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Abstract. Feature extraction by time series modeling based on statistical pattern
recognition is a powerful approach to Structural Health Monitoring (SHM). Determination
of an adequate order and identi�cation of an appropriate model play prominent roles
in extracting sensitive features to damage from time series representations. Early
damage detection under statistical decision-making via high-dimensional features is another
signi�cant issue. The main objectives of this study were to improve a residual-based
feature extraction method by time series modeling and to propose a multivariate data
visualization approach to early damage detection. A simple graphical tool based on Box-
Jenkins methodology was adopted to identify the most compatible time series model with
vibration time-domain measurements. Furthermore, k-means and Gaussian Mixture Model
(GMM) clustering techniques were utilized to examine the performance of the residuals of
the identi�ed model in damage detection. A numerical concrete beam and an experimental
benchmark model were applied to verifying the improved and proposed methods along with
comparative analyses. Results showed that the approaches were successful and superior to
a state-of-the-art order determination technique in obtaining a su�cient order, generating
uncorrelated residuals, extracting sensitive features to damage, and accurately detecting
early damage by high-dimensional data.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Early detection of damage is the initial step and key
component of Structural Health Monitoring (SHM) in
civil engineering systems, because there is no engineer-
ing and economic justi�cation to reconstruct most of
the large and complex infrastructures such as bridges,
towers, and dams. The process of SHM initially aims
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to evaluate the global structural condition and detect
early damage. Subsequently, one needs to locate and
quantify damage, which are local SHM procedures.
In the engineering literature, damage is de�ned as an
adverse change in a structure that leads to undesirable
alterations in the structural behavior and performance.
It may appear as cracks in concrete, loose bolts and
broken welds in steel connections, corrosions, fatigue,
etc. All of them may cause unfavorable stresses and
displacements, inappropriate vibration, failure, and
even collapse [1].

Currently, most of the methods in SHM focus
on the statistical pattern recognition paradigm. The
reason is that all SHM problems are subject to vari-
ous degrees of uncertainty. Therefore, the statistical
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approach to pattern recognition appears to stand out
as a natural way for SHM applications. On the other
hand, this paradigm can assist engineers in applying
raw vibration data and implementing early damage
detection, localization, and quanti�cation based on
data-driven methods for damage classi�cation. These
methods are run in the four steps of operational
evaluation, data acquisition, feature extraction, and
statistical decision making [1]. Operational evaluation
is concerned with the lifestyle, economic justi�cation,
limitations, and possibility of performing the SHM.
Data acquisition process includes choosing the exci-
tation tools (force or ambient vibration), the sensor
types (wired or wireless), the number and placement of
sensors, and the design of sensing systems. However,
the majority of technical studies focus on the steps
of feature extraction and statistical decision-making.
A comprehensive review of these steps can be found
in [2,3].

From the statistical pattern recognition perspec-
tive, feature extraction is intended to �nd out mean-
ingful information from raw vibration data through
advanced signal processing techniques [4]. Sensitivity
to damage is the main characteristic of such infor-
mation, which can be translated to damage-sensitive
features. On the other hand, statistical decision-
making utilizes statistical methods based on machine
learning algorithms to discriminate the damaged state
of the structure from the normal condition. In general,
the machine learning algorithms are categorized in
supervised and unsupervised learning classes, both of
which mainly aim to train statistical models or clas-
si�ers by training data and to make a decision about
the problem of damage (e.g. early damage detection)
via testing data [1]. In the supervised learning class,
one needs to use features from both the undamaged
and damaged conditions, whereas the unsupervised
learning class only requires the features of undamaged
state to learn the classi�er of interest. This noteworthy
speci�cation of unsupervised learning class makes it
more bene�cial than the supervised learning strategy
for SHM. This is because it may not be conceivable
to detect damage in large and complex structures in
an e�ort to establish a supervised learning framework.
Novelty detection [1,5,6] and clustering analysis [7,8]
are well-known unsupervised learning techniques for
early damage detection.

Time series modeling is one of the powerful and
promising approaches to feature extraction [9]. The
major advantage of this approach is utilizing raw
time series data (i.e., excitation and/or responses)
for �nding out the damage-sensitive features. This
bene�t provides the great opportunity of neglecting the
transformation of raw time series data into frequency
and/or modal domains. As another advantage, time
series representations use a few samples of time series

dataset to describe it [10]. Depending upon the nature,
type, and dimension of time series data, there is a wide
range of models that give an appropriate diversity for
feature extraction. Eventually, the main merit of time
series modeling in the context of SHM is that some
statistical characteristics of time series representations
(e.g. the model parameters and residuals) are sensitive
to damage. In case of measuring linear and stationary
(time-invariant) vibration data, some widely used time
series models for feature extraction are autoregres-
sive (AR) [11], autoregressive with exogenous input
(ARX) [9], autoregressive-autoregressive with exoge-
nous input (ARARX) [12], autoregressive moving aver-
age (ARMA) [13], and autoregressive moving average
with exogenous input (ARMAX) [14].

In spite of numerous applications of time series
modeling to feature extraction, some important issues
and limitations should be dealt with. The signi�cant
issue in time series modeling is concerned with the de-
termination of an adequate and correct order. Because
it directly a�ects the model su�ciency and accuracy,
one essentially needs to select a robust order that
enables the model of interest to generate uncorrelated
residuals. From a statistical viewpoint, the residual
sequences of a time series representation should not be
dependent or correlated, in which case one can realize
the insu�ciency and inaccuracy of model order [15].
In this regard, it is signi�cant to improve the time
series modeling and guarantee the model accuracy and
adequacy by generating uncorrelated residuals. From
the engineering aspect, an improper order does not
allow the time series model to capture the underlying
dynamics of structure, which may lead to extract-
insensitive features to damage and weak detectability
of damage [16]. Therefore, a reliable feature extraction
via time series modeling depends strongly on obtaining
an accurate and su�cient order. The main limitation
in this aspect is that the classical order selection
techniques may not yield a proper order and cause time
series models to produce uncorrelated residuals.

