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Abstract. In this study, a three-dimensional lattice Boltzmann method was developed
for the numerical simulation of uid ows around arbitrary geometries in a wide range of
Reynolds numbers. For the e�cient simulation of high Reynolds number ow structures
in a turbulent regime, a Large Eddy Simulation (LES) approach with the Smagorinsky
subgrid turbulence model was employed. An absorbing boundary condition based on the
concept of sponge layer was improved and implemented to damp the vorticity uctuations
near the open boundaries and regularize the numerical solution by signi�cantly reducing
the spurious reections from the open boundaries. An o�-lattice scheme with a polynomial
interpolation was used for the implementation of curved boundary conditions for arbitrary
geometries. The e�ciency and accuracy of the numerical approach presented were examined
by computing the low to high Reynolds number ows around the practical geometries,
including the ow past a sphere in a range of Reynolds numbers from 102 to 104 and ow
around the NACA0012 wing section in two di�erent ow conditions. The present results
were found in good agreement with the numerical and experimental data reported in the
literature. The study demonstrates that the present computational technique is robust and
e�cient for solving ow problems with practical geometries.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In a wide range of applications with complex ow
physics and geometries, the Lattice Boltzmann Method
(LBM) is found to be a promising e�cient technique for
solving ow problems in comparison to conventional
solvers based on the Navier-Stokes equations