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Abstract. Utilization of electric vehicle battery to provide frequency regulation service
in electricity markets is a technically feasible and economically attractive idea. The role of
aggregators as a middleman between electric vehicle owners and the frequency regulation
market has been discussed in the literature. However, the economic interaction between
the aggregator and the vehicle owners on division of interests is still a missing point. In this
paper, a new pricing model for aggregators of electric vehicles is proposed such that not
only its pro�t is maximized, but also the vehicle owners have su�cient incentives to take
part in the o�ered vehicle-to-grid program. In the proposed model, the aggregator takes
into account the depreciation cost of electric vehicle batteries and the cost of net energy
transaction between the electric vehicles and the grid and, then, considers these items in
settling accounts with vehicle owners. The proposed model has been implemented on PJM
frequency regulation market, and the results are discussed in the paper.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

The application of Electric Vehicles (EVs) in trans-
portation systems is a growing trend as they improve
fuel consumption e�ciency and reduce green-house gas
emissions [1]. On the other hand, the decline of battery
cost would decrease EVs cost. For example, based on
a comparison of 2017 and 2015, it was predicted that
battery cost would drop by 25% [2]. It was also esti-
mated that EVs would cost less than 22,000$ by 2040
[3]. In this way, a remarkable share for EVs in future
automobile markets is predictable as stated in [4].

Along with the increasing number of EVs, the idea
of utilizing EV batteries as distributed energy storage
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resources in electricity markets will be practicable.
This service, which is known as vehicle-to-grid (V2G),
has been de�ned as the power that can be fed to the
grid by EVs through appropriate connections when the
EVs are parked [5].

V2G can be applied to various electricity markets
such as peak power, spinning reserves, and frequency
regulation markets. Some cost-bene�t studies have
evaluated the pro�tability of V2G for each market
and have demonstrated that one of the most prof-
itable markets for V2G is the frequency regulation
market [5,6]. Frequency regulation service is the
use of fast response resources such as synchronized
generators that have Automatic Generation Control
(AGC) capability to keep the moment by moment
balancing between generation and load. Regulation
facilitates maintaining frequency under the proposed
market arrangements and managing the di�erences
between actual and scheduled power ows between
balancing areas. The units that wish to participate
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in the regulation market must submit their bid to the
system operator. Then, the system operator broadcasts
AGC signal to the selected units in real time.

EV batteries are a suitable source for frequency
regulation service due to their fast response in com-
parison with conventional thermal units [7]. However,
the number of EVs is too huge for the power system
operator to communicate with all of them directly.
Furthermore, the minimum bid size requirements of
current electricity markets are obstacles to direct par-
ticipation. Hence, several papers in the literature
have proposed a structure in which aggregators submit
energy or regulation bids to markets on behalf of a eet
of EVs [8,9]. In this structure, the aggregators contract
with interested EV owners and utilize their battery
capacities according to some pre-speci�ed conditions.

Although the technical and economic aspects of
V2G for providing frequency regulation service have
been investigated in several pieces of research, proper
pricing of this service is still a missing point in the
literature. In other words, it is not clari�ed that how
and how much the EV owners are paid by aggregators
for sharing their batteries' capabilities. In [10], the
pro�t from the participation of EVs in energy, reserve,
and regulation markets was calculated; however, the
share of the aggregator and EV owners from this pro�t
was not determined. In [11], EVs optimize charging
and regulation decisions, and the aggregator only sums
the optimal decisions for each EV and submits bids
to the Independent System Operator (ISO). It seems
as if the aggregator is a nonpro�t organization in [11],
and its pro�t is not taken into account. In [12], the
bidding strategy of an aggregator that participated in
the day-ahead electrical energy market was addressed,
ignoring the bene�ts of EV owners. A similar approach
can be found in [13], where the pro�t of the aggrega-
tor was maximized through the optimal simultaneous
bidding of V2G energy and ancillary services, while
the bene�ts of EV owners were not modeled, and the
competition between di�erent competing aggregators
was ignored. In contrast, the problem considered in
[14] assumes a hypothetical problem that a company
owning a eet of EVs schedules its EV eet so as
to optimize its battery charging, V2G revenue, and
vehicles' duty/service. The problem was modeled as a
multi-criteria decision-making problem and solved by
analytic hierarchy process. However, the aggregator is
assumed to be an exogenous player in [14], whose deci-
sions are neglected. In [15], the aggregator maximized
its pro�t from participation in the frequency regulation
market while minimizing the charging costs of EVs. In
[15], the EV owners were not paid for V2G service;
thus, there was not enough incentive for EV owners to
participate in V2G.

