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Abstract. Numerical simulation of dam-foundation-fault system, considering the
earthquake source, propagation path, and local site e�ects, was carried out for realistic
and reasonable seismic safety analysis of concrete dams. The Domain Reduction Method
(DRM) was used for seismic analysis of Dam-Foundation-Fault (DFF) system, in which
a modular two-step methodology for reducing the computational costs in large domain
analysis was introduced. In this method, seismic excitation is directly applied to the
computational domain such that assigning arti�cial boundary to the �nite element models
is more comfortable. In order to verify the implementation of the DRM in Finite Element
Method (FEM), a simple 2D half-space under the Ricker wavelet excitation was examined.
Then, to investigate the DRM as an appropriate method in seismic analysis of DFF system,
the Koyna concrete gravity dam was modeled. Comparing the obtained results by using
both the DRM in a small domain and the traditional approach in the large domain
containing the source shows the e�ciency of the DRM in terms of computational costs,
such as running time and number of elements for seismic analysis of concrete gravity dams.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Concrete dams are among the most important in-
frastructures in every country and hence, their safety
during severe earthquakes is extremely important.
Reliable designing of concrete dams requires accurate
simulation of the dam-foundation-reservoir system and
choosing of suitable seismic excitation. The behavior of
dam-foundation-reservoir system has been investigated
extensively during recent years [1-7]. Dynamic analysis
of dam-foundation-reservoir systems is a complex prob-
lem by nature. These systems consist of three domains
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with di�erent behaviors. In addition, foundation and
reservoir have at least one in�nite dimension, which
would add to the complexity of the problem. Linear
or nonlinear dynamic analysis of complex systems,
such as dam-foundation-reservoir, is performed numer-
ically. Numerical methods such as Finite Element
(FE) and boundary element are common tools in dam-
foundation-reservoir system analysis.

Because of unique characteristics of the domains
involved, numerical modeling of these domains, as well
as properly de�ning the interactions between them,
is a challenging work. Trying to overcome these
challenges in order to obtain more realistic responses
from the system is an invaluable e�ort. Because of
superiority of �nite element method over boundary
element method in modeling complex and nonlinear en-
vironments, this method is widely used in the analysis
of dam-foundation-reservoir system.
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Although valuable information has been achieved,
some challenges still remain, including the interaction
of dam-foundation-reservoir as well as estimation of
the suitable excitation and its implementation in the
numerical models.

One of the e�ective features in seismic analysis of
dam-foundation systems is proper modeling of in�nite
massed foundation in the numerical model (especially
in �nite element method). To cut temporal and an-
alytical costs, in�nite foundation should be truncated
at some designated arti�cial boundary. This arti�cial
boundary is responsible for absorbing scattered waves
emanating from the structure. Various types of ar-
ti�cial boundaries have been proposed by researchers
during recent years [8-13].

Earthquake input mechanism is another source of
dilemma in seismic analysis of these systems. Leger
and Boughoufalah [14] studied the di�erences of various
earthquake input mechanisms in �nite element analysis
of the dam-foundation-reservoir system. Boundary
conditions and earthquake input mechanisms should be
chosen in a way to be able to include the e�ects of wave
propagation in semi-in�nite foundation environment.
These challenges are the main reasons the researchers
tend to use massless foundation model, which was
originally proposed by Clough [15]. Numerous studies
show that massless model yields overestimated results
[16,17].

To take a further step in correct simulation
of earthquakes for analysis of unique structures and
infrastructures such as dams, bridges, etc., which
are very important both socially and economically,
other e�ective parameters such as site conditions and
characteristics, existing faults in the region, probable
scenarios for earthquakes, etc. should be included
in the model. Many researchers have investigated
the e�ects of di�erent parameters of earthquakes on
response of structures [18-22].

Proper estimation of the ground motion input
for a structure requires a deep understanding and
accurate modeling of fault mechanism, propagation
path of the seismic wave, earthquake site e�ects, and
the interaction of soil-structure. Each of these factors
may a�ect the ground motion input as well as the
structural response depending on the selected scenario.