The other important issue in time series modeling
is to identify an appropriate model. Although diverse
types of time series models have been utilized to extract
the damage-sensitive features for SHM applications,
the limitation is that little attention has been paid to
model identi�cation for feature extraction. The main
reason for the importance of this issue is the availability
of a broad range of time series representations that
seem suitable for modeling; however, they may yield
poor �ts resulting from incompatibility with the nature
of time series data or may lead to a time-consuming and
complex process by incorporating redundant orders.

Considering the above-mentioned issues and limi-
tations, this study proposes an improved residual-based
feature extraction method via time series modeling
based on improvements in order determination and
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selection. Box-Jenkins methodology is presented to
design a simple graphical tool for model identi�cation.
The main advantage of the improved method is extract-
ing sensitive features (the model residuals) to damage
with an accurate and su�cient order that guarantees
extracting uncorrelated residual samples. A multivari-
ate data visualization approach called Andrews plot
is proposed to detect early damage using the model
residuals obtained from the undamaged and damaged
conditions. The main contribution of this approach
is establishing a graphical and simple decision-making
framework for damage detection. Appropriateness
to high-dimensional data is the great bene�t of the
Andrews plot. Additionally, two e�cient and successful
clustering techniques, namely k-means and Gaussian
Mixture Model (GMM), are applied to examining the
reliability and performance of the damage-sensitive
features extracted from the improved feature extraction
method for early damage detection. A numerical
concrete beam and an experimental benchmark labo-
ratory frame are utilized to demonstrate accuracy and
e�ectiveness of the improved and proposed methods.
As will be shown, these methods are successful in
obtaining the accurate and adequate order, extracting
sensitive features to damage, and e�ciently detecting
early damage.

2. Review of literature

Although it is common to utilize non-time series-based
techniques such as approaches based on the extraction
of modal data in either data-driven or model-driven
framework, some signi�cant limitations of these tech-
niques, including low sensitivity to local damage, com-
putational di�culties, and uncertainties for complex
structures, raise time series modeling as a powerful
data-driven strategy for feature extraction [9,17]. In
this regard, Farrar and Jauregui [18,19] conducted
comparative studies to demonstrate major limitations
related to the use of modal data for damage detection.

A key component of employing time series rep-
resentations in feature extraction is to determine an
adequate and correct order. Figueiredo et al. [16]
investigated the e�ect of di�erent orders of AR model
on damage detection by four classical order deter-
mination techniques. They selected three types of
AR order and concluded that an inappropriate choice
would lead to weak damage detectability. Gul and
Necati Catbas [5] utilized the simple partial autocor-
relation function for obtaining the order of AR model
without any investigation into the model accuracy and
adequacy for generating uncorrelated residuals. The
applications of the well-known information criteria for
order selection such as Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) can
be found in [9,11]. The main limitation on using such

techniques is that they may suggest di�erent model
orders and should be used with careful judgment [13].
On the other hand, as mentioned in the previous
section, such approaches may not determine su�cient
orders for extracting the uncorrelated residuals.

In relation to the residual-based feature extrac-
tion algorithm, Fugate et al. [20] utilized the residuals
of AR model and statistical control charts for early
damage detection. Gul and Necati Catbas [21] pre-
sented a new sensor clustering method based on ARX
model and applied its residual sequences with the aid of
a damage indicator to damage detection. For locating
structural damage, Roy et al. [22] proposed an ARX-
model-based damage localization framework by using
the model residuals and some damage indicators based
on statistical hypothesis tests. The main di�erence
between the improved residual-based feature extraction
method presented here and the conventional technique
used in the above-mentioned studies is that the former
guarantees that the residual sequences extracted from
the identi�ed model and the improved order are uncor-
related. This does not only ensure the model accuracy
and adequacy, but also lead to the extraction of
sensitive features to damage with an accurate damage
detection. As the other di�erence, in the improved
method, the maximum amount of improved orders
at all sensors is �tted to the vibration time-domain
responses. This process makes sure of extracting the
uncorrelated residuals from all sensors.

3. Time series modeling

In statistics, time series modeling is a method that
attempts to �t a mathematical equation to time series
data for some special issues such as data analysis,
model identi�cation, parameter estimation, and fore-
casting [15]. On the other hand, time series modeling
is a powerful tool for feature extraction. Since there
are various types of time series data (i.e., stationary
versus non-stationary, linear versus nonlinear, seasonal
versus non-seasonal, etc.) [23], it is necessary to select
an appropriate model, estimate its parameters, and val-
idate the model su�ciency and accuracy by generating
uncorrelated residuals [15].

