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Abstract. The original version of Grey Wolf Optimization (GWO) algorithm has a
few disadvantages such as low solving accuracy, unsatisfactory ability of local searching,
and slow convergence rate. In order to compensate these disadvantages of grey wolf
optimizer, a new version of grey wolf optimizer algorithm was proposed by modifying
the encircling behavior and position update equations of GWO algorithm. The accuracy
and convergence performances of the modi�ed variant were tested on several well-known
classical, sine datasets, and cantilever beam design functions. For veri�cation, the results
were compared with some of the most powerful, well-known algorithms, i.e., particle swarm
optimization, grey wolf optimizer, and mean grey wolf optimization. The experimental
solutions demonstrated that the modi�ed variant was able to provide very comparable
solutions in terms of improved minimum value of objective function, maximum value of
objective function, mean, standard deviation, and convergence rate.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Over the last few decades, population-inspired meta-
heuristics have received much attention. Several
nature-inspired meta-heuristics have been proposed,
such as Genetic Algorithm (GA) [1], Particle Swarm
Optimization (PSO) [2], and Di�erential Evolution
(DE) [3,4]. Although these meta-heuristics are compe-
tent enough to �nd the solution to complex optimiza-
tion functions, there is no optimization technique for
�nding the solutions to all types of functions based on
the no free lunch theorem [5]. Therefore, the theorem
allows scientists to develop several new nature-inspired
techniques. Various recent meta-heuristics include Ar-
ti�cial Bee Colony (ABC) algorithm [6], Cuckoo Search
(CS) algorithm [7], Gravitational Search Algorithm
(GSA) [8], �re
y algorithm [9], cuckoo optimization
algorithm [10], adaptive Gbest-guided Gravitational
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Search Algorithm (GGSA) [11], Grey Wolf Optimiza-
tion (GWO) [12], Ant Lion Optimizer (ALO) [13], Mul-
tiverse Optimizer (MVO) [14], Shu�ed Frog-Leaping
Algorithm (SFLA) [15], Bacterial Foraging Optimiza-
tion Algorithm (BFOA) [16], Opposition-based Grey
Wolf Optimization (OGWO) [17], one half personal
best position particle swarm optimizations [18], half
mean particle swarm optimization algorithm [19], per-
sonal best position particle swarm optimization [20],
Hybrid Particle Swarm Optimization (HPSO) [21],
hybrid Mean Gbest Particle Swarm Optimization
Gravitational Search Algorithm (MGBPSO-GSA) [22],
Mean Grey Wolf Optimization (MGWO) [23], Hybrid
Particle Swarm Optimization Grey Wolf Optimization
(HPSOGWO) [24], Hybrid Grey Wolf Optimization
Sine Cosine Algorithm (HGWOSCA) [25], Hybrid Al-
gorithm Grey Wolf Optimization (HAGWO) [26], and
many others.

The biogeography-based optimization algorithm
proposed by Simon [27] is a new population-based
variant, which studies the geographical distribution
of biological organisms. The biogeography-based op-
timization approach adopts a migration operator to
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share information between solutions. This aspect is
the same as that of other nature-inspired variants, i.e.,
GA and PSO. The performance of the Biogeography-
Based Optimization (BBO) variant has been compared
with 14 benchmark functions and a real-life sensor
selection problem. On the basis of obtaining statistical
results, it has been observed that the existing variant
produced better quality of solutions that outperformed
other recent meta-heuristics.

Bat Algorithm (BA) was proposed by Yang [28].
BA is a bio-inspired variant and has been found very
e�cient. This variant mimics the echolocation ability
of microbat that uses it to navigate and hunt. The
position of the bat provides a probable solution to the
problem. The �tness of the solution is speci�ed by
the best position of a bat to its prey. BA has many
advantages over other variants including a number of
tunable parameters that provide greater control over
the optimization process.

Flower Pollination Algorithm (FPA) was �rst pro-
posed by Yang [29]. FPA is inspired by the pollination
process of 
owers. The performance of this variant was
tested on ten test functions, and results were compared
with those obtained using PSO and GA. On the basis of
the simulation results, one can observe that the 
ower
algorithm is more e�cient than both PSO and GA
are. Furthermore, authors use this variant to solve a
nonlinear problem, showing that the convergence rate
is almost exponential.

Recently, Mirjalili [30] proposed the GWO algo-
rithm for eight dataset functions, and its performance
was compared with other nature-inspired algorithms.
On the basis of statistical results, it was proved that
the GWO variant provided highly competitive results
in terms of improved local optima avoidance.