In the �eld of earthquake simulation, some
noteworthy studies have been published in recent
years [23,24,25]. These studies are conducted in a semi-
in�nite environment with respect to all assumptions
made for characteristics of the environment, fault, and
rupture mechanisms.

One faces two di�erent scales in dam-foundation-
fault problem. The problem of simulating fault and
earthquake (seismological scale (kilometers)) and the
problem of modeling dam-foundation-reservoir system
(engineering scale (meters or centimeters)) should be

properly combined so that by using features of both
problems, more realistic and logical results are ob-
tained.

There are two general approaches to considering
these issues: direct and hybrid methods. In the
direct method, all components of the fault-structure
are simulated in one system, which includes a seismic
source (usually represented by a shear crack or its
body-force equivalents), a crustal model, near-surface
soil model, and structures at the surface. Despite being
straightforward and favorable, large dimensions of the
fault model and propagation path (several kilometers)
along with the required accuracy for response of the
structure make the direct analysis time-consuming and
less e�cient from a computational resource point of
view.

In the second approach, hybrid methods are used
in order to solve this problem. These methods have
acceptable accuracy with lower computational cost.
Hybrid methods are performed in two steps. In the
�rst step, the ground motion is computed by removing
the structure and localized geological features. In
the second step, only a small region of the domain
is accurately modeled. The computed ground motion
is utilized to determine the equivalent force which is
applied in the second step.

Examples of hybrid methods can be found in
several references, which have utilized di�erent numer-
ical and analytical methods at each step of the algo-
rithm. Mossessian and Dravinski [26] investigated the
problems of di�raction of plane harmonic P, SV, and
Rayleigh waves by subsurface irregularities of arbitrary
shape by combination of the �nite element method with
indirect boundary integral equation approach. Bielak
et al. [27] developed a BEM-FEM hybrid method
and used it to investigate semicircular inhomogeneous
valleys with linearly increasing shear modulus with
depth, due to oblique incident SH waves. F�ah et
al. [28] simulated the ground motion in Mexico City
caused by the Michoacan earthquake of September
19, 1985. They used a hybrid technique that was
based on a combination of modal summation and the
�nite-di�erence method. Zahradn�'k and Moczo [29]
developed a new hybrid method for treating the seismic
wave �elds at localized 2D near-surface structures
excited by a point source. They combined the discrete-
wave number and �nite-di�erence methods. Moczo et
al. [30] presented a generalization of the hybrid DW-FD
method of Zahradn�'k and Moczo [29] for computation
of P-SV seismic motion at inhomogeneous viscoelastic
topographic structure. The method was based on
a combination of the Discrete-Wavenumber (DW),
Finite-Di�erence (FD), and Finite-Element (FE) meth-
ods.

In spite of the enormous computational progress
in recent years [31,32,33], estimating the seismic per-
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formance of a fault-structure system poses several
challenges, such as applying the seismic wave to the
numerical model, wide range of multiple spatial and
temporal scales, heterogeneous model for soil and
geological structure, and nonlinearity of soil. Creating
an appropriate model and developing a numerical
method to analyze them are the main challenges. To
summarize, the following challenges are foreseen in the
modeling of the dam-foundation-faults system:

1. Simulating fault and rupture mechanism in earth
with acceptable scale;

2. Modeling wave propagation from fault to vicinity of
the structure (near-�eld);

3. Modeling massed in�nite foundation with �nite
element method;

4. Properly implementing earthquake in analytical
model;

5. Assigning appropriate boundary conditions at trun-
cated boundaries for absorption of scattered waves.

Bielak et al. [34] developed the DRM for seis-
mic analysis and numerical simulation of large-scale
problems including seismic source (i.e., fault), prop-
agation path, and locally complex structures e�ects
(e.g., strong geological or topographical irregularities).
Yoshimura et al. [35] veri�ed the domain reduction
method using the Green function approach. They
also demonstrated the application of the domain re-
duction method to three-dimensional problems with
large computational domains, including faults and high
heterogeneous mediums.