Considering the linear and stationary vibration
time-domain measurements, time series modeling is
usually carried out by time-invariant linear represen-
tations such as AR, ARX, ARARX, ARMA, and
ARMAX. In general, they are comprised of AR or
output, exogeneous (X) or input, and Moving Average
(MA) or error terms. The AR model is known as
the simplest time series representation that linearly
depends on the output data (the vibration response).
In the availability of both the input (the measurable
and known excitation force) and output data, the
ARX model is usable. It is possible to combine these
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models with the MA term and produce the ARMA
representation for the output-only cases and ARMAX
model for the input-output conditions [15]. The general
formulation of a time series model by incorporating the
input, output, and error terms is expressed as follows:

y(t) + �1y(t� 1) + � � �+ �py(t� p) = '1u(t� 1)

+ � � �+ 'qu(t� q) + e(t) +  1e(t� 1) + � � �
+  re(t� r); (1)

where u(t) and y(t) denote the input and output
data at time t; e(t) is the residual sequence, which
corresponds to the di�erence between the measured
time series data and the predicted data obtained by
the model. In Eq. (1), � = [�1 � � � �p], � = ['1 � � �'q],
and 	 = [ 1 � � � r] represent the unknown parameters
of the model. Moreover, the orders of output, input,
and error terms are de�ned as p, q, and r, respectively.
It is possible to rewrite Eq. (1) in a more compact form
as follows:

A(z)y(t) = B(z)u(t) +D(z)e(t); (2)

where, A(z), B(z), and D(z) are the polynomials in
the delay operator z�1, which can be formulated as:

A(z) = 1 + �1z�1 + �2z�2 + � � �+ �pz�p;

B(z) = 1 + '1z�1 + '2z�2 + � � �+ 'qz�q;

D(z) = 1 +  1z�1 +  2z�2 + � � �+  rz�r: (3)

It would be interesting to know that Eq. (1) refers to
the formulation of ARMAX. Any change in the terms
of this formulation leads to obtaining the other types
of time-invariant linear representations. For example, if
r = 0, in which case the error term or D(z) is removed
from Eq. (1), the model becomes ARX as follows:

A(z)y(t) = B(z)u(t) + e(t): (4)

The ARMA model is obtained by setting q to zero or
removing B(z) from Eq. (1) as:

A(z)y(t) = D(z)e(t): (5)

Finally, the AR model is generated by q = r = 0 and
eliminating B(z) and D(z), that is:

A(z)y(t) = e(t): (6)

4. An improved residual-based feature
extraction method

In the SHM community, the residuals of time series

models are chosen as the damage-sensitive features [9].
Unlike the process of feature extraction by the model
parameters, the residual-based feature extraction al-
gorithm exploits the model orders and parameters
obtained from the normal condition of the structure
in an e�ort to extract the residual sequences of the
damaged state. By obtaining the model information
from the only normal condition, one can realize that
this algorithm acts in an unsupervised learning manner.
The fact beyond the residual-based feature extraction
approach is that the model (i.e., its orders and pa-
rameters) used in the normal condition will no longer
provide a good �t and do not correctly predict the
response of the damaged state. Therefore, the residual
samples associated with this state will increase [16].
In this case, the increase in the model residuals is an
indicator of damage occurrence. The main merit of
using the residual-based feature extraction algorithm
is that one does not require any order determination
and parameter estimation for the damaged structure.

The improved residual-based feature extraction
method presented here consists of two stages. The �rst
one belongs to the normal or undamaged condition of
the structure. At this stage, one attempts to iden-
tify an appropriate model based on the Box-Jenkins
methodology, determine adequate and accurate orders,
estimate the model parameters, and then extract the
uncorrelated residuals of the identi�ed model at each
sensor as the damage-sensitive features of the normal
condition. On the contrary, the second stage is
concerned with the damaged state of the structure.
At this stage, the obtained model characteristics (i.e.,
the orders and parameters) are applied to extracting
the residual sequences associated with the damaged
state. For the sake of convenience, Figure 1 depicts
the 
owchart of the improved residual-based feature
extraction method. In the following, all steps in this
�gure are described in details.

Step 1. Model identi�cation: This is the initial
step of time series modeling. One promising and
straightforward way of identifying the most proper
time series representation for the stationary data is
Box-Jenkins methodology [15]. It relies on using
Auto-Correlation Function (ACF) and Partial Auto-
Correlation Function (PACF), which are known as
important statistical tools for measuring the corre-
lation between time series samples. Under the Box-
Jenkins methodology, if the plot of ACF tails o� in
an exponential decay or a damped sine wave and
the plot of the PACF becomes zero after a lag, time
series conforms to the AR and ARX models for the
output-only and input-output cases, respectively. On
the contrary, if the plot of PACF tails o� in an
exponential decay or a damped sine wave and the
plot of the ACF cuts o� after a lag, one can select the
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Figure 1. Flowchart of the improved residual-based feature extraction method: (a) The �rst stage for an undamaged
state and (b) the second stage for a damaged state.

MA representation. Eventually, if the plots of both
ACF and PACF tail o� in an exponential decay or
damped sine waves, ARMA and ARMAX are chosen
as the most proper time series models for the output-
only and input-output conditions, respectively. In
Figure 1, the identi�ed model is designated by \M",
which can be one of the time-invariant linear models;

Step 2. Initial order determination: In this step,
it is attempted to determine the initial orders (p0, q0,
and r0) at each sensor via one of the state-of-the-art
order selection techniques based on the concept of
information criterion, such as AIC and BIC [15]. It
is signi�cant to point out that ns denotes the number
of sensors mounted on the structure. Moreover, it
should be mentioned that the AIC often tends to
the over�tting problem (i.e., determining redundant
orders that make an elaborate model with a poor
forecasting [15]), while the BIC enhances it by adding
a rigorous penalty term. For this reason, in this
article, the BIC technique is applied to choosing the
initial model order. Given an n-dimensional time
series dataset and a model with � parameters, in
which � denotes the sum of the model orders (i.e.,
� = p + q + r for ARMAX, � = p + r for ARMA,
� = p + q for ARX, and � = p for AR), the BIC is

given by:

BIC = n ln
�
�̂2
e
�

+ � ln(n); (7)

where �̂2
e denotes the estimate of the residual vari-

ance. To gain the initial orders, one should examine
a wide range of orders (e.g. 1 � 100) and choose a
number for each of p0, q0, and r0 with the minimum
BIC value;
Step 3. Improved order determination: Al-
though the information criteria are usually applied
to choosing the orders of time series representations,
the uncorrelatedness of the residual samples gained
by them may not be fully satis�ed. Hence, the
initial orders are developed to achieve the improved
orders (pi, qi, and ri). The development is based
on observing the correlation of residual sequences by
the ACF. If the values of ACF are roughly located
between the upper and lower bounds of a con�dence
interval, one can understand that the model residuals
are uncorrelated and pi, qi, and ri are chosen as the
improved orders; otherwise, they should be improved;
Step 4. Maximum order selection: For the
damage detection problems, it is better to use fea-
tures (either the model parameters or the model
residuals) with the same dimensions for both the
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undamaged and damaged states. To do so and
deal with the inequality of feature dimensions, the
maximum number of each improved order is selected
to utilize in the processes of parameter estimation
and residual extraction. In this step, pm, qm, and rm
denote the maximum orders for the output, input,
and error terms, respectively;

Step 5. Modeling by the maximum orders: The
identi�ed model in the �rst step with the maximum
orders (e.g. AR(pm), ARMA(pm; rm), etc.) is �tted
to the vibration responses of all sensors. The main
property (advantage) of this type of modeling is
guaranteeing the extraction of uncorrelated residuals
from all sensors;

Step 6. Parameter estimation: The unknown
model parameters (�m, �m, and 	m) are estimated
by one of the well-known computational techniques
such as Least Squares, Burg, Forward-Backward, and
Yule-Walker [15]. In this article, the Burg approach
is applied to estimating the identi�ed model;

Step 7. Residual extraction for the undam-
aged state: Eventually, the uncorrelated model
residuals at each sensor are extracted as the damage-
sensitive features for the normal condition;

Step 8. Modeling by the information of the
undamaged state: In this step, the maximum
orders and the model parameters obtained from the
normal condition are employed to model the vibration
responses of the damaged structure;

Step 9. Residual extraction for the damaged
state: Similarly to Step 7, the model residuals at
each sensor are extracted as the damage-sensitive
features for the damaged condition.

5. A multivariate data visualization method

In the multivariate data visualization, Andrews plot
or Andrews curve is a graphical tool to visualize high-
dimensional multivariate data [24]. The function of An-
drews plot is based on Fourier series in which variables
are the high-dimensional samples. More precisely, this
graphical tool calculates a periodic function f(t), which
is composed of sine and cosine components, to depict
each observation of the multivariate dataset. Apart
from appropriateness to the high-dimensional data, the
other merit of the Andrews plot is the ability to detect
outliers or adverse changes in time series data, which
makes it a simple and e�cient approach to damage
detection.

Assuming that Yi;j 2 <nm�ns is a multivariate
time series dataset, where i = 1; 2; � � � ; nm denotes the
number of observations and j = 1; 2; � � � ; ns refers to
the number of variables, the function f(t) for the ith

observation can be formulated in the following forms:

fi(t) =
Yi;1p

2
+Ai;2 sin(t) + Yi;3 cos(t) + � � �

+ Yi;ns�1 sin
�
nm� 1

2
t
�

+ Yi;ns cos
�
nm� 1

2
t
�
; (8)

fi(t) =
Yi;1p

2
+ Yi;2 sin(t) + Yi;2 cos(t) + � � �

+ Yi;ns sin
�nm

2
t
�
; (9)

where t 2 [��; �]. The application of Eq. (8) is related
to the cases in which ns is an odd number. By contrast,
if ns is an even number, one should apply Eq. (9). For
the problem of damage detection, it is only necessary
to collect the residual sets of both the undamaged
and damaged conditions to generate a multivariate
time series dataset. Accordingly, nm is obtained by
multiplying the number of undamaged and damaged
conditions (the default value is 2) by the number of
samples in each residual vector. Under the theory of
Andrews plot, it is possible to detect early damage by
discerning the curve deviations regarding the damaged
state from the normal condition.

6. Clustering analysis

Clustering is an unsupervised learning approach in-
tended to arrange large quantities of multivariate data
into natural groups or clusters. This approach consists
of various algorithms such as hierarchical, partitioning,
self-organizing maps, etc. each of which seeks to
organize a given dataset into homogeneous clusters [25].

6.1. k-means clustering
The k-means clustering is one of the well-known un-
supervised learning methods that falls into a non-
hierarchical or partitioning clustering strategy [25,26].
This method simply splits a multivariate dataset into
k predetermined groups or clusters so that the samples
within a cluster are similar, whereas the samples from
di�erent clusters are quite dissimilar. The k-means
algorithm is an iterative procedure that assigns the
observations of the multivariate dataset to exactly one
of the k clusters de�ned by centroids. Once the cen-
troids of k clusters have been determined, the distance
of each observation in each cluster from its centroid
is computed by means of a distance method, such
as Euclidean-Squared Distance (ESD) in the following
form:

ESDk = (xi � ck)T (xi � ck); (10)
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where xi is the ith data sample of the kth cluster.
Moreover, ck represents the centroid of the kth cluster,
which corresponds to the mean of all data points in this
cluster. One merit of the k-means clustering method
is establishing an unsupervised learning manner by
partitioning the multivariate datasets without any
e�ort to train a classi�er. In other words, one can state
that it is a non-model clustering approach [25].

For the process of early damage detection, it is
initially necessary to establish an nm-by-ns multivari-
ate dataset (Y 2 <nm�ns) and then, perform the k-
means clustering in an e�ort to determine an nm-by-k
ESD matrix. In each cluster, the distance values of the
damaged state are separable from the corresponding
quantities of the normal condition.