MGWO was proposed by Singh and Singh [31].
This variant was developed by modifying the posi-
tion update (encircling behavior) equations of GWO
algorithm. MGWO variant was tested on several
well-known tests (unimodal, multimodal, and �xed-
dimension multimodal functions); moreover, the per-
formance of the modi�ed variant was compared with
those of PSO and GWO. In addition, �ve datasets were
classi�ed to assess the accuracy of the modi�ed vari-
ant. The obtained results were compared with those
obtained by many di�erent meta-heuristic approaches,
i.e., GWO, PSO, Population-Based Incremental Learn-
ing (PBIL), Ant Colony Optimization (ACO), etc.
According to the statistical results, it was observed
that the modi�ed variant could �nd the best solutions
in terms of high accuracy level in classi�cation and
improved local optima avoidance.

Mittal et al. [32] developed a modi�ed variant
of the GWO, called Modi�ed GWO, which focused on
proper balance amid exploitation and exploration that
led to the optimum accuracy of the variant. The simu-

lations based on standard functions and real-life appli-
cation demonstrated the veri�ed e�ciency and stability
of the existing variant based on the basic grey wolf
optimizer algorithm and some recent meta-heuristics.

GWO is a newly developed population-based ap-
proach inspired by the leadership hierarchy and hunting
mechanism of grey wolves in nature and has been
e�ectively applied to solve feature subset selection [33],
economic dispatch problems [34], 
ow shop scheduling
problem [35], optimal design of double-layer grids [36],
time forecasting [37], optimizing key values in the
cryptography algorithms [38], and optimal power 
ow
problem [39]. A number of the nature-inspired algo-
rithms are also developed to improve the performance
of basic GWO that include a hybrid version of GWO
with PSO [40], binary GWO [41], parallelized GWO
[42,43], and integration of DE with GWO [44].

Li et al. [45] proposed a modi�ed discrete GWO
variant to realize the multi-level image segmentation
and optimize image histograms. Based on the high
e�ciency of grey wolf optimizer in the course of sta-
bility and optimization, this article e�ectively applied
the Modi�ed Discrete Grey Wolf Optimizer (MDGWO)
algorithm to the �eld of Machine Translation (MT) by
improving the location of the agents during the hunting
and using weights to optimize the �nal position of
prey. The MDGWO approach not only obtains better
segmentation quality, but also proves its obvious supe-
riority over ABC, DE, GWO, and Multilevel Thresh-
olding Electromagnetism-like Optimization (MTEMO)
in terms of accuracy, multilevel thresholding, and
stability.

Liu et al. [46] developed an intelligent grey wolf
optimizer variant, called DCS-GWO, by combining q-
thresholding with the GWO variant. In this variant,
positions of the grey wolves were initialized by the q-
thresholding approach and updated by using the idea of
GWO. The experimental solutions illustrated that the
existing variant enjoyed better recovery accuracy than
previous greedy pursuit approaches at the expense of
computational complexity.

Mirjalili et al. [47] proposed two novel optimiza-
tion techniques, Salp Swarm Algorithm (SSA) and
Multi-objective Salp Swarm Algorithm (MSSA), for
�nding the solution of global optimization functions
with multiple and single objectives. The main inspi-
ration of SSA and MSSA is the swarming behavior
of Salps when navigating and foraging in the ocean.
The performance of the existing variant was tested on
several standard and real-life applications. Based on
the solutions of the existing variant, it was proven that
this variant could obtain approximately Pareto optimal
results with high convergence and coverage.

Raj and Bhattacharyya [48] applied several recent
meta-heuristics to achieve the best possible optimal
solution for reactive power planning with FACTS
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devices. Further, some more recent techniques have
been also applied to �nd the best optimal setting of
all control variables. The working performance of the
existing variant was illustrated by comparing the so-
lutions obtained with all other recent meta-heuristics.
Based on the simulation results, the existing variant
showed few generations, which do not get trapped in
the local minima, and o�ered promising convergence
characteristics.

This article focuses on grey wolf optimizer, de-
veloped by Mirjalili et al. [12] in 2014, based on the
simulation of hunting behavior and social leadership
of grey wolves in nature. Experimental results proved
that the better accuracy of the existing variant was also
comparable to that of other meta-heuristics. Since it
is easy and simple to implement and has fewer control
constants, grey wolf optimizer has received much atten-
tion and used to �nd the solution of practical real-life
functions.

PSO, GA, evolutionary algorithm, di�erential al-
gorithm, and ACO are the most popular meta-heuristic
global optimization approaches. These nature-inspired
techniques expand the search area dimension, while
grey wolf optimizer provides an unsatisfactory conver-
gence behavior regarding exploitation [49,50]. Hence,
it is essential to emphasize that our research e�ort
revolves around the increase of the local search ability
of grey wolf optimizer technique. In order to improve
the local search ability of the GWO algorithm, a newly
modi�ed meta-heuristic is proposed in this research,
and its performance is compared with the performance
results of grey wolf optimizer and some other recent
nature-inspired algorithms; ultimately, Modi�ed Vari-
ant of Grey Wolf Optimization (MVGWO) performs
signi�cantly better.

