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Abstract. One of the most important parameters in designing sewer structures is the
ability to accurately simulate their discharge and velocity �eld. Among the various sewer
receiving inow methods, open-channel junctions are the most frequently utilized ones.
Because of the existence of separation and contraction zones in the open-channel junctions,
the uid ow has a complex behavior. Modeling is carried out by Radial Basis Function
(RBF) neural network, Gene Expression Programming (GEP), and Multiple Non-Linear
Regression (MNLR) methods. Finding the optimum situation for GEP and RBF models is
done by examining various mathematical and linking functions for GEP, di�erent numbers
of hidden neurons, and various spread amounts for RBF. In order to use the models in
practical situations, three equations were conducted by using the RBF, GEP, and MNLR
methods in modeling the longitudinal velocity. Then, the surface integral of the presented
equations was used to simulate the ow discharge. The results showed that the GEP and
RBF methods performed signi�cantly better than the MNLR in open-channel junction
characteristics simulations. The GEP method had better performance than the RBF in
modeling the longitudinal velocity �eld. However, the RBF presented more reliable results
in the discharge simulations.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Sewer junctions are widely used in the drainage struc-
tures to collect the waste water. Fluid ows rarely
�ll the sewers under pressure. Instead, they often
ow with air above the free surface and follow the
open-channel hydraulic terms [1]. Junctions are one
of the most typical inow receiver structures in sew-
ers [2]. Due to the importance of modeling of the uid
ow around junctions, the complex hydrodynamics
of downstream ow have been studied in various re-
searches, such as experimental studies [3-11], analytical
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investigations [12-14], and numerical modeling [15-
22].

In the recent years, soft computing methods have
widely been used in various engineering problems [23-
27]. Complex ow velocity in the rivers was simulated
by Kisi and Cigizoglu [28] using the RBF neural
network. Bilhan et al. [29] simulated the side weir
ow characteristics by using the RBF neural network.
Azamathulla et al. [30] used GEP for modeling the
accurate Manning roughness coe�cient. Zaji and
Bonakdari [31] used the Multi-Layer Perceptron Ar-
ti�cial Neural Network (MLP-ANN) and Genetic Pro-
gramming (GP) in modeling the velocity �eld around
junctions. Bonakdari and Zaji [32] introduced a
new Genetic Algorithm (GA) based Arti�cial Neural
Network (GA-ANN) method in order to simulate the
open-channel junction velocity �eld without needing
to adjust the hidden layer neurons. The authors con-
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cluded that GA-ANN method had better performance
than other GA methods such as GP.

The aim of the present study is to obtain an
analytical and, thus, continuous description of the
complex discharge and velocity �elds of open-channel
sewer junction using the discrete laboratory measure-
ments. To do that, some popular regression methods,
namely, RBF, GEP, and MNLR, are developed. In the
modeling procedure, the non-dimensional coordinate
points (x�, y�, and z�) and junction discharge ratio
(q�) are considered as the input variable candidates
to predict the discharge and velocity �elds. After
�nding the optimum input combination, three di�erent
equations are proposed to simulate the downstream
longitudinal ow �eld of the junction in the practical
situations. Finally, the surface integral is used to reach
the discharge simulation of the junction.

2. Experimental data

Weber et al. [11] performed a high quality experimental
study on open-channel junctions, which has been uti-
lized in various Computational Fluid Dynamic (CFD)
studies in order to calibrate and validate the numerical
models [16,17,20]. The result of the experimental mea-
surements of Weber et al. [11] was used in this study
in the training and testing processes of the investigated
models. The experiments were performed in a junction
ume with 0.91 m width and 90� conuence between
the main and tributary channels. The oor of the ume
was horizontal and two head tanks were on the main
and branch channels to supply the discharge. In order
to have a completely developed ow near the junction,
some perforated plates and honeycomb were placed
at the beginning of the main and branch channels.
The schematic overview of the laboratory ume is
shown in Figure 1. The coordinates of each point were

Table 1. The considered discharge ratios.