In this paper, the aggregator pays the EV owners
for V2G service according to the number of hours that

they provide frequency regulation, taking into account
EV batteries depreciation and the net electrical energy
exchanged between the EV batteries and the grid. The
price determination of V2G service is a necessary step
to evaluate whether there are su�cient incentives for
both the EV owner and the aggregator to participate
in such a cooperation. Hence, we have tried to model
the pricing scheme of an aggregator for V2G service by
maximizing the aggregator's pro�t and considering the
economic behavior of EV owners.

The rest of the article is organized as follows.
The pricing model with which the aggregator and the
owners of EVs deal to cooperate on providing frequency
regulation service via V2G is proposed in Section 2.
Section 3 is devoted to a case study in which the V2G
pricing model is utilized for frequency regulation as an
ancillary service in PJM electricity market, and the
results are presented in the same section. Finally, some
remarks and directions for future work are discussed in
Section 4.

2. Pricing framework modeling

This paper proposes medium-term planning for an EV
aggregator to maximize its pro�t. The aggregator uses
available battery capacities of its contracted EVs to
participate in the frequency regulation market. In this
way, the aggregator adjusts its strategy to participate
in the regulation market and to interact with EV
owners. The main decision variable of the aggregator
in this process is its o�ered price to EV owners. In this
section, the interactions between aggregators and the
other participants are modeled, and a pricing scheme
for V2G is proposed.

2.1. Model of interaction with EVs
The aggregator o�ers the price to EV owners in
exchange for their V2G service. This price{hereinafter
referred to as V2G price{will a�ect the number of EVs
who are willing to sign on. If the V2G price is very
low, then no EV owner will agree on the contract. The
higher is the price o�ered, more EV owners are willing
to contract with the aggregator.

This procedure is similar to that of retailers'
medium-term planning in which the o�ered price of
retailer de�nes the number of its clients. Di�erent
methods have been proposed in the literature to ad-
dress this problem from the retailer's perspective. In
[16{18], the relation between the number of contracted
customers and the o�ered retail price is introduced
by Price-Quota-Curve (PQC). In this paper, in line
with [16{18], a \V2G supply function" is proposed to
model the relationship between V2G price o�ered by
the aggregator and the number of EVs who accept the
V2G program.

The V2G supply function provides the number of
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Figure 1. Vehicle-to-Grid (V2G) supply function.

Figure 2. Share of parked Electric Vehicles (EVs) in
dependence on day types [20].

EV owners that are willing to share their EV batteries
in exchange for the o�ered V2G price. Figure 1 shows
a piecewise linear PQC. The precise derivation of this
function is an econometric problem, which is beyond
the scope of this paper. Thus, the function has been
considered as an input to our model and has been
estimated by a hypothetical curve for the case study.
However, the curve meets two important properties:
it is increasing and its derivative is increasing, too.
The latter can be explained by \diminishing marginal
product": the property whereby the marginal product
of an input declines as the quantity of the input
increases [19]. Those EVs that are attracted to V2G
contract earlier can provide V2G service more hours
of the day in comparison to busy EVs that may join
subsequently.

Contracted EVs are not always parked and ready
for V2G service. The share of available EVs can be
estimated by statistical studies for di�erent hours of
the day and di�erent day types, i.e., weekdays and
weekends. In [20], the share of parked EVs was
designated for di�erent day types. Figure 2 displays
the share of parked EVs for di�erent hours and day
types for a typical area.