The DRM method is a two-step procedure
through which the domain is reduced by changing
the variable during the solution. Seismic excitation
is directly applied to the computational domain and
the virtual boundaries in the model (such as viscous
boundaries) should only absorb the scattered energy
radiated from the structure. The domain reduction
method is also useful for investigating the interaction of
soil-structure in which the fault and propagation path
are not considered. The performance of domain reduc-
tion method using absorbing boundaries by modeling a
tunnel has been assessed by Kontoe et al. [36]. Domain
reduction method, with its special features, is a useful
tool to overcome the mentioned challenges of the dam-
foundation-fault problem. In this study, a numerical
framework based on the domain reduction method is
proposed to investigate the dynamic response of the
dam-foundation-fault system. The domain reduction
method for analyzing the dam-foundation-fault system
is veri�ed by a simple model in the �rst step. The
Koyna concrete gravity dam is analyzed using this
method for the purpose of real-life structure analysis.

2. The DRM concept

The DRM is a two-step procedure, which reduces the
computational domain by changing the variables of the
dominant equations. In this method, seismic excitation
is applied directly to the computational domain. The
framework of the DRM is based on the study of Bielak
et al. [34].

In the �rst step, seismic excitation is applied to
the computational domain. During this step, displace-
ments of the free-�eld and e�ective forces on a one-
dimensional strip are calculated and reserved. In the
second step, the results of the �rst step are utilized to
determine the equivalent force which is applied in the
computational domain.

2.1. Formulation of DRM
The same formulation of DRM as the one by Bielak et
al. [34] is used in this study. The general framework
of the problem, including a semi-in�nite medium with
speci�c layering, fault as seismic source, and dam, is
illustrated in Figure 1.

Reduction of the computational domain is desired
due to costs and time-consuming nature of numerical
methods. It is necessary to transfer the e�ects of
excitation to the structure by minimum changes. The
virtual boundary of � breaks the total area into two
parts; one includes site and structure, denoted by 
,
and the other is in�nite medium, denoted by 
+,
which includes the fault as well. In order to solve the
main problem, the semi-in�nite medium is limited to
the �+ boundary. The vector of nodal displacements
within the internal domain of 
, external domain of

+, and the boundary between them, �, is depicted
in Figure 2 by ui (internal), ue (external), and ub
(border), respectively. The whole domain is divided
into two subdomains, including the fault (the far �eld),
and structure and site (the near �eld), according to
Figure 2. The displacement of ub on the border of
� is continuous and Pb is the nodal forces which are
transferred from 
+ to 
 (according to Figure 3).

Navier's equations are the dominant equations of

Figure 1. Schematic of dam-foundation-fault system.
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Figure 2. Truncated seismic region.

Figure 3. Regions partitioned into two subdomains.

motion in the entire domain. The mentioned equations
for the 
 and 
+ domains are discretized using the FE
method as follows:�
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where M and K represent mass and sti�ness matrices,

respectively; i, e, and b indices represent the internal,
external, and boundary nodes; and 
 and 
+ super-
scripts de�ne the area to which the matrix belongs. By
adding these equations, the usual equation of motion
for the entire domain is derived as follows:24M
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In order to transfer the seismic excitation from
the fault to the border of �, an auxiliary problem
with a consistent external domain (including the fault)
is utilized. The internal domain of 
0 is simple,
excluding the structure. Therefore, the background
model induces the free-�eld of the main model when
the structure and site conditions are neglected. Solving
this problem is simpler than the main one. The nodal
displacements and boundary forces are shown by u0

i ,
u0
b , u0

e, and P 0
b , according to Figure 4.

The equation of motion for 
+ in the auxiliary
problem is according to Eq. (4):"
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Regarding the consistency of the 
+ domain, the
matrices of mass, sti�ness, and nodal forces are also
unchanged. The nodal force of Pe in Eq. (4) can
be rewritten in terms of free-�eld variables at the
boundary �:

Pe = M
+

eb �u0
b +M
+

ee �u0
e +K
+

eb u
0
b +K
+

ee u
0
e: (5)

The nodal displacements of the entire domain are
obtained by replacing Eq. (5) into Eq. (3). Since Eq. (5)