The rest of the paper is structured as follows.
Section 2 describes the GWO algorithm. Section 3
presents the newly proposed algorithm, MVGWO. The
MVGWO mathematical model and pseudocode are
discussed in Section 3. The tested Unimodal, Multi-
modal, and Fixed-dim Multimodal classical functions
are presented in Section 4. Results and discussion are
summarized in Sections 5 and 6, respectively. Sine
dataset and cantilever beam design functions are brie
y
described in Sections 7 and 8. Conclusions are drawn
on the basis of the results obtained, as will be presented
in Section 9.

2. Grey wolf optimization algorithm

The grey wolf optimizer algorithm is a new global
optimization approach that simulates the grey wolves
leadership and hunting in nature. These approaches
have been inspired by simple concepts.

Mirjalili, et al. [12] proposed a GWO meta-
heuristic approach. The GWO variant mimics the

hunting mechanism and leadership hierarchy of grey
wolves in nature. In the hierarchy of GWO, alpha is
considered as the dominating agent among the group.
The rest of the subordinates to alpha include beta and
delta that help control the majority of wolves in the
hierarchy that are considered as omega.

In addition, three main steps of hunting, searching
for prey, encircling prey, and attacking prey, are
implemented to perform optimization.

The encircling behavior of each member of the
population is represented by the following mathemati-
cal equations:
d =

��c:xp(t) � x(t)
�� ; (1)

x(t+ 1) = xp(t) � a:d; (2)

where xp is the position vector of the prey, t is the time,
and x indicates the position vector of a grey wolf.

Vectors a and c are mathematically calculated as
follows:
a = 2l:r1 � l; (3)

c = 2:r2; (4)

where the above components are linearly decreased
from 2 to 0 over the course of generations, and r1:r2 2
[0; 1] are random vectors.

Hunting: In order to mathematically simulate the
hunting behavior, it is supposed that alpha (�), beta
(�), and delta (�) have better knowledge about the
potential location of prey. The following mathematical
equations are developed in this regard:
~d� = j~c1:~x� � ~xj ; ~d� = j~c2:~x� � ~xj ;
~d� = j~c3:~x� � ~xj ; (5)

~x1 = ~x� � ~a1:(~d�); ~x2 = ~x� � ~a2:(~d�);

~x3 = ~x� � ~a3:(~d� ); (6)

~x1 + ~x2 + ~x3

3
; (7)

where ~x�, ~x� , and ~x� are the positions of the member
of the population in the searching space at the tth
iteration, t indicates the current iteration, and ~x(t)
presents the position of the grey wolf at the tth
iteration:
~a(:) = 2~l:~r1 �~l; (8)

~c(:) = 2:~r2; (9)

where components of ~l are linearly decreased from 2
to 0 over the course of generations, and r1, r2 are
random vectors in [0,1]. In addition, ~a(:) and ~c(:) are
the coe�cient vectors of alpha (�), beta (�), and delta
(�) wolfs.



N. Singh/Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1450{1466 1453

Searching for prey and attacking prey: A is
a random value in the gap (�a; a). When random
value jAj < 1, the wolves are forced to attack the
prey. Searching for prey is an exploration ability, and
attacking the prey is an exploitation ability. Arbitrary
values of are utilized to force the search to move away
from the prey.

When jAj > 1, the members of the population are
enforced to diverge from the prey.

3. Modi�ed variant of grey wolf optimizer

Mirjalili et al. [14] proposed a new version of
population-based algorithms, called GWO. The GWO
variant mimics the hunting mechanism and leadership
hierarchy of grey wolves in nature. In the hierarchy
of GWO, alpha is considered the dominating agent
among the group. The rest of the subordinates to
alpha include beta and delta that help control the
majority of wolves in the hierarchy that are considered
as omega. In addition, three main steps of hunting, i.e.,
searching for prey, encircling prey, and attacking prey,
are implemented to perform optimization.

The proposed variant has been developed by mod-
ifying encircling behavior and position update equation
of GWO algorithm with the aim of improving the
performance, convergence speed, and accuracy of the
grey wolf optimizer meta-heuristics. In the MVGWO,
the population is divided into �ve di�erent groups, such
as alpha, beta, gamma, delta, and omega, which are
employed for simulating the leadership hierarchy (see
in Figure 1). The rest of all operations are the same as
grey wolf optimizer variant [14].

Social Hierarchy: In order to develop the proposed
mathematical model, the social hierarchy of wolves is
considered when designing an MVGWO, where the
�ttest solution is alpha. Accordingly, the second, third,
and fourth best solutions are named beta, gamma, and
delta. The rest of the agent solutions are assumed to
be omega.