In addition, it should be noted that not all parked
EVs are available for V2G service. Only those EVs are
available (a) that are parked in a place with necessary
infrastructure (at least an outlet), (b) whose owners
actually plugged-in the EV, and (c) whose batteries'

State-of-Charge (SoC) is proper enough to be used by
the aggregator for the regulation service. In order to
model the e�ect of the above-mentioned conditions, an
\availability ratio" is used here. The availability ratio
is de�ned as the ratio of available EVs ready for V2G to
the number of parked EVs. In practice, the aggregator
can determine the availability ratio of EVs based on its
database record.

In order to guarantee the active participation and
mutual bene�t of aggregator and EVs, the quality of
the interaction between the involved parties should be
considered properly. For this purpose, three di�erent
types of payment are considered in this paper. In
the �rst payment category, the aggregator pays the
EV owners for every hour that the EVs are available
for this service. In the second payment, at the end
of each settlement period (e.g. a month), the net
electrical energy received by each EV from the grid
or injected to the grid by the EV will be metered and
accounted in transactions between the aggregator and
the EV owners. In the last one, the aggregator pays
\battery depreciation cost" to the EV owners, which is
a payment term in their invoice to compensate for their
battery depreciation. These payments are discussed in
the following sub-sections in detail.

2.2. Model of interaction with regulation
market

The aggregator bids to the frequency regulation market
for every hour according to the number of estimated
available EVs. Nevertheless, the aggregator estimates
have an error that is simulated in our model by a
standard error. Hence, the number of real available
EVs has been sampled for every hour randomly by
a normal probability distribution function with the
estimated number of available EVs as expected value
and 5% of EVs as standard deviation. If the electric
power of EVs' batteries is not su�cient to accomplish
the frequency regulation service, the aggregator will
operate a back-up battery bank.

The assumed regulation market structure of this
paper is similar to the frequency regulation market
of PJM. It is worth mentioning that the ancillary
services that are used to balance the generation and
consumption of electricity in real time (with little
di�erence in di�erent electricity markets, academic
and technical literature) include frequency response,
frequency regulation, spinning reserve, non-spinning
reserve, and supplemental reserve. In PJM, frequency
response is not a stand-alone ancillary service product.
All resources that provide spinning reserve must be
synchronized with the grid and must be frequency
responsive. Spinning, non-spinning, and supplemental
reserves are reserve capabilities that can be converted
fully into energy or load, which can be removed from
the system within 10 minutes of the request from
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the PJM dispatcher. Frequency regulation, which is
our goal market, refers to the control action that is
performed to correct for load changes that may cause
the power system to operate above or below 60 Hz.
The response time of this service is 2 seconds, and its
duration is 5 minutes.

The mechanism for procuring frequency regula-
tion service in PJM regulation market is described
in [21]. Regulation service providers must submit their
o�ers to PJM market. Then, PJM utilizes these o�ers
together with energy o�ers and resource schedules to
determine the lowest cost alternative for these services
through an optimization process. In this process, the
Regulation Market Clearing Price (RMCP) for each
hour of the operating day is determined [21].

Regulation resources will receive the following
regulation signals in PJM [22]:

� Assigned regulation (AReg): This is the regulation
quantity (MW), which is announced to the partic-
ipants whose o�ers are accepted in the regulation
market. This signal is static during each hour, yet
is sent on a 10-second scan rate;

� Regulation control signal (RegA): This signal is
sent by PJM to frequency regulation resources in
real time to modify their generation/consumption
according to the signal value and their contract.
This signal will be transmitted on a 2-second scan
rate;

� Fast or dynamic regulation (RegD): As a special
feature of PJM market, this signal, which has a
function similar to RegA, is transmitted by PJM
to frequency regulation resources. However, it is
preferred to be utilized for energy storage devices,
since this signal is short-term balanced around zero.

To clarify the di�erences between RegA and
RegD, it is worth mentioning that there are di�erent
types of regulation resources such as conventional
power plants (e.g., combined cycle, hydroelectric, etc.),
the energy storage resources (e.g., batteries, ywheels,
EVs, etc.), and also dispatchable loads. Energy storage
systems are more precise in tracking regulation signal
than other regulation resources; however, they su�er
from limited energy capacity. RegD signal has a mean
value of zero that prevents energy storage resources
from excess charge/discharge. RegA is a function of
slow �lter of Area Control Error (ACE) and can remain
full raise or lower for extended periods, whereas RegD
is a function of fast �lter of ACE. Figure 3 represents
the formation of these signals clearly [22].