Qm (m3/s) Qt (m3/s) q�

0.014 0.156 0.083
0.042 0.127 0.250
0.071 0.099 0.417
0.099 0.071 0.583
0.127 0.042 0.750
0.156 0.014 0.914

non-dimensionalized by the channel width (x=b = x�,
y=b = y�, and z=b = z�). The longitudinal velocity was
non-dimensionalized with the tail water velocity that
remained constant in the experiments (u� = u=0:628).
q� in Eq. (1) is the ratio of the upstream to downstream
main channel discharges.

q� =
Qm

Qm +Qt
; (1)

where Qm is the upstream main channel discharge
and Qt is the tributary discharge. This study was
conducted with various amounts of q�, which are shown
in Table 1.

3. Methodology

In this section, the used numerical methods are investi-
gated. Afterwards, the statistics that are used in order
to evaluate performance of the model are represented.

3.1. Radial Basis Function (RBF) neural
network

Because of advantages such as easy design, high
tolerance to input noise, good generalization of the
nonlinear problems, and the ability of online learning,
RBF has become one of the most popular neural
network methods. The RBF [33,34] consists in some

Figure 1. Schematic overview of the laboratory ume of Weber et al. [11].
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radial functions. The amounts of the radial functions
are directly related to the distance from the origin [35].
Input layer transforms the input variables into non-
linear space by using the radial functions. After that,
the output layer prepares the output of the model by
using a linear regression between the radial functions.
To this end, the output layer performs weighted sum-
mation of the radial functions. Weight of each radial
function indicates the impact of that function on the
model output. These weights are determined by using
the least squares method. The value of a radial basis,
which is shown by '(x; c), increases with the radial
distance r = kx � ck, where x is the input and c is
the radial function center. A radial function with N
dimensions and the linear regression result of an RBF
are shown in Eqs. (2) and (3), respectively.

f'(jjx� xijj)ji = 1; 2; � � � ; Ng; (2)

f(x) =
NX
i=1

ci'(jjx� xijj): (3)

With regards to the characteristic of linear determi-
nation of the radial functions in the output layer, the
RBF neural network is considered as one of the fast
convergence neural networks [36].

Determination of the correct number of hidden
layer neurons and the spread amount is one of the most
important processes of the RBF modeling and directly
a�ects the model performance. Trial and error method
is applied in this study to the RBF code in order to
determine the appropriate number of hidden neurons
and spread amount [28,36].

3.2. Gene Expression Programming (GEP)
The GEP, as a developed model of GP [37], is a
computer program based method. The output of this
method is presented by some subtrees that are linked
with each other by linking mathematical functions.
The algorithm of the GEP method is similar to that
of the GA. However, GEP uses the computer programs
instead of chromosomes in GA. First, the computer
programs of the initial population are randomly gener-
ated and, after that, the cost of each computer program
is determined by using the considered �tness function.
Afterwards, by using the elite, mutation, and crossover
processes, the next generation is constructed. GEP
follows an evolutionary process and generation recon-
struction is repeated until it reaches the determined
number of generations or accuracy [38,39].

In this study, various functions, which are allowed
to be used in the computer programs, and di�erent
subtree linking functions are investigated in order to
�nd the optimum GEP model. Other parameters
of the models are presented in Table 2 according to
Ferreira [39].

Table 2. GEP default parameters.

Parameter Properties

Number of generations 40000
Number of chromosomes 30
Head size 8
Number of genes 3
Fitness function Root mean square error
Mutation rate 0.044
Inversion rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1
Gene transposition rate 0.1

3.3. Statistical errors
In order to have a comparison between the numerical
models, the Mean Square Error (MSE), correlation
coe�cient (R), Mean Absolute Error (MAE), average
absolute deviation (%�), Scatter Index (SI), and BIAS
are used. The closer the amounts of the MSE, MAE,
%�, SI, and BIAS indices to zero and the closer the
amount of R to one, the higher the performance of the
models will be. The considered statistics are described
in Eqs. (4)-(9).

