model
with the �xed sampling intervals;
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2. The model had a better performance in the statisti-
cal criteria in comparison with the economic design
model;

3. Considering the time value of money led to a
signi�cant change in the real cost imposed on the
manufacturer.

Furthermore, the results of performed sensitivity
analysis demonstrated that the interest rate and the
age reduction parameters had an inverse relationship
with ETC, while an increase in the shape and the scale
parameters of the Weibull distribution increased the
model costs.

As for future research, the extension of the
proposed model in two directions is suggested: �rst,
developing a model that incorporates the ability to
deal with a production system with parallel machines;
second, simultaneous monitoring of the mean and
variance of quality characteristics.
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