It is worth mentioning that the implementation
of the concept of V2G in practice requires bidirectional
communication infrastructure between the aggregator
and the EVs-through which the aggregator receives the
status of EVs and transmits the regulation signal to

Figure 3. Formation of traditional regulation signal and
fast (dynamic) regulation signal [22].

EVs. Thus, V2G can be realized after the widespread
installation of smart meters and the development of
smart grid. The pricing framework proposed in this
paper presumes such infrastructure to be available.

2.3. Model of EV's battery degradation
The e�ects of frequent charge/discharge cycles due to
V2G on the lifetime of commercial Lithium-ion cells
were discussed in [23{25]. The battery life is usually
expressed as the number of cycles resulting in its
capacity drop to a predetermined level (e.g., 80% of
its initial capacity). It is shown that the achievable
cycle count is a function of Depth-of-Discharge (DoD).
Figure 4 illustrates the battery lifetime in cycles versus
DoD [26]. As is shown in Figure 4, battery cycle
life is related to the DoD. In other words, shallow
cycling has much less impact on battery lifetime than
deep cycling. Since frequency regulation causes shallow
type of cycling, the battery degradation is not much
worrying. Nevertheless, the lack of compensation for it
may be frustrating for EV owners.

The curve depicted in Figure 4 has been estimated
by Eq. (1) based on the approach of Rosenkranz [27]
and the Fraunhofer ISE's model, as stated in [25]
and [26]:

NCycles = 1331� (DoDV 2G)�1:8248; (1)

where NCycles is the expected battery lifetime in terms

Figure 4. Estimated battery lifetime in cycles as a
function of Depth-of-Discharge (DoD) [26].
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of cycles, and DoDV 2G is the DoD of EV battery
for providing regulation service. By assuming a �xed
cycling pattern, DoDV 2G can be determined through
the following equation.

DoDV 2G = Pch � Tch=Ebat; (2)

where Pch is the charge/discharge power in kW, Tch is
the charge/discharge duration in hour, and Ebat is the
capacity of battery in kWh.

Due to the unknown cycling pattern in tracking
regulation signal, expressing battery lifespan in terms
of its energy throughput would be more practical. The
energy throughput is a parameter that speci�es the
transacted energy of a battery in both charge and dis-
charge modes over its whole lifetime. This parameter
can be calculated by the following equation [24]:

EET = NCycles �DoDV 2G � Ebat: (3)

In the above equation, EET is the lifetime energy
throughput of the battery in kWh. In this way, the
\battery depreciation cost" can be obtained through
Eq. (4):

Cdep = Ebat � �bat � ET =EET ; (4)

where Cdep is the battery depreciation cost during a
certain period in $, �bat is the battery price in $/kWh,
and ET is the total transferred energy during the same
period in kWh.

2.4. Proposed pricing model
The proposed pricing scheme for V2G service can be
described by an optimization problem that maximizes
the aggregator's pro�t and considers the behavior of
the EV owners through V2G supply function. The
objective function is described in Eq. (5):

max
�V 2G


T =�Tt=1�fr(t)�Nest(t)� PEV � �Tt=1

Nreal(t)� �V 2G � Enet � �r � Cdep;EV
� Cdep;bb; (5)

where 
T is the pro�t of aggregator during the sim-
ulation time span in $. The main decision variable
of this optimization problem is �V 2G, which is o�ered
by the aggregator to EV owners in exchange for using
their battery for regulation service. The objective has
4 terms. The �rst one �T(t=1)�fr(t) � Nest(t) � PEV
models the revenue gained from participating in the
regulation market in which �fr(t) is the frequency
regulation price of the electricity market in hour t
in $/kWh, PEV is the rated charge/discharge power
of EV batteries in kW, and Nest(t) is the estimated
number of EVs in hour t who are ready to provide
regulation service, which is obtained by V2G supply
function. The second term, i.e., �Tt=1Nreal(t) � �V 2G,