MAE =
�

1
n

� nX
i=1

��u�i;o � u�i;e�� ; (4)

R =

nP
i=1

�
u�i;o � �u�o

� �
u�i;e � �u�e

�s
nP
i=1

�
u�i;o � �u�o

�2 nP
i=1

�
u�i;e � �u�e

�2 ; (5)

MSE =
�

1
n

� nX
i=1

�
u�i;o � u�i;e�2 ; (6)

%� =

nP
i=1

��u�i;e � u�i;o��
nP
i=1

u�i;e
� 100; (7)

SI =

s
(1=n)

nP
i=1

��
u�i;e � �u�e

�� �u�i;o � �u�o
�	2

(1=n)
nP
i=1

u�i;o
; (8)

BIAS =

nP
i=1

�
u�i;e � u�i;o�
n

: (9)

In this equations, u�i;o and u�i;e are the ith non-
dimensional observed and estimated velocities, respec-
tively, and n is the number of investigated samples.
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4. Results and discussion

The aim of this section is to investigate the RBF, GEP,
and MNLR methods in the open-channel junction
longitudinal velocity �eld and discharge simulations.
Using the laboratory measurements of Weber et al. [11],
a total of 5466 samples are used in order to develop the
models. Also, 80% of the entire dataset (4373 samples)
are separated randomly for the training process, and
the remaining 20% (1093 samples) are considered as
the testing dataset. The input variables of the models
are non-dimensional coordinates of each point x�, y�,
and z� as well as the discharge ratio q�.

The results are presented in two parts. The goal
of the �rst part is to simulate the non-dimensional
longitudinal velocity, u�, by using the investigated
models. In addition, three di�erent equations are
proposed in this part that can simulate the velocity
�eld in the practical situations. In the second part,
by using the surface integral equation, the downstream
discharges of the junction are simulated and the results
of the investigated models are compared.

4.1. Velocity �eld simulation
The downstream longitudinal velocity �eld of the open-
channel junction is simulated in this section. The
performance of the RBF is directly related to the
optimum selection of the model's parameters. In order
to �nd the number of hidden layer neurons and the
spread amount in the RBF neural network, two loops
are added to the main RBF program, one for changing
the spread amount and the other for changing the
number of hidden layer neurons. Figure 2 shows
the performance of each model with various spread
amounts and hidden layer neuron numbers. In each
situation, the performance of the model is represented
by Root Mean Squared Error (RMSE). As it is shown
in this �gure, the RBF with 20 hidden layer neurons
and the spread value of one has the most appropriate
performance.

Figure 2. Spread and hidden neurons number
determination of the RBF.

The RBF output is presented in Eq. (10):

u� = LW � exp
����X((IW � �IN):^2)

�
:^0:5:� b1

�
:^2
�

+ b2; (10)

IN =
�
x� y� z� q�

�
; (10.1)

LW =
��3:45e10 �0:69 �62:58 19:07

61:35 3:09 �258:21::: :::251:28

�18:21 209:07 �199:33 1e10 0

0::: :::8:64e10 0 1:07e11 �1:75e10

�1:52e11 �5:09
�
; (10.2)

b1 = [0:83]; (10.3)

b2 = [�0:57]; (10.4)

IW =

266666666666666666666666666666666666664

�2:33 0:87 0:27 0:41
�4 0:87 0:3 0:41
�2:66 0:25 0:27 0:41
�1 0:87 0:27 0:58
�2:66 0:05 0:3 0:41
�3 0:87 0:04 0:41
�2:33 0:05 0:27 0:41
�2:33 0:12 0:27 0:41
�1 0:75 0:27 0:58
�2 0:05 0:27 0:41
...
�2 0:12 0:27 0:41
�2:33 0:87 0 0:41
�2:33 0:87 0 0:41
�2:33 0:87 0 0:41
�2:33 0:87 0:25 0:41
�2:33 0:87 0:01 0:41
�2:33 0:87 0:16 0:41
�2:33 0:87 0:02 0:41
�2:33 0:87 0:19 0:41
�2 0:05 0 0:41

377777777777777777777777777777777777775

; (10.5)

where IW and LW are the RBF coe�cients that are
determined in the modeling process, b1 and b2 are
biases of the model, and IN is the input vector that
contains the input variables of the model. It should
be noted that in this equation, ��, �+, and �^ are the
cell-by-cell operations.

Various parameters a�ect the GEP performance.
Among them, the mathematical functions allowed to be
used in the computer programs are the most important
ones. Six di�erent mathematical function combinations
are examined in this study in order to �nd the most
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Table 3. Considered mathematical function combinations.