The mathematical model of the encircling behav-

Figure 1. Hierarchy of grey wolf (dominance decreases
from top to down).

ior is represented by the following equations:

d =
��c:xp(t) � �� x(t)

�� ; (10)

x(t+ 1) = xp(t) � a:d; (11)

where coe�cient vectors, a and c, are given by:

a = 2l:~r1; (12)

c = 2:~r2; (13)

where the components are as follows: l 2 [2; 0] and
~r1:~r2 2 [0; 1].

Hunting: In order to simulate the hunting behavior
mathematically, it is supposed that alpha (�), beta
(�), gamma (
), and delta (�) have better knowledge
about the potential location of prey. The following
mathematical equations are developed in this regard:

~d� = j~c1:~x� � ~xj ; ~d� = j~c2:~x� � ~xj ;
~d
 = j~c3:~x
 � ~xj ; ~d� = j~c4:~x� � ~xj ; (14)

~x1 = ~x� � ~a1:(~d�); ~x2 = ~x� � ~a2:(~d�);

~x3 = ~x
 � ~a3:(~d
 ); ~x4 = ~x� � ~a4:(~d�); (15)

~x1 + ~x2 + ~x3 + ~x4

4
; (16)

~a(:) = 2~l:~r1 �~l; (17)

~c(:) = 2:~r2: (18)

Pseudo Code of MVGWO:
Initialization of population
Initialize l, a, and c
Evaluate the �tness of each search member
x�, x� , x
 , and x� as the �rst, second,
third and fourth best search members
while (t < max no. of iter)
for each search member
Update the position of each member of the
population by mathematical
Equation (1.16)
end for
Update l, a, and c
Evaluate the �tness of all search members
Update x�, x� , x
 , and x�
t = t+ 1
end while
return x�
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Table 1. Unimodal benchmark functions.

Function Dim Range fmin

F1(x) =
nP
i=1

x2
i 30 [�100; 100] 0

F2(x) =
nP
i=1
jxij+ nQ

i=1
jxij 30 [�10; 10] 0

F3(x) =
nP
i=1

(
iP

j�1
xj)2 30 [�100; 100] 0

F4(x) = maxi fjxij ; 1 � i � ng 30 [�100; 100] 0

F5(x) =
n�1P
i=1

h
100

�
xi+1 � x2

i
�2 + (xi � 1)2

i
30 [�30; 30] 0

F6(x) =
nP
i=1

([xi + 0:5])2 30 [�100; 100] 0

F7(x) =
nP
i=1

ix4
i + rand[0; 1) 30 [�1:28; 1:28] 0

Table 2. Multimodal benchmark functions.

Function Dim Range fmin

F8(x) =
nP
i=1
�xi sin

�pjxij� 30 [�500; 500] �418:9829� 5

F9(x) =
nP
i=1

�
x2
i � 10 cos(2�xi) + 10

�
30 [�5:12; 5:12] 0

F10(x) = �20 exp

 
�0:2

s
1
n

nP
i=1

x2
i

!
� exp

�
1
n

nP
i=1

cos (2�xi)
�

+ 20 + e 30 [�32; 32] 0

F11(x) = 1
4000

Pn
i=1 x

2
i �

nQ
i=1

cos
�
xip
i

�
+ 1 30 [�600; 600] 0

F12(x) = �
n

�
10 sin(�yi) +

n�1P
i=1

(yi � 1)2
�
1 + 10 sin2(�yi+1) + (yn�1)2

��
+

nP
i=1

u(xi; 10; 100; 4)

yi = 1 + xi+1
4

u(xi; a; k;m) =

8>><>>:
k (xi � a)m xi > a

0 �a < xi < a

k (�xi � a)m xi < �a
30 [�50; 50] 0

F13(x) = 0:1
�

sin2(3�xi) +
nP
i=1

(xi � 1)2[1 + sin2(3�xi + 1)] + (xn � 1)2

+
�
1 + sin2(2�xn)

��
+

nP
i=1

u(xi; 5; 100; 4) 30 [�50; 50] 0

4. Testing functions

In this section, twenty-three classical functions are
used to verify the performance of the MVGWO. These
test functions can be divided into three di�erent
groups: unimodal, multimodal, and �xed-dimension
multimodal functions. Speci�c details of these func-
tions are represented by Tables 1, 2, and 3, respectively.

5. The convergence performance graphs of
MVGWO algorithm

The performances of several population-based meta-

heuristics have been veri�ed with the MVGWO variant
in order to test the convergence rate, stability, and
computational accuracy in a number of iterations
in Figure 2. Similar parameter values have been
considered for the entire algorithms to make a fair
comparison. The results illustrate that, in convergence
Figure 2, by plotting the best optimal values of the
functions, values have been compared to a number of
generations for the simpli�ed model of the molecule
with di�erent sizes from 1000 to 5000 dimensions.