6.2. Gaussian Mixture Model (GMM)
A GMM is a probabilistic model under the assumption
that all samples in a dataset are generated from a
mixture of a �nite number of Gaussian distributions
with unknown parameters. This model is composed of
k multivariate normal density components or clusters.
The GMM creates a model-based clustering approach,
which utilizes multivariate �nite mixture models aim-
ing at determining the main clusters/components of
datasets. In order to perform a clustering algorithm
by the GMM, it is necessary to learn a mixture model
(a classi�er) by using the features of the undamaged
condition of the structure as the training data. Suppose
that X 2 <n�ns is an n-dimensional multivariate
dataset. This matrix is equivalent to the model
residuals of the normal condition obtained from all
sensors. Using k components, the trained GMM is
parameterized by the mean vector (�k) and covariance
matrix (�k) for each component in the following
form [27]:

GMM(xj�k;�k) =
1

(2�)n=2j�kj1=2�
�1

2
(x� �k)T��1

k (x� �k)
�
: (11)

The unknown parameters (the mean vector and covari-
ance matrix) are estimated by the classical maximum
likelihood estimation based on the expectation maxi-
mization algorithm. For the process of early damage
detection and clustering the distance of each observa-
tion in the testing dataset, an nm-by-ns multivariate
dataset (Y 2 <nm�ns) from each component of the

GMM is calculated by a distance method such as
Mahalanobis-Squared Distance (MSD) as follows:

MSDk = (y � �k)T��1
k (y � �k): (12)

For the process of early damage detection, an nm-by-k
MSD matrix can be obtained. In each component, the
distance quantities of the damaged state are detectable
from the corresponding values of the undamaged con-
dition.

6.3. Choosing the optimal number of clusters
Selection of the optimal number of clusters is a key
element of a clustering method. In most cases, this
process is typically conducted by the training dataset;
that is, the damage-sensitive features of the undamaged
condition are applied to selecting k. One reliable
way is to employ the methodology based on Silhouette
value [28]. It is a measure of how similar an observation
of a multivariate dataset is to its own cluster compared
to other clusters. The silhouette value varies from
�1 to 1. Let ai be the average distance between the
ith sample and all other data points within the same
cluster. Furthermore, bi is de�ned as the lowest average
distance of the ith sample to all data points in any
other cluster. With these de�nitions, the formulation
for obtaining the silhouette value is given by:

S =
bi � ai

max(ai; bi)
: (13)

A high silhouette value indicates that S well matches
its own cluster and poorly matches the neighboring
clusters. If the majority of data points have high
silhouette values, the clustering solution is appropriate;
otherwise, one can deduce that the clustering solution
may have improper performance with either too many
or too few clusters.

7. Applications

7.1. A numerical concrete beam
In order to verify the accuracy and capability of the
improved and proposed methods, a numerical model of
the concrete beam is simulated as shown in Figure 2.
This model is constructed by the �nite element method
under Bernoulli-Euler beam theory with the aid of an
in-house code implemented in MATLAB environment.
Based on this theory, each element of the beam includes
four Degrees of Freedom (DoFs), in which case it is
discretized by 11 elements (E1-E11), 12 nodes, and 22

Figure 2. Numerical model of the concrete beam.
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DoFs. Assume that similar damping mechanisms are
distributed throughout the beam; hence, the classical
damping is an appropriate idealization. Furthermore,
Rayleigh damping approach is utilized to construct the
damping matrix by using 5% damping ratio for all
modes.

The geometry of the beam element is length
300 mm, height 250 mm, and width 250 mm in the
cross-section. The material properties of the beam are
the modulus of elasticity 22.3 GPa, material density
2400 kg/m3, and Poisson coe�cient of 0.2. It is
assumed that the beam is equipped with ten sensors
(i.e., S1-S10 as shown in Figure 2) at the bottom edge
to acquire acceleration time histories in the vertical
direction. The vibration response of each sensor is
measured at 25 sec in 0.003125 sec time intervals
(320 Hz sampling frequency), which leads to 8000
data samples. The beam is subjected to di�erent
Gaussian white noise signals in the vertical direction
to simulate random excitation forces. Furthermore,
Newmark method [29] is utilized to implement the
simulations for obtaining acceleration time histories.

A single damage as a 
exural crack is simulated
by reducing the concrete 
exural rigidity at the middle-

span of the beam (Element 6 or E6). Based on this
damage pattern, three incremental damage scenarios
are de�ned at the location of damage. This pattern is a
realistic simulation of cracks in the reinforced concrete
beams, which is introduced as a common way to use in
the numerical applications [30]. Table 1 represents the
undamaged and damaged cases of the numerical beam.

At each sensor, the most appropriate time series
model is identi�ed using the Box-Jenkins methodology.
By using the vibration responses of the beam (the
output-only condition), one does not need to apply
time series models that require the input terms such
as ARX or ARMAX. Hence, the only remaining time-
invariant linear models are AR and ARMA. Figure 3
shows the ACF and PACF of the acceleration time
histories for sensor 5 in the �rst and fourth cases,
respectively.

From these �gures, it is clear that the PACFs
become approximately zero after the 30th lag, whereas
the ACFs have exponentially decreasing forms with-
out any inclination toward zero. According to the
Box-Jenkins methodology, such observations con�rm
that the acceleration time histories conform to the
AR process. Therefore, one should choose the AR

Table 1. Structural state conditions in the numerical model of the beam.