Figure 4. Auxiliary problem: (a) Entire auxiliary seismic region and (b) auxiliary seismic region partitioned into two
subdomains [34].
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includes M
+

ee �u0
e and K
+

ee u0
e, needing to reserve u0

e
within the entire domain of 
+, this formulation does
not have any advantages over the usual method. In
order to simplify the analysis, a change of variable is
recommended. The total displacement of ue is written
according to Eq. (6):

ue = u0
e + we; (6)

where we is the relative displacement with respect to
u0
e. By replacing Eq. (6) into Eq. (3), a new equation

is achieved:24M
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Finally, by replacing Eq. (5) into Eq. (7), the �nal
equation is achieved:24M
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The mass and sti�ness matrices at the left side of
Eq. (8) are same as the matrices in Eq. (3). The force
of seismic fault, Pe, is replaced by the e�ective nodal
forces, according to Eq. (9):
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The equation includes sub-matrices of Mbe, Kbe, Meb,
and Keb, which are mostly zero at all the points of

+ excluding a �nite layer next to �. Hence, the
e�ective force of a �nite layer in the auxiliary problem
is obtained using Eq. (9). This is the main advantage
of Eq. (6).

2.2. Domain Reduction Method (DRM)
algorithm

The domain reduction method is a two-step procedure,
which can be described as follows. In the �rst step,
the problem (Figure 5), including the domains of 
0
and 
+, is solved and the values of u0

e and u0
b are

obtained at all nodes of the layer limited to � and �e
borders. These values are reserved for computing the
e�ective force. Depending on the problem at hand,
other methods could be used in order to solve the
problem in the �rst step.

In the second step, the problem is solved at the
reduced area of 
[ b
+ including the structure and site
(Figure 6). The e�ective force, which is computed in
the �rst step, is used to solve the problem in the second
step; hence, unknowns are calculated. These unknowns
are the total displacement �eld ui in 
, ub on �, and the
residual displacement �eld we in b
+. Figure 7 presents
a 
owchart of the DRM process.

3. Veri�cation of the DRM

In this section, domain reduction method and its im-
plementation in �nite element model are veri�ed. The

Figure 5. DRM method for a dam system. The �rst step:
The model de�nes the auxiliary problem over background
model [34].

Figure 6. DRM method for a dam system. The second
step: The model is de�ned over the reduced region.
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Figure 7. The application process of the DRM.

response in the external region b
+ of the reduced model
consists in only outgoing waves corresponding to the
existence of the local structures in the reduced model
in comparison with the background model. Based on
this fact, one way to verify the DRM is to take the
interior domain the same in the �rst and second steps.
This is equivalent with the existence of no structure in
the model in comparison with the background model.
In this case, zero response should be calculated in the
external b
+ area of the reduced model. Furthermore,
the computed response in the �rst step should be
identical with the response obtained in the second step
of the DRM method for the internal areas of 
0 and 
.

In summary, by assuming the same material for
the interior domain in the �rst and second steps, the
calculated response should be zero in the b
+ domain
and same as the result of the �rst step in the interior

 domain. For this purpose, a 2D half-space domain
excited by a point-source fault is considered. For
modeling of background model, a 2D large domain
is considered for representing the half-space in �nite
element model that contains the fault. The reduced
model is considered a small domain that removes
the fault and far-�eld from background model. The
material is assumed to be homogeneous linear elastic
with the properties as listed in Table 1. For simplicity,
no material damping is considered. Excitation is

Table 1. Material properties.

Young's modulus (N/m2) 1940.4e6
Poisson's ratio 0.1
Density (kg/m3) 1800
Shear wave velocity (m/s) 700

prescribed as a point source. The responses of two
points in interior and exterior domains are compared
for veri�cation.

3.1. First-step model
A model with dimensions of 10000 m � 5000 m is
considered for simulating the �rst step of the DRM as
shown in Figure 8. This model consists in 20000 four-
node quadrilateral elements. The optimum mesh size
in an FE model is determined based on the accuracy
and computational cost. The mesh size in the wave
propagation problems is a�ected by frequency content
of the excitation. Kuhlemeyer and Lysmer [37] showed
that for an accurate simulation of wave propagation in
an FE analysis, element sizes should be smaller than
approximately one-tenth to one-eighth of the shortest
wavelength. Based on this fact, the element size in the
FE mesh was chosen to be 50 m.