The graphs show that the standard test function
values quickly decrease as the number of generations in-
creases for newly existing variant solutions as compared
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Table 3. Fixed-dimension multimodal benchmark functions.

Function Dim Range fmin

F14(x) =

 
1

500 +
25P
j=1

1
j+
P2
i=1 (xi�aij)6

!�1

2 [�65; 65] 1

F15(x) =
11P
i=1

�
ai � x1(b2i+bix2)

b2i+bixi+x4

�2

4 [�5; 5] 0.00030

F16(x) = 4x2
1 � 2:1x4

1 + 1
3x

6
1 + x1x2 � 4x2

2 + 4x4
2 2 [�5; 5] �1:0316

F17(x) = (x2 � 5:1
4�2 x2

1 + 5
�x1 � 6)2 + 10

�
1� 1

8�

�
cosx1 + 10 2 [�5; 5] 0.398

F18(x) =
�
1 + (x1 + x2 + 1)2 �19� 14x1 + 3x2

1 � 14x2 + 6x1x2 + 3x2
2
��

�
�

30 + (2x1 � 3x2)2

�(18� 32x1 + 12x2
1 + 48x2 � 36x1x2 + 27x2

2)

�
2 [�2; 2] 3

F19(x) = � 4P
i=1

ci exp

 
� 3P
j=1

aij (xj � pij)2

!
3 [1; 3] �3:86

F20(x) = � 4P
i=1

ci exp

 
� 6P
j=1

aij (xj � pij)2

!
6 [0; 1] �3:32

F21(x) = � 5P
i=1

h
(X � ai) (X � ai)T + ci

i�1
4 [0; 10] �10:1532

F22(x) = � 7P
i=1

h
(X � ai) (X � ai)T + ci

i�1
4 [0; 10] �10:4028

F23(x) = � 10P
i=1

h
(X � ai) (X � ai)T + ci

i�1
4 [0; 10] �10:5363

Figure 2. Convergence graphs of algorithms.

to those of the other metaheuristics. In Figure 2, PSO,
GWO, HGWO, and MVGWO variants su�er from
slow convergence and are stalled in the partitioning
procedure; nevertheless, the mean grey wolf variant
plays a role for the existing hybrid algorithm to avoid
trapping in local minima and accelerate the search.

6. Results and discussion

The MVGWO, MGWO, GWO, and PSO algorithms
are coded by MATLAB R2013a and implemented
by Intel HD Graphics, Pentium-Intel Core (TM), i5
Processor 430 M , 15.6" 16.9 HD LCD, 3GB Memory,
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and 320 GB HDD. Parameters including the number of
search agents (30), the maximum number of iterations
(1000), and l 2 [2; 0] are used to con�rm the quality of
modi�ed meta-heuristics.

Generally, any nature-inspired technique is tested
by computing its results with those obtained through
other meta-heuristics. In addition, this study follows
the same procedure and employs twenty-three classical
functions for judgment. These test functions are
divided into three parts: unimodal, multimodal, and
�xed-dimension multimodal functions. The mathe-

matical formulation of classical functions is presented
in Tables 1{3. Thirty variables of multimodal and
unimodal classical functions are considered to further
improve their di�culties.

The accuracy of the newly modi�ed algorithm
has been con�rmed; thus, this algorithm is applied to
the classical, sine dataset, and cantilever beam design
functions in terms of minimum objective function
values, maximum objective function values, mean, and
standard deviation (Tables 4{9).

Herein, the maximum and minimum values of the

Table 4. The optimal solutions obtained by the algorithms on unimodal benchmark functions.
Problem

no.
PSO GWO MGWO MVGWO

Min Max Min Max Min Max Min Max

1 2.1532e-09 6.6032e+04 6.1668e-61 5.8943e+04 2.7170e-73 6.1504e+04 0.00 7.1072e+04
2 5.3156e-06 1.5784e+09 1.9775e-35 1.4305e+12 7.4227e-43 3.2669e+09 1.6053e-175 3.7809e+13
3 12.0227 1.9267e+05 3.3073e-15 1.8876e+05 2.5227e-25 1.1651e+05 1.2105e-282 6.1749e+04
4 2.6791 0.6791 2.6647e-14 89.0706 2.4202e-20 88.0388 1.7751e-152 91.6933
5 107.7967 107.7967 27.1178 2.1621e+08 27.1631 2.3050e+08 27.1003 3.1495e+08
6 2.6127e-11 6.8467e+04 1.2547 6.5240e+04 1.2505 7.0794e+04 3.8767 7.4148e+04
7 0.0367 133.3527 3.6149e-04 92.2196 5.7914e-04 80.6522 1.4141e-05 153.5907