Case Condition Location Structural change Index (%)

1 Undamaged | | 0
2 Damaged E6

Reduction in concrete 
exural rigidity (EIc)
{10

3 Damaged E6 {20
4 Damaged E6 {40

Figure 3. Model identi�cation by the Box-Jenkins methodology at sensor 5 of the numerical beam: (a) Auto-Correlation
Function (ACF) in Case 1, (b) Partial Auto-Correlation Function (PACF) in Case 1, (c) ACF in Case 4, and (d) PACF in
Case 4.
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representation to use in the feature extraction. The
same conclusion is obtainable for the other sensors and
cases.

In order to extract the residuals of AR model as
the damage-sensitive feature, the initial and improved
AR orders of Case 1 (the normal condition of the beam)
should be determined as presented in Table 2. In this
regard, the initial orders are gained by the state-of-the-

Table 2. Determining the initial and improved
autoregressive (AR) orders for Case 1.

Sensor no. Initial orders Improved orders
1 17 27
2 19 29
3 15 22
4 15 23
5 12 24
6 14 25
7 11 19
8 14 23
9 17 26
10 17 29

art BIC technique. In addition, Figures 4 and 5 com-
pare the ACFs of the model residuals obtained from
these orders in terms of extracting the uncorrelated
residuals at sensors 3 and 8. In these �gures, the dashed
lines are the upper and lower bounds of 95% con�dence
interval.

From Figure 4, it is apparent that there are several
violations of the samples of ACF on the upper and
lower limits. This con�rms that the initial order gained
by the BIC technique fails in obtaining the uncorrelated
residuals as the main factor for the model adequacy and
accuracy. On the contrary, the observations in Figure 5
clearly show that the samples of ACF for the model
residuals obtained from the improved order are within
the limitations of upper and lower bounds, implying
the uncorrelatedness of the residual sequences. It is
important to note that the amount of ACF at the �rst
lag always corresponds to one.

Based on the third step of the improved feature
extraction method (Figure 1), the maximum order
(pm) is 29, which should be applied to all sensors
for parameter estimation and residual extraction. Re-
moving the �rst 29 residual samples from all sensors
because they are zero, the �nal residual vectors for

Figure 4. Auto-Correlation Function (ACF) of the autoregressive (AR) model residuals using the initial order obtained
by the state-of-the-art Bayesian Information Criterion (BIC) technique: (a) Sensor 3 and (b) Sensor 8.

Figure 5. Auto-Correlation Function (ACF) of the autoregressive (AR) model residuals using the improved order: (a)
Sensor 3 and (b) sensor 8.
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each of the undamaged and damaged cases contain
7971 observations (rows) and 10 variables (columns).
To use the Andrews plot for early damage detection
by considering Cases 1{4, a multivariate dataset is
made including 31884 samples in rows (nm = 31884,
which is calculated by multiplying the number of cases
by the number of observations of the residual set)
and 10 variables in columns (ns = 10). Figure 6
indicates the results of the early damage detection by
the Andrews plot in Cases 1{4 based on the residual
datasets obtained from the initial and improved orders.
This �gure is intended to compare the performance of
the AR model residuals extracted from these orders
in the early damage detection. Note that since ns is
an even number, Eq. (9) is used to plot the Andrews
function.

As can be seen in Figure 6(a), it is di�cult to
recognize the di�erence between Cases 1 and 2 for
damage detection. Almost the same conclusion can
be drawn im Cases 1 and 3; however, a discrepancy
is clearly observed between Cases 1 and 4. Therefore,
it can be deduced that the residual sequences of AR
model with the initial order cannot provide reliable
results for damage detection. In contrast, Figure 6(b)
shows clear discrepancies between the undamaged and

damaged cases. Such observations con�rm the positive
e�ect of using the improved order on damage detection.
In addition, in Figure 6(b), it is seen that the Andrews
plot not only detects early damage in the beam but also
estimates the level of damage severity with the rises in
the curves for Cases 1{4.

For the k-means and GMM clustering approaches,
the methodology of Silhouette value is applied to
determining the optimal number of clusters as shown
in Figure 7. To achieve this purpose, the uncorrelated
residuals of AR(29) �tted to the acceleration responses
of all sensors in the undamaged condition (Case 1) are
chosen as the training data. In Figure 7, the cluster
numbers for the k-means and GMM methods are 5 and
4 based on the maximum Silhouette values.

Finding the optimal number of clusters, Figure 8
illustrates the results of early damage detection in
each cluster via the ESD technique used in the k-
mean clustering. The multivariate dataset (Y) for this
clustering approach consists of 31884 observations and
10 variables.

As Figure 8 reveals, one can conclude that the
k-mean clustering method by means of the residual
datasets of AR model extracted from the improved
iterative feature extraction technique is able to accu-

Figure 6. Early damage detection by the Andrews plot in the numerical beam based on (a) the residual datasets obtained
from the initial order, and (b) the residual datasets obtained from the improved order.

Figure 7. The optimal number of clusters in the beam: (a) k-means and (b) Gaussian Mixture Model (GMM).
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Figure 8. Early damage detection in the numerical beam using the k-means clustering technique: (a) 1st cluster, (b) 2nd
cluster, (b) 3rd cluster, (d) 4th cluster, and (e) 5th cluster.

rately distinguish the undamaged condition from the
damaged one. In this �gure, it can be observed that
Cases 2{4 indicate the damaged conditions of the beam
since the values of ESD in each cluster exceed the
threshold values (the horizontal lines). In contrast,
all of the distance quantities in Case 1 are below
this value. Note that the threshold limit is based
on the upper-bound 95% con�dence interval of the
ESD values associated with the undamaged condition.
Furthermore, it is seen that the distance quantities
in each cluster increase with increasing the level of
damage severity. In this regard, the distances of Case 4
are higher than the corresponding values in the other
damaged conditions (Cases 2 and 3). This means that

the severest damage scenario gives the largest distance
values.