models the payment of the aggregator to EV owners for
participation in V2G program. In this term, �V 2G is
V2G price that the aggregator o�ers to pay EV owners
in $/h, and Nreal(t) is the real number of EVs in hour
t who are ready to provide regulation service, which is
simulated in our model by adding a standard error to
Nest(t). The third term in Eq. (5) models the payment
to EV owners for the net energy delivered by them
to the grid, where �r is the retail electricity price in
$/kWh, and Enet is the sum of net energy transferred
to/from grid by EV batteries over simulation time
span in kWh. Finally, Cdep;EV and Cdep;bb are battery
depreciation cost in $ for whole EV batteries and back-
up battery bank, respectively, which are calculated by
Eq. (4).

The capacity o�ered to the regulation market is
Nest(t) � PEV based on the explanations of Eq. (5).
However, a ratio of this capacity is utilized by the
regulation market in each 2-second time step, which
is determined by the RegD signal (see Section 2.2). In
this way, the transacted power in the regulation market
can be evaluated using Eq. (6).

PReg(�) = RegD(�)�Nest(t)� PEV ; (6)

where PReg(�) is the power that must be delivered
to/absorbed from the grid by the aggregator in time
step � in kW, RegD(�) is the value of the frequency
regulation signal sent by the power system operator
to the aggregator in time step � , which is �1 <
RegD(�) < 1. In the proposed model, PReg(�) can
be provided by the EV batteries as the �rst option
or the backup battery bank as the second option.
The shares of EV batteries and the backup battery in
providing regulation power are determined by PEV f (�)
and Pbbb(�) through Eqs. (7) and (8), respectively.

PEV f (�) =8><>:Nreal(t)�PEV if PReg(�)>Nreal(t)�PEV
�Nreal(t)�PEV if PReg(�)>�Nreal(t)�PEV
PReg(�) otherwise (7)

Pbb(�) =

8>>>>>>>>>><>>>>>>>>>>:

minfPReg(�)� PEV f (�); Pbb;rg
if PReg(�) > PEV f (�)

0 if PReg(�) = PEV f (�)

maxfPReg(�)� PEV f (�);�Pbb;rg
if PReg(�) < PEV f (�)

(8)

In the above equations, PEV f (�) and Pbb(�) are
the powers of EV eet and back-up battery bank
in time step � in kW, respectively, and Pbb;r is the
rated power of back-up battery bank in kW. The
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batteries deliver electricity to the grid when PEV f (�)
and Pbb(�) are positive, and charge when these powers
are negative.

The performance of the aggregator in providing
frequency regulation service will be poor if it fails to
follow PReg(�) completely due to the shortage of EV
eet and back-up battery bank constraints. Di�erent
markets adopt di�erent methods for calculating the
performance of frequency regulation service providers.
However, the performance depends on the di�erence
between the regulation service actually provided and
the regulation supposed to be provided. This quantity
can be calculated by Eq. (9):

Pdi� (�) =

8>>>>>><>>>>>>:
P �bb(�)� Pbb;r if P �bb(�) > Pbb;r

�P �bb(�)� Pbb;r if P �bb(�) < �Pbb;r
0 otherwise

(9)

where P �bb(�) is the power of back-up battery bank
in time step � , provided that the capacity of back-up
battery bank is unlimited. P �bb(�) will be obtained by
Eq. (8), if Pbb;r is in�nite.

The SoC of the back-up battery bank will be
changed after any charge/discharge. Its value in any
time step is dependent on its previous value as de-
scribed in Eq. (10) for a 2-second frequency regulation
time step:

SoCbb(�) =8><>:SoCbb(� � 1)� Pbb(�)
Ebb��dis�1800 if Pbb(�) � 0

SoCbb(� � 1)� Pbb(�)��ch
Ebb�1800 if Pbb(�) < 0 (10)

where SoCbb(�) is the state of charge of back-up battery
bank in time step � , Ebb is the capacity of back-up
battery bank in kWh, and �ch and �dis are charging
and discharging e�ciency of the battery, respectively.
For a 2-second frequency regulation time step, an hour
consists of 1800 time steps.