Table 5. The statistical results obtained by the algorithms on unimodal benchmark functions.
Problem

no.
PSO GWO MGWO MVGWO

� � � � � � � �

1 408.5162 3.9524e+03 215.8357 2.5750e+03 173.1716 2.5391e+03 125.5010 2.4662e+03
2 9.5933e+06 3.0290e+08 1.4316e+09 4.5236e+10 3.2708e+06 1.0331e+08 1.2715e+10 1.1956e+12
3 1.8412e+03 1.3960e+04 1.7745e+03 1.0505e+04 674.7361 5.8039e+03 1.2536e+03 1.0787e+04
4 3.5511 7.3907 2.6146 12.1387 0.9451 6.7658 0.3492 4.3699
5 5.9195e+05 1.0872e+07 7.4518e+05 1.0897e+07 6.7132e+05 9.9844e+06 3.5409e+05 1.0001e+07
6 516.2407 4.6252e+03 335.9674 3.4849e+03 197.7060 2.8166e+03 123.8129 2.5129e+03
7 53.3529 56.2679 0.4942 5.8041 0.1335 2.6681 0.2020 4.9747

Table 6. The optimal solutions obtained by the algorithms on multimodal benchmark functions.
Problem

no.
PSO GWO MGWO MVGWO

Min Max Min Max Min Max Min Max

1 {6.6067e+03 {1.4706e+03 {5.8056e+03 {2.4436e+03 {4.8344e+03 {2.5399e+03 {2.2540e+03 {2.2373e+03
2 39.7987 422.6854 5.6843e{14 458.7865 0 438.1148 0 488.0757
3 1.5846e{05 20.5268 1.5099e{14 20.7623 1.5099e{14 20.5150 1.4409e{15 20.8472
4 2.0755e{12 667.1103 0.0092 665.7767 0 527.3462 0 555.0353
5 2.0193e{12 6.1692e+08 0.0304 5.5204e+08 0.0538 6.1414e+08 0.5589 8.1057e+08
6 6.5797e{08 1.0597e+09 0.6975 8.0560e+08 1.1284 9.0172e+08 0.1930 9.2376e+08

Table 7. The statistical results obtained by the algorithms on multimodal benchmark functions.
Problem

No.
PSO GWO MGWO MVGWO

� � � � � � � �

8 {6.0956e+03 1.1171e+03 {4.0393e+03 967.7908 {3.3352e+03 731.9012 {2.2511e+03 6.3372
9 161.3787 124.3555 10.7854 48.0111 4.9465 32.6783 2.3389 26.4361
10 2.9657 3.4941 0.4125 2.2762 0.2497 1.7307 0.1045 1.1726
11 25.7028 100.2551 3.1497 32.9323 1.4174 20.4885 0.9590 18.9328
12 1.1219e+06 2.2349e+07 1.5736e+06 2.4904e+07 1.1003e+06 2.1982e+07 1.0443e+06 2.1584e+07
13 2.5209e+06 4.4037e+07 3.2041e+06 4.3667e+07 1.5261e+06 3.2837e++07 1.1030e+06 2.9672e+07
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Table 8. The optimal solutions obtained by the algorithms on �xed-dimension multimodal benchmark functions.

Problem
no.

PSO GWO MGWO MVGWO

Min Max Min Max Min Max Min Max
7 2.9920 12.6709 10.7632 86.5835 12.6705 76.5329 2.9821 35.7641
8 9.8869e{04 0.3069 3.0750e{04 0.1331 3.0749e{04 0.2142 3.749e{04 0.6090
9 {1.0316 0.0804 {1.0316 {0.1653 {1.0316 {0.8485 {1.0316 {0.8485
10 0.3979 2.2225 0.3979 0.4187 0.3979 0.4716 0.3979 2.5346
11 3 73.9801 3 44.4885 3 58.2138 3 171.6938
12 {3.8628 {3.6393 {3.8596 {3.6339 {3.8627 {2.9834 {3.8628 {3
13 {3.3220 {0.7636 {2.8404 {2.1889 {3.1421 {1.7246 {3.2450 {1.2158
14 {10.1532 {10.1532 {5.0552 {0.3997 {5.0999 {0.3774 {5.0999 {0.3282
15 {5.1288 {1.2345 {10.4024 {0.6547 {10.4022 {0.5490 {10.6466 {0.4647
16 {10.5364 {0.6398 {10.5360 {0.7648 {10.5357 {0.7656 {10.9786 {0.6271

Table 9. The statistical results obtained by the algorithms on �xed-dimension multimodal benchmark functions.

Problem
no.