Figure 9 presents the results of the early damage
detection by the GMM clustering technique. In this
�gure, each sample indicates an MSD value. Unlike
the k-means clustering, the GMM clustering approach
needs to train a model using the training data (X)
containing the uncorrelated residuals of the undamaged
condition with 7971 residual samples in 10 variables.
On the other hand, the testing data (Y) consists
of 31884 observations (nm) including the residual
sequences of all cases and the same variables as X.
Obtaining the MSD values in each cluster, it is seen
that the GMM clustering approach gives the same
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Figure 9. Early damage detection in the numerical beam using the Gaussian Mixture Model (GMM) clustering
technique: (a) 1st cluster, (b) 2nd cluster, (c) 3rd cluster, and (d) 4th cluster.

Figure 10. (a) Three-story laboratory frame [16]. (b) Sensor (channel) locations.

results of the early damage detection as the k-means.
Eventually, all observations in Figures 8 and 9 lead to
the conclusion that the improved residual-based feature
extraction and the mentioned clustering methods are
reliable tools for SHM applications.

7.2. An experimental laboratory benchmark
frame

Another validation of the improved and proposed
methods is carried out by a set of experimental datasets
from a laboratory benchmark model [31]. It is a

three-story aluminum frame as shown in Figure 10(a).
Four accelerometers were mounted on the 
oors to
measure acceleration time histories at each 
oor. A
random vibration load was applied by means of an
electrodynamic shaker to the base along the centerline
of the frame. The sensor signals were sampled at
320 Hz for 25.6 sec in duration, which was discretized
into 8192 data points with 0.003125 sec time intervals.

Damage was simulated as the breathing crack
by a bumper and a suspended column between the
second and third 
oors. Di�erent levels of damage
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Table 3. The structural state conditions of the laboratory frame.

State(s) Condition Description
1 Undamaged Baseline condition

2{3 Undamaged Simulated operational variability by adding a concentrated mass (1.2 kg) on the
base and �rst 
oors

4{9 Undamaged Simulated environmental variability by decreasing structural sti�ness at the �rst,
second, and third 
oors

10{14 Damaged Nonlinear damage (gap = 0.20, 0.15, 0.13, 0.10, and 0.05 mm)

15{17 Damaged Nonlinear damage (gap = 0.20, 0.20, and 0.10 mm) with simulated operational
variability at the base and �rst 
oors

Figure 11. Model identi�cation by the Box-Jenkins methodology at sensor 5 of the laboratory frame: (a)
Auto-Correlation Function (ACF) in state 1, (b) Partial Auto-Correlation Function (PACF) in state 1, (c) ACF in state
14, and (d) PACF in state 14.

severity were considered by the diverse gap between
the suspended column and the bumper. This type of
damage is a simulation of fatigue crack with nonlinear
behavior that is able to open and close under load-
ing conditions or loose connections in the structure.
Table 3 summarizes the structural state conditions of
the test structure with �ve damage levels from the gap
of 0.20 mm (the lowest level of nonlinear damage) to
0.05 mm (the highest level of nonlinear damage). More
details about the laboratory frame and full descriptions
of the structural conditions can be found in [31]. In
this study, the states 1, 5, 10, 14, and 17 are utilized
to examine the improved and proposed methods.

In a similar manner to the numerical example, the
Box-Jenkins methodology is used to identify the most
compatible time series model with the acceleration time
histories. As a sample, Figure 11 depicts the ACF and
PACF of sensor 5 for the states 1 and 14. It is observed
that the plots of ACFs have exponentially decreasing
forms, whereas the plots of PACFs roughly become zero

Table 4. The initial and improved orders of the AR
models at all sensors of State 1.

Sensor no. 2 3 4 5

Initial orders 36 28 12 16
Improved orders 46 40 31 35

after the 30th lag. Therefore, one can argue that the
selection of AR model is accurate and reasonable.

Table 4 presents the initial and improved orders of
AR models for sensors 2{5 in the �rst structural state.
The initial orders are determined by the state-of-the-
art BIC technique. The maximum order is 46, in which
case AR(46) is �tted to the acceleration responses
acquired from all sensors in the selected undamaged
and damaged conditions for the extraction of the model
residuals as the damage-sensitive features.

A comparative analysis is carried out to evaluate
the correlation of the residual sequences obtained
from the initial and improved AR orders. For this
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Figure 12. Auto-Correlation Function (ACF) of the AR model residuals using the initial order obtained by the
state-of-the-art BIC technique: (a) Sensor 3 and (b) sensor 5.

Figure 13. Auto-Correlation Function (ACF) of the AR model residuals using the improved order: (a) Sensor 3 and (b)
sensor 5.

Figure 14. Comparison of the variations in the residuals of AR(46) between (a) states 1 and 10, and (b) sates 1 and 14.

comparison, Figures 12 and 13 indicate the plots
of ACF regarding the sequences of the residuals for
sensors 3 and 5 gained by the initial and improved
orders, respectively. Considering the numerous ACF
samples that exceed the upper and lower bounds in
Figure 12, one can conclude that the state-of-the-art
BIC technique fails in fully extracting the uncorrelated
residuals. On the contrary, it is seen that the improved

order gained by the improved method enables the AR
model to generate uncorrelated residual samples.

To demonstrate sensitivity of the AR model resid-
uals extracted from the improved feature extraction
method, Figure 14 compares the variations in the
residual sequences of AR(46) at sensor 4 (the location
of damage) between the states 1 and 10 (the lowest
damage severity) and the states 1 and 14 (the highest
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damage severity). As can be seen, the occurrence of
damage leads to increase in the residual samples so that
state 14 has more increase than state 10. This indicates
the sensitivity of the AR residuals to damage.