The source of earthquake motions to be used in
this model is the time history of a vertical force �eld.
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Figure 8. Veri�cation of the DRM; the �rst-step model.

Figure 9. Ricker wavelet used for seismic source.

The source is Ricker wavelet located at (x=2000 m, y=
2000 m). The Ricker wavelet formulations are shown
in Eq. (10) [38,39]:

R(t)=A

 
2�2 (t�ts)2

tp2 �1

!
exp

 
��2 (t�ts)2

tp2

!
;
(10)

where A is the maximum amplitude, ts is the time of
maximum amplitude, and tp is the main period of the
wavelet. Figure 9 shows the displacement time history
of Ricker wavelet with dominant frequency of 1Hz and
maximum amplitude occurring at 1 second.

To implement the boundary condition in the back-
ground model, vertical and horizontal displacements
were restricted along the truncated sides of the model
and horizontal displacements were restricted along the
bottom.

3.2. Second-step model
A model with the dimensions of 240 m � 70 m is
considered for analysis of the second step as shown
in Figure 10. This model consists in 672 four-node
quadrilateral elements. The element size in the FE
mesh based on the shortest wavelength is chosen to be
5 m. This model is used for veri�cation analysis; there-
fore, based on the above description, the properties of
the model are the same as those of the �rst model. The

Figure 10. Veri�cation of the DRM; the reduced model.

Figure 11. Horizontal component of displacement at
control point in the �rst and second steps in veri�cation
analysis.

Figure 12. Vertical component of displacement at control
point in the �rst and second steps in veri�cation analysis.

shaded area represents the DRM layer that is the zone
of elements between the boundaries � and �e, in which
the e�ective forces from the �rst model will be applied.

3.3. Results
Displacement time histories at the two points of the
model are discussed here between the �rst- and second-
step models. Comparisons of horizontal and vertical
displacements of control point (Figure 8) are shown in
Figures 11 and 12. As it can be observed, the results
of the second-step model (reduced model) perfectly
match those obtained for the �rst-step model (extended
model) in the interior domain points. Figures 13 and
14 are the horizontal and vertical displacement time
histories of point B (located outside the DRM layer)
in the �rst and second steps. As mentioned before in
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Figure 13. Comparison of horizontal component of
displacement at point B in the �rst and second steps in
veri�cation analysis.

Figure 14. Comparison of vertical component of
displacement at point B in the �rst and second steps in
veri�cation analysis.

de�nition of the DRM, no motion should come out of
the DRM layer in case of free �eld. As shown in these
�gures, displacement time history at this point is zero
in the second step, while it has non-zero value in the
�rst step. The above observation and results verify the
domain reduction method and its implementation in
�nite element model.

4. DRM application in DAM-foundation-fault
system

In this section, a dynamic analysis is performed to
investigate the DRM as an appropriate method in
seismic analysis of dam-foundation-fault system. The
Koyna concrete gravity dam is selected for case study.
An FE analysis is performed for the Koyna dam in two
cases. In the �rst case, an extended foundation with
seismic source is used for the purpose of comparison
with the second case of a reduced foundation by the
use of DRM.

Koyna dam is a concrete gravity dam located in
India. In 1963, the construction work of the Koyna
dam was �nished. The earthquake that happened in
the December of 1967, 4 years after its construction,
damaged the dam and forced engineers to reassess the
dam [40,41].

The tallest section of this dam and the geome-

Figure 15. Geometry of the Koyna dam-fault-foundation
system.

Figure 16. The FE model of the Koyna dam.

try of the dam-fault-foundation system are shown in
Figures 15 and 16. The foundation is modeled same
as the �rst step of the veri�cation model. Figures
are not drawn to scale. The modulus of elasticity,
mass density, and Poisson's ratio of the dam are taken
to be 30000 MPa, 2630 kg/m3, and 0.2, respectively.
The dam and foundation are modeled with four-node
quadrillateral iso-parametric elements. The dam as
well as the foundation is in the state of plane stress.
The dynamic analysis is performed by applying Ricker
wavelet as a point source fault model at the (x = 2000
m; y = 2000 m) point.