A similar equation can be considered for EV
batteries by substituting the power and capacity of the
EV battery into the parameters of the back-up battery
bank. If the resultant SoC from Eq. (10) is outside the
range of zero to one, the following modi�cation must
be performed:

If SoCbb(�) > 1,8>>>>>><>>>>>>:
Pmdi� (�) = Pdi� (�) + Ebb(SoCbb(�)� 1)� 1800

Pmbb (�) = Pbb(�) + Ebb(SoCbb(�)� 1)� 1800

SoCmbb (�) = 1

(11)

If SoCbb(�) < 0,8>>>>>><>>>>>>:
Pmdi� (�) = Pdiff (�)� Ebb � SoCbb(�)� 1800

Pmbb (�) = Pbb(�)� Ebb � SoCbb(�)� 1800

SoCmbb (�) = 0

(12)

In the above equations, variables with superscript of m
are modi�ed variables.

We have considered the average ratio of Pdiff (�)
to PReg(�) during simulation time span as the perfor-
mance criteria, and the cases with poor performance
are eliminated from solutions.

As the last equation, the total transferred energy
of back-up battery bank during the time span of
simulation can be obtained through Eq. (13) as follows:

ET;bb = �T�=1jPbb(�)j=1800; (13)

where ET;bb is the total transferred energy of back-up
battery bank during T . A similar equation can be
considered for EV batteries by replacing Pbb(�) with
PEV f (�)=Nreal(t).

The planning horizon is set to be one year, and the
aggregator can update the V2G price annually. Since
the time steps in frequency regulation service are to
the extent of few seconds, the simulation time span
is reduced to one month, i.e., a �nancial settlement
period between the aggregator and the EV owners,
as the representative of twelve months of the year so
as to decrease the solution time. In addition, the
pro�t of the aggregator is a complicated function of the
V2G price with many conditional functions. Hence,
the problem has been optimized by an evolutionary
optimization method. The genetic algorithm, which is
used in this paper, is one of the evolutionary algorithms
that is most commonly applied to solve combinatorial
optimization problems.

Figure 5 displays the owchart of our pricing
framework. As can be seen in Figure 5, the aggregator
�rst sets a V2G price to be o�ered to the EV owners.
Then, the number of EVs that are eager to participate
in frequency regulation service and also the number
of available EVs for every hour of the day can be
estimated. During the simulation time span, the AGC
signal is transmitted from the power system operator
to the aggregator, while the aggregator utilizes the
batteries of available EVs to ful�ll its obligations
towards the power market. In case of lack of capacity
to provide frequency regulation service, the back-up
battery bank will be operated.

At the end of each simulation time span, the
following required parameters are obtained: total
transferred energy of EV batteries and the backup
battery bank, the number of hours of availability for
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Figure 5. Flowchart of the proposed pricing framework.

each EV during simulation time span, and net energy
transaction between the EVs and the grid. Then, the
costs, revenues, and �nally the pro�t of aggregator for
each V2G price are calculated. Genetic algorithm con-
siders the current generation of V2G prices as decision
variables and the corresponding pro�t of the aggregator
as �tness values to generate the next generation of V2G
prices so that the pro�t of aggregator can be improved.
This iterative algorithm continues until the termination
criteria are satis�ed.

3. Case study and results

This study applied the pricing framework proposed in
the previous section to the frequency regulation market
of The PJM-one of the world's largest competitive

wholesale electricity markets. First, the input data of
the case study are introduced; then, the results are
presented.

3.1. Input data and optimization parameters
The pricing model described in Section 2 and depicted
by Figure 5 is implemented on PJM electricity market.
In our case study, the V2G price o�ered by the
aggregator to EV owners is determined so that the
aggregator pro�t is maximized in a time span of one
month. RMCP and RegD signal have been derived
from real historical data of PJM for a one month
period. Utilization of real historical data is a proper
way to consider the uncertainty and random nature of
changing RMCP, volatile RegD signal, and uncertain
number of available EVs in each hour. A one-month
period includes 31�24 hours, and each has di�erent
parameters and conditions. In the case of RegD
signal that has a variant quantity in every two-second
period, using its real historical data in a one-month
period will consider the signal's stochastic nature, too.
Therefore, the real historical data have been applied
to model the random changes and the uncertainty
of these parameters as an alternative for probability
distribution functions used in stochastic methods.