PSO GWO MGWO MVGWO

� � � � � � � �
14 2.1505 0.9110 11.2055 4.2682 12.9194 2.8310 3.0536 1.4674
15 0.0016 0.0107 8.6397e{04 0.0053 7.8362e{04 0.0070 0.0013 0.0201
16 {1.0299 0.0363 {1.0275 0.1167 {1.0303 0.0287 {1.0312 0.0061
17 0.4004 0.0584 0.3992 0.0041 0.4004 0.0074 0.4012 0.0707
18 3.2555 2.4028 3.1319 2.0225 3.1918 2.5571 3.0323 0.6594
19 {3..8614 0.0077 {3.8555 0.0147 {3.8586 0.0282 {3.8565 0.0129
20 {3.1235 0.2311 {2.8158 0.0565 {3.1068 0.0769 {3.2015 0.1366
21 {4.2193 2.2680 {4.7394 0.7968 {2.9990 1.2537 {4.9287 0.3697
22 {4.8911 0.6718 {7.7375 2.6723 {6.6836 3.4455 {8.6227 0.4368
23 {9.3903 2.5222 {8.2760 1.8966 {7.7390 2.8551 {4.8748 0.3978

objective functions produce the best suitable cost of
the classical problems in the least number of iterations.
On the other hand, the mean and standard deviation
of statistical values are used to evaluate the reliabil-
ity. Further, the convergence graphs of the classical
problems represent the convergence performance of the
variants.

Tables 4, 6, and 8 show that the newly modi�ed
algorithm produces the best optimal values of the
classical problems in terms of minimum and maximum
values of the functions as compared to other meta-
heuristics. Tables 5, 7, and 9 illustrate that the
modi�ed algorithm produces the superior quality of
standard and mean values on the maximum classical
functions in the form of the least values as compared
to other meta-heuristics. In the end, the convergence
graphs (Figures 3{25) prove that the existing approach
�nds the best possible optimal values of the standard
functions in the least number of iterations as compared
to others.

Based on the results given in Tables 4 and 5, it
is clear that the proposed variant outperforms other

Figure 3. Convergence graph of �xed-dimension
multimodal benchmark function (F1).
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Figure 4. Convergence graph of �xed-dimension
multimodal benchmark function (F2).

Figure 5. Convergence graph of �xed-dimension
multimodal benchmark function (F3).

meta-heuristics, including PSO, GWO, and MGWO, in
terms of mean, standard deviation, and min/max cost
function, and exploits the optimum. Accordingly, the
proposed variant is highly comparable to other meta-
heuristics.

Further, the convergence behaviors of the pro-
posed variant, PSO, MGWO, and GWO algorithms
have been investigated, and convergence curve is
plotted in Figures 3{25. In order to examine the
convergence behavior of the modi�ed variant of GWO,

Figure 6. Convergence graph of �xed-dimension
multimodal benchmark function (F4).

Figure 7. Convergence graph of �xed-dimension
multimodal benchmark function (F5).

PSO, MGWO, and grey wolf optimizer algorithms, the
search history and path of the �rst search member
of the population in its �rst dimension are illustrated
in Figures 3{25. Based on the convergence curve, it
is observed that the modi�ed variant produces better
convergence points as compared to others.

Furthermore, the appropriate results of multi-
modal and �xed-dimension multimodal functions are
illustrated in Tables 6{9. The multimodal and �xed-
dimension functions have many local optima whose
number and dimension grow exponentially. This makes
them �t for benchmarking the exploration capacity
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Figure 8. Convergence graph of �xed-dimension
multimodal benchmark function (F6).

Figure 9. Convergence graph of �xed-dimension
multimodal benchmark function (F7).

of a variant. Based on the results of Tables 6{9,
the modi�ed variant is able to present better solu-
tion quality with respect to the maximum number of
multimodal and �xed-dimension multi-modal functions
as compared to PSO, GWO, and MGWO algorithm.
These solutions demonstrate that the MVGWO has
advantages in terms of exploration.

A number of criteria have been used to determine
the accuracy of the proposed algorithm, GWO, PSO,
and MGWO. The mean and standard deviation of
statistical values are used to evaluate reliability in
Tables 5, 7, and 9. The average computation time of

Figure 10. Convergence graph of �xed-dimension
multimodal benchmark function (F8).

Figure 11. Convergence graph of �xed-dimension
multimodal benchmark function (F9).

the successful runs and the average number of function
evaluations of successful runs are applied to estimate
the cost of the standard function.

In Figures 3{25, the convergence performances
of GWO, PSO, MGWO, and MVGWO algorithms in
solving classical problems are compared. The obtained
convergence solutions prove that the MVGWO algo-
rithm is more capable to �nd the best optimal solution
in the minimum number of iterations. Hence, MVGWO
algorithm avoids premature convergence of the search
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Figure 12. Convergence graph of �xed-dimension
multimodal benchmark function (F10)

Figure 13. Convergence graph of �xed-dimension
multimodal benchmark function (F11).

process to local optimal point and provides a superior
exploration of the search course.

To sum up, based on all of the simulation solu-
tions, the recent existing algorithm is very helpful in
increasing the e�ciency of the GWO algorithm in terms
of result quality and computational e�orts.