In another comparison, Figure 15 illustrates the
results of early damage detection by using the AR
residuals obtained from the initial and improved orders.
To attain this goal, the residual sets of states 1, 10, 17,
and 14 are applied to making a multivariate dataset
(Y) with 32584 observations (i.e., by removing the �rst
46 samples from the 8192 residual sequences because
they are zero) and 4 variables; that is, Y 2 <32584�4.

It is noteworthy that Eq. (9) is used to plot the
Andrews function since ns is an even number. Based
on Figure 15(a), it is perceived that the residual sets
gained from the initial order by the BIC technique
cannot distinguish the di�erences between states 1 and
10. In fact, it is di�cult to recognize the curves of state
10. By contrast, Figure 15(b) obviously demonstrates
that the residual sets obtained from the improved order
through the enhanced feature extraction approach
in
uentially succeed in detecting damage.

Applying the methodology of Silhouette value,
the optimal number of clusters for k-means and GMM

clustering approaches is determined as shown in Fig-
ure 16. For this purpose, the uncorrelated residuals of
states 1 and 5 are employed as the training dataset,
which includes 16292 observations and 4 variables.
Notice that structural state 5 is representative of an
undamaged condition along with the operational and
environmental variability, which e�ciently assist in
investigating the in
uence of such variability on the
clustering process.

For the early damage detection process by the k-
means clustering, the residual sets regarding states 1,
5, 10, 17, and 14 are applied to making a multivariate
dataset (Y) containing 40730 observations (multiplying
5 by 8146) and 4 variables. Since the GMM clustering
approach requires training data from the undamaged
conditions, the multivariate dataset X 2 <16292�4 is
initially determined by using the uncorrelated residual
sets of states 1 and 5. Furthermore, the testing data
are determined by employing the residual sets of states
1, 5, 10, 17, and 14, which have the same dimension as
the multivariate dataset for the k-means. Figures 17
and 18 depict the results of damage detection by the
k-means and GMM clustering techniques, respectively.
It is important to point out that the threshold values

Figure 15. Early damage detection by Andrews plot in the numerical beam based on (a) the residual datasets obtained
from the initial order and (b) the residual datasets obtained from the improved order.

Figure 16. The optimal number of clusters in the laboratory frame: (a) k-means and (b) Gaussian Mixture Model
(GMM).
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Figure 17. Early damage detection in the laboratory frame by the k-means clustering method: (a) 1st cluster and (b)
2nd cluster.

Figure 18. Early damage detection in the laboratory frame by the Gaussian Mixture Model (GMM) clustering method;
(a) 1st cluster and (b) 2nd cluster.

(the dashed lines) in these �gures are based on the 95%
con�dence intervals of the ESD and MSD values in the
undamaged conditions (states 1 and 5).

In both �gures, the distance values of the dam-
aged conditions cross the threshold limits, indicating
the occurrence of damage in the laboratory frame,
while most of the ESD and MSD quantities belonging
to states 1 and 5 are under these limits, implying the
normal conditions of the frame. Among all states, it
is observed that state 14 is associated with the highest
level of damage having the largest distance amounts,
whereas state 10 indicates the lowest level of damage.
The other signi�cant result pertains to the e�ect of the
operational and environmental variability on the early
damage detection. From Figures 17 and 18, one can
see that the ESD and MSD amounts of state 5 are
roughly similar to the baseline condition in spite of a
few distance values that exceed the threshold limits.
Furthermore, the distances of state 17 are smaller than
those of state 14 even in the presence of operational
and environmental conditions.

8. Conclusions

This study focused on the steps of feature extraction

and statistical decision-making regarding the statis-
tical pattern recognition paradigm. An improved
residual-based feature extraction method by time se-
ries modeling was proposed to determine a su�cient
order and extract the model residuals as the damage-
sensitive features. The Box-Jenkins methodology was
also applied to identifying the most compatible time
series representation with the vibration time-domain
responses. A multivariate data visualization approach
called Andrews plot was proposed to detect damage by
using the high-dimensional features (the model resid-
uals). The well-known k-means and GMM clustering
techniques were also utilized to assess the reliability
and performance of these features in the early damage
detection based on the estimation of threshold limits.
Eventually, a numerical concrete beam and an experi-
mental benchmark frame were employed to validate the
improved and proposed methods.

The main conclusions that can be drawn are:

1. The Box-Jenkins methodology establishes a simple
and e�cient graphical tool for identifying the most
appropriate time series representations. Accord-
ingly, the AR model is the most appropriate time
series representation for feature extraction;



A. Entezami et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1001{1018 1017

2. The improved order determination algorithm pro-
vides a su�cient and accurate order so that it
enables the AR model to generate the uncorrelated
residuals;

3. This algorithm is superior to the state-of-the-art
BIC technique in terms of obtaining the uncorre-
lated residual sequences;

4. The residual sets extracted from the improved
feature extraction method are sensitive to damage;

5. Utilizing the model characteristics obtained from
the normal condition in the damaged state, the
increases in the values of the AR residuals are
representative of damage occurrence;

6. The Andrews plot succeeds in detecting adverse
changes caused by damage even in the presence of
the operational and environmental variability and
high-dimensional features;

7. Determination of an adequate order not only plays
an important role in the feature extraction but also
highly a�ects the results of damage detection as
shown in the comparative analysis of the Andrews
plots;

8. Both the k-means and GMM clustering techniques
along with the threshold limits are able to distin-
guish the undamaged state from the damaged one
even under varying operational and environmental
conditions;

9. These approaches not only con�rm the sensitivity
of the AR residuals extracted from the improved
feature extraction method to damage but also
estimate the level of damage.
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