Function De�nition RMSE

F1 +, �, �, / 0.3399

F2 +, �, �, /, p , Power 0.2456

F3 +, �, �, /, p , Power, lnx, log x, ex, 10x 0.2620

F4 +, �, �, /, p , Power, Average, Inverse 0.2778

F5 +, �, �, /, p , 3
p , Power, lnx, log x, ex, 10x, x2, x3, sinx, cosx, arctg x, negative, inverse 0.2534

F6 +, �, �, /, p , lnx, ex, x2, arctg x, Inverse, tanh x, not, average, maximum, minimum 0.2464

Table 4. Statistical indices for trained and tested datasets.

Models
Training Testing

MSE MAE R � SI BIAS MSE MAE R � SI BIAS

RBF 0.063 0.184 0.869 -22.403 -0.305 0.00017 0.067 0.187 0.860 -22.721 -0.319 -0.0124

GEP 0.055 0.177 0.887 -21.468 -0.285 -0.0045 0.056 0.179 0.885 -22.000 -0.291 -0.0033

MNLR 0.123 0.259 0.724 -31.478 -0.426 -0.0003 0.137 0.268 0.685 -32.697 -0.457 -0.0108

appropriate one. According to Table 3, the F2
mathematical function combination with the RMSE of
0.2456 has the best performance among the models.
Moreover, it is obvious that increasing the complexity
of the mathematical function combinations does not
always lead to better performance of the computer
programs.

As mentioned before, GEP's output is constructed
from some subtrees. Subtrees are linked with each
other by using a determined linking function. Many
studies have used additional linking functions to con-
nect the output subtrees [30,40-44]. However, in this
study, the division linking function with RMSE of
0.2361 has the best performance in comparison with
the addition, subtraction, and multiplication linking
functions with RMSEs of 0.2456, 0.2820, and 0.2491,
respectively. The output of the GEP model by using
the second mathematical function combination and
division linking function is presented in Eq. (11).

u� =

24srq(q� � z�)(q�y� ) � y�
35

,��
z�
x��y�2

�
�y�y�

�,24 0:6730q
y�
q

1:2522�z�
y�

35 :
(11)

Another method investigated in this study is MNLR.
The MNLR tries to �nd a non-linear relationship
between the considered input variables (x�, y�, z�, and
q�) and the output variable (u�). The MNLR output
equation is presented in the following formula:

u� = (2:91)+(�0:02)�x�(�99:36)+(�4:27)�y�(0:11)

+(124:48)� z�(6:23)+(�104:31)�q�(33:76): (12)

Performances of the RBF, GEP, and MNLR models
are shown in Table 4. According to this table, the
GEP, with MSE of 0.056, has better performance than
the RBF and MNLR models with MSEs of 0.067 and
0.137, respectively. In addition, it is evident that the
GEP and RBF models are signi�cantly more accurate
in simulating the open-channel junction longitudinal
velocity �eld simulation. The close performances of
the considered models in test and train datasets show
that there is no over-training occurring in the models.

A comparison of the experimental measurements
u� with the RBF, GEP, and MNLR predictions for
u� is presented in Figures 3, 4, and 5, respectively.
In each �gure, the upper plot shows the comparison
between the experimental and numerical u� for the
entire test dataset and, in order to have a more detailed
comparison, the lower plot compares the experimental

Figure 3. RBF modeling of u� in test dataset.
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Figure 4. GEP modeling of u� in test dataset.

Figure 5. MNLR modeling of u� in test dataset.

and numerical u� for the 500th to 700th samples of
the test dataset. From this �gures, it can be seen
that MNLR shows the worst performance in simulating
the longitudinal velocity. The RBF and GEP models
have close performances. However, according to the
lower plots, it could be concluded that GEP has better
performance in modeling the ow �eld in the open-
channel junctions.

The scatter plots of the considered models for test
and train datasets are presented in Figure 6. In this
�gure, the red line represents the exact 45� line. The
closer the scatters of a model to the exact line, the
higher the accuracy of the model will be. The blue
line in the plots shows the trend line of each dataset.
The trend line has the equation of y = ax + b and
closer a and b to one and zero, respectively, indicate
the better performance of the models. From Figure 6,
it is evident that the GEP model with a value of 0.7898,
b value of 0.1736, and R2 value of 0.7828, in the test
dataset, has better performance than other models.
The RBF model with a, b, and R2 of 0.7474, 0.2169,
and 0.7391, respectively, in test dataset, also has a good
performance, which is highly close to the GEP model.