Figure 14. Convergence graph of �xed-dimension
multimodal benchmark function (F12).

Figure 15. Convergence graph of �xed-dimension
multimodal benchmark function (F13).

7. Sine dataset function

This dataset has a number of attributes 01 and struc-
tures 1{15{1 chosen to train and solve this dataset [30].
This function has four peaks that make it extremely
di�cult to approximate. Sine dataset function has been
tested on di�erent nature-inspired meta-heuristics. Ac-
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Figure 16. Convergence graph of �xed-dimension
multimodal benchmark function (F14).

Figure 17. Convergence graph of �xed-dimension
multimodal benchmark function (F15).

cording to the obtained results, it is observed that
the modi�ed variant of grey wolf optimizer provides
extremely accurate solutions in this dataset as can be
inferred from test error in Table 10, and convergence
and best solution performance of MVGWO are plotted
in Figures 26 and 27.

8. Cantilever beam design function

This function is associated with the design variables
including the width of di�erent beam elements, weight

Figure 18. Convergence graph of �xed-dimension
multimodal benchmark function (F16).

Figure 19. Convergence graph of �xed-dimension
multimodal benchmark function (F17).

Table 10. Experimental results for the sine datasets.

Algorithm � � Test error
MVGWO 0.2549 0.0018 2.7221e+04
GWO 0.261970 0.115080 43.754
PSO 0.526530 0.072876 124.89
GA 0.421070 0.061206 111.25
ACO 0.529830 0.053305 117.71
ES 0.706980 0.077409 142.31
PBIL 0.483340 0.007935 149.60

optimization, and constant thickness [51]. A quick
description of the cantilever beam function is presented
as follows:

min (X) = 0:0624(l +m+ n+ o+ p); (19)
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Figure 20. Convergence graph of �xed-dimension
multimodal benchmark function (F18).

Figure 21. Convergence graph of �xed-dimension
multimodal benchmark function (F19).

subject to:

g(X) =
61
l3

+
37
m3 +

19
n3 +

7
o3 +

1
p3 � 1 � 0; (20)

where 0:01 � l; m; n; o; p � 100. The global optimal
results of the given function are listed in Table 11.

During the last few decades, several researchers
have used di�erent types of meta-heuristics to �nd the
best possible optimal solutions for the cantilever beam
design function in the literature such as convex lin-
earization method (CONLIN) [51], CS [51], method of
moving asymptotes (MMA) [51], Grid-based Clustering

Figure 22. Convergence graph of �xed-dimension
multimodal benchmark function (F20).

Figure 23. Convergence graph of �xed-dimension
multimodal benchmark function (F21).

Algorithms-I and II (GCA-I and GCA-II) [52], and
Symbiotic Organisms Search (SOS) [53].

The experimental results of di�erent variants for
the given function are illustrated in Table 11. That
experiment has been tested on the following parameter
settings: search agents (30) and the maximum number
of iterations (500).

It can be seen that the best optimal value of
the cantilever beam design function on MVGWO is
1.33966. Hence, MVGWO variant gives better quality
of the solutions as compared to other recent algorithms.
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Figure 24. Convergence graph of �xed-dimension
multimodal benchmark function (F22).

9. Conclusion

This paper presented a Modi�ed Variant of Grey Wolf
Optimization called MVGWO. This modi�ed variant
was developed by modifying the encircling behavior
and the position update equation of Grey Wolf Opti-
mization (GWO) algorithm with the aim of improving
the performance, convergence speed, and accuracy
of the GWO meta-heuristics. These modi�cations
were used to make a balance between exploration
and exploration over the path of generations. The
performance of the proposed variant was tested using
several benchmark functions. It was observed that
the modi�ed variant had the edge of high exploration
over other meta-heuristics such as Particle Swarm
Optimization (PSO), GWO, and Mean Grey Wolf
Optimization (MGWO).

Further, the performance of the modi�ed vari-
ant was tested on sine dataset and cantilever beam
design functions. Moreover, the experimental results

Figure 25. Convergence graph of �xed-dimension
multimodal benchmark function (F23).

Figure 26. Sine graph of MVGWO.

were compared with several recent nature-inspired
algorithms. The results showed that the modi�ed
variant proved to be producing e�ective solutions of
sine dataset and cantilever beam design functions as
compared to other meta-heuristics.

Table 11. Best optimal solutions of the cantilever beam design function by di�erent meta-heuristics.

Algorithms l m n o p Min (x)

CONLIN [17] 6.0100 5.3000 4.4900 3.4900 2.1500 NC

CS [17] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

MMA [17] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA-II [18] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA-I [18] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

SOS [19] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

MVGWO 6.01554 5.30256 4.49386 3.49797 2.15896 1.33966
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Figure 27. Convergence graph of MVGWO.
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