The RMCP of PJM electricity market on 1 Jan-
uary 2013 is depicted in Figure 6 [28]. The RMCP is
the sum of the regulation market capability clearing
price and the regulation market performance clearing
price [29]. The price at which the aggregator settles
the net electrical energy ow between an EV and the
grid, i.e., �r, is set to 12 cents per kWh. This value
is chosen in a way that is close to the average retail
electricity prices for residential customers across PJM
region. RegD signal in January 2013 is obtained from
PJM website whose changes for a one-hour period are
plotted in Figure 7 [30].

As discussed in Section 2, \V2G supply function"
has been considered by a hypothetical curve illustrated
in Figure 1. In addition, data of [20] are used to
de�ne the share of parked EVs for di�erent types of
the day (please see Figure 2), and the availability

Figure 6. PJM regulation market clearing price (1
January 2013) [28].
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Figure 7. RegD signal in (PJM) (1 January 2013, 02:00 {
03:00 AM) [30].

Figure 8. Availability share of Electric Vehicles (EVs)
that have a contract with the aggregator.

ratio is assumed to be 0.75. By assuming the above-
mentioned data, the available EVs are presented in
Figure 8.

Assuming that the EVs are of plug-in type and
that they are connected to the grid through household
sockets, it is reasonable to consider the size of 3 kW for
rating power electronics converter-which is an interface
between the EV battery and the grid. The capacity
of EV batteries is supposed to be similar and equal
to 20 kWh, although as will be seen later, frequency
regulation service following RegD signal does not a�ect
the SoC of EV batteries signi�cantly. Therefore, the
capacity of EV batteries does not have a remarkable
impact on our model. Both charging e�ciency (�ch)
and discharging e�ciency (�dis) of EV batteries are
considered to be 0.95 as in [31], resulting in round-
trip e�ciency of approximately 0.9. The capacity of
the back-up battery bank is considered to be �xed and
equal to 1000 kWh, and the converter rated power is
equal to 200 kW. The initial SoC for back-up battery
bank and all EVs is assumed to be 50%.

As is stated in [23], DoDV 2G is considered to be
3% in some papers, resulting in 106 cycles. It is a
rational approximation for our case, because, during
January 2013, we could not �nd a period longer than
10 minutes in which regulation signal (RegD) had
similar signs for all 2-second time steps. Therefore,
for an EV battery with 20 kWh capacity and 3 kW

charge/discharge power, a maximum of 2.5% DoD is
feasible according to Eq. (2).

The battery price of Lithium-ion batteries is
declining and has fallen from 500{550 $/kWh in 2014
to less than 400 $/kWh in 2017 and, based on some
assertions, even to a surprising value of 200 $/kWh [32].
A battery price of 350 $/kWh has been concluded as a
result of various declared prices for our case study.

The pricing model has been optimized by NSGA-
II algorithm in MATLAB 7.12.0. NSGA-II is a
controlled elitist genetic algorithm. Since it is elitist,
it prefers solutions with a better �tness value. As it
is controlled, it also favors the solutions that increase
the diversity of the population. Diversity of population
helps the algorithm converge to the optimal solution.
The population size of each generation in NSGA-II
algorithm is set to 20 individuals. In order to ensure
appropriate performance of the aggregator in providing
frequency regulation, the cases where the average ratio
of Pdiff (�) to PReg(�) during simulation time span is
more than 1% are eliminated from solutions. The algo-
rithm termination criteria include the combination of
the maximum number of generations, time constraints,
and lack of signi�cant improvement in �tness values.

3.2. Results
By using the mentioned data of the previous subsec-
tion, the proposed algorithm of Figure 5 is applicable.
The optimum level of V2G price is 3.81 cents per
hour. This price will attract 702 EV owners to reach
an agreement with the aggregator to provide V2G
service for frequency regulation market. The economic
results for various V2G price scenarios are shown in
Table 1. The value of the objective function is declared
in this table term by term. As can be seen in this
table, for V2G prices higher than 7 cents per hour,
the aggregator will lose due to high payments to EV
owners; meanwhile, the EV owners do not have enough
motivation to participate in V2G service for prices less
than 1 cent per hour.