The MNLR is the weakest model that cannot simulate
the complex velocity �eld around the junctions to any
degree.

4.2. Discharge simulation
Designing the sewer systems necessarily requires the
ability to accurately predict the ow discharge. Be-
cause of the crucial role of discharge in sewer structures,
there are many studies performed on this topic [45-
50]. Fortunately, using the u� simulation developed in
the previous part and the surface integral on the cross
section zones, the discharge of the junctions can be
simulated. The discharge can be modeled by using u�
according to the following equation:

Q =
x
A

u�dA; (13)

where Q is the discharge and u� is the longitudinal
velocity of open-channel junction. In this equation, A
represents the cross sections that are investigated in
the x� direction. In this study, the cross sections of
x� = �1, -1.33, -1.66, -2, -2.33, -2.66, -3, -3.33, and
-3.66 are investigated according to Figure 1.

The results of the discharge simulation are plotted
in Figure 7. In this �gure, the discharges are simulated
in various q� amounts. In the experimental study
of Weber et al. [11], the junction outow discharge
remains constant in all conditions up to 0.17 m3/s.
Therefore, the experimental results are plotted with
a straight black line in the �gure. It is obvious that
the models with closer values of simulated discharge
to this line have better performances. In order to
investigate the performance of each model in discharge
simulation, the Standard Deviation (SD) concept is
used (Eq. (14)):

SD =

vuut 1
N � 1

NX
i=1

�
Resi�
lineRes

�2

; (14)

where Resi is the residual of the ith simulated sample
according to the experimental residual, Res is the
average of the entire dataset residuals, and N is the
number dataset's samples.

By de�nition, almost 95% of the dataset fre-
quency is limited between Avg � 2 � SD and Avg +
2 � SD. Avg is the average of the entire dataset. Ac-
cording to Figure 7, despite the velocity �eld prediction
presented in the last part of results, the RBF model
with Avg + 2 � SD of 0.180 has better performance
than the GEP model with Avg + 2� SD of 0.182. As
an important result, the model with high accuracy in
modeling of the ow �eld velocity may have a worse
performance in modeling of the discharge. In fact,
high accuracy of the models in discharge prediction is
dependent on their capability of simulating the mean
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Figure 6. Experimental versus simulated u� by RBF, GEP, and MNLR models.

velocity of the investigated section. As in the previous
section, the MNLR model has worse performance than
the RBF and GEP models.

5. Conclusion

Simulating the velocity �eld and discharge of the sewer
junctions was investigated in this study. In order to
simulate the complex 3D downstream velocity �eld of
the junction, the non-dimensional coordinates of each
point (x�, y�, and z�) and discharge ratio (q�) were
chosen as the input variables. The modeling processes
were performed by using the RBF, GEP, and MNLR
methods. In order to �nd the optimum RBF model,

various numbers of hidden nodes and spread amounts
were tested and the RBF with 20 hidden neurons and
spread magnitude of one was chosen. The optimum
GEP model was chosen by running the GEP with
various linking and mathematical functions. Finally,
the optimum GEP was found by using the combination
of division linking function and +, �, �, =, p , and
Power mathematical functions. Using the developed
models, three di�erent equations for modeling the
longitudinal velocity in the open-channel junction were
presented. The results of the velocity �eld simulation
showed that the GEP model performed better than
the RBF and MNLR models. Afterwards, using the
surface integral concept, discharge of the junction's
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Figure 7. Discharge simulation with RBF, GEP, and
MNLR models.

downstream ow was simulated. The results showed
that despite the velocity prediction, the RBF method
had higher accuracy in modeling the discharge than
the GEP method. Therefore, it was concluded that
a model with high accuracy in velocity �eld prediction
might be weak in discharge simulation. In both velocity
�eld and discharge simulations, the MNLR method
performed signi�cantly worse than the RBF and GEP
methods, and it was concluded that this model could
not be used in the complex velocity prediction around
the junction. Considering the practical equations
presented in this study as well as the non-dimensional
input and output variables used in the models, the
results of the investigated methods can be utilized in
the future researches and practical situations.
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