4.1. Koyna dam analysis
As mentioned above, Koyna dam is analyzed in two
cases. The di�erences of these two cases are in founda-
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Figure 17. FE model of dam-foundation-fault system in
the second step of the DRM.

Figure 18. Comparison of horizontal components of
displacement at dam crest in the DRM and large
(extended) models.

tion modeling and excitation input. In the �rst case,
the extended foundation with large size and the fault
are modeled simultaneously. Foundation size in this
case is 10000 m � 5000 m. In other words, the �rst
case uses the direct approach. In the second case,
the DRM is used as a hybrid approach. The far �eld
and the fault are removed and the foundation size is
240 m � 70 m. The FE model of the Koyna dam-
foundation-fault system in the second case is shown in
Figure 17. The size of the time step in the dynamic
part of all analyses is �t = 0:01 sec. For comparison,
the traditional model consists in 2001040 elements and
requires approximately 7 hr for using a system with
a Core 2 Duo processor, in contrast to the DRM
model, which consists in 1712 elements and takes
4 min for analysis with the same system and the same
processor. The reduction in the required number of
mesh elements and analysis time is substantial. This
fact translates into considerable computing e�ciency,
especially for the large-scale problems by considering
material nonlinearity.

Figures 18 and 19 show the comparison of horizon-
tal and vertical components of displacement at the crest
of dam in the DRM (hybrid) and extended models (di-
rect). As expected, the results of two models have good
agreement. Figure 20 shows snapshots of the deformed
mesh of the reduced model in DRM case. Displace-

Figure 19. Comparison of vertical components of
displacement at dam crest in the DRM and large
(extended) models.

Figure 20. Snapshots of the deformed mesh of the
reduced model.

ments are total in interior domain of reduced model,
whereas in the exterior domain, they are relative to
displacements corresponding to the background model.
Since the interior domain is the same in background
(extended) and reduced models (i.e., the DRM), the
relative response is expected to be very negligible. As
can be seen in this �gure, the interior domain is de-
formed at di�erent times, while this is not observed for
the exterior domain. These observations demonstrate
the very negligible displacement in the exterior domain.

5. Conclusion

The DRM is an appropriate two-step procedure for
reducing the computational domains in large-scale seis-
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mic analysis by a change of governing variables. This
method provides an e�cient and reasonably accurate
methodology for considering the earthquake source,
wave propagation paths, and local site e�ects.

In the �rst step of the DRM, a simpli�ed back-
ground model (including the source of excitation and
excluding the local site e�ects and dam structure)
is analyzed for simulating the earthquake source and
propagation path e�ects. The second step is performed
on a reduced domain for modeling the local site e�ects.
E�ective nodal forces, derived from the �rst step, are
applied in a single layer of elements in this step.

The implementation of the DRM in FE software
was veri�ed for a simple 2D linear model subjected to
Ricker wavelet. For this purpose, the internal area of
the background and the reduced model were taken to
be the same. Thus, zero response was calculated in the
external area of the reduced model in the second step
analysis. Furthermore, the computed responses for the
internal areas in two steps were found to be identical.

In the last part of the paper, to study the DRM
as an appropriate method for seismic analysis of dam-
foundation-fault system, the FE model of the Koyna
dam was examined with both the DRM and the
traditional approaches. What can be drawn from the
results are:

1. In terms of computational costs such as running
time, number of elements, and computer system
requirements (i.e., CPU and RAM), the DRM is
an e�ective and suitable method versus traditional
methods;

2. Assigning arti�cial boundary to FE models is more
comfortable in the DRM, because seismic excita-
tion is directly introduced into the computational
domain;

3. Arti�cial boundary in the DRM is only needed to
absorb the scattered energy of the system;

4. The DRM is also a useful tool for soil-structure
interaction problems in which the modeling of the
fault and propagation path is neglected. Although
the linear elastic systems without any damping were
illustrated in this study, this methodology can be
applied to linear and nonlinear dam-foundation-
reservoir-fault systems, which will be assessed in
future papers.
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