Based on Eqs. (7) and (8), when the capacity of
EV batteries is lower than the requested power by the
frequency regulation market, the capacity of backup
battery is used. Figures 9 and 10 display the transacted
power between the EV eet and the grid and that
between back-up battery bank and the grid for a period
of one hour, respectively.

The results of analyzing the charge/discharge pat-
tern of the back-up battery bank during our monthly
period show that this battery bank has been rarely
utilized, because the prediction error of the available
EVs is assumed to be low. Because of this fact, the
SoC of the back-up battery bank will not approach its
boundary limits. For more clari�cation, the power and
the SoC of the backup battery are presented for the
whole January in Figures 11 and 12, respectively.
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Table 1. Economic results of various Vehicle-to-Grid (V2G) price scenarios in a 1-month period.

V2G Price
(cent/hour)

No. of
EVs

Revenue of
aggregator

($)

Back-up
batteries

degradation
cost ($)

EV eet
batteries

degradation
cost ($)

Payment for
net transacted

power ($)

Payment for
V2G to EV
owners ($)

Pro�t of
aggregator

($)

2 250 13521 3 975 1810 3488 7246

3 500 27043 6 1949 3613 10481 10994

3.81 702 37995 8 2738 5082 18635 11532

4 750 40564 9 2923 5436 20950 11247

5 1000 54086 12 3897 7228 34822 8127

6 2000 108170 17 7795 14466 83684 2209

7 3500 189300 20 13637 25328 170290 {19947

8 5000 270430 19 19488 36221 279120 {64424

Figure 9. Electric Vehicle (EV) eet batteries power
during January 1, 02:00 to 03:00 AM.

Figure 10. Back-up batteries power during January 1,
02:00 to 03:00 AM.

From the aggregator's point of view, the monthly
pro�t is 11,532$, which means more than 135,000$
pro�t in a year. Moreover, an EV owner whose vehicle
is available 60% of the day on average for V2G service
will receive more than 200$ per year. If the cost of
required communication and control infrastructure for
V2G implementation is considered to be about 1000$

Figure 11. Back-up battery bank power during January.

Figure 12. Back-up battery bank state of charge during
January.

per vehicle, the payback period to recoup the funds
expended for required infrastructure will be 5 years.
Based on what we have proposed, the aggregator trans-
fers this fund to EV owners. Because, in this case, the
EVs with maximum availability time at home have the
motivation to participate in V2G service. However, the
aggregator may pay this initial cost, and the EV owners
pay it by installments through their income from V2G.
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4. Conclusion

Implementation of Vehicle-to-Grid (V2G) concept re-
quires active participation of EV owners. In this paper,
a novel pricing model was proposed to determine the
price that an aggregator should pay EV owners in order
to encourage them to take part in providing frequency
regulation service, while the pro�t of the aggregator is
maximized. The proposed pricing model was applied
to PJM frequency regulation market, considering fast
regulation (RegD) signal. The results indicated that
the depth of discharge for both EV batteries and the
back-up batteries was insigni�cant enough to ensure
numerous life cycles for the batteries. In addition, the
SoC of the back-up battery bank would not approach
the fully charged/discharged mode. Moreover, the
fast regulation signal used in our case had a mean
value of zero, which has a negligible impact on SoC
of EV batteries. Therefore, EV owners would not be
concerned about driving with empty battery in the
hours ahead.

The paper comes to the following �ndings:

� A model was presented for the interaction between
the aggregators and EV owners that considered the
interests of both parties and motivated them to
participate in V2G;

� A pricing scheme was introduced to maximize the
pro�t of aggregators;

� If the V2G supply function was obtained precisely,
the exact pro�t of EV owners and aggregators
could be determined so as to evaluate the economic
attractiveness of V2G.

In the future works, the capacity of back-up battery
bank can be considered as a variable to be optimized
as the second objective in addition to V2G price. In
addition, the economic risk of the aggregator can be
considered as an independent objective. Furthermore,
the aggregator planning problem can be dealt with as
a multi-criteria decision-making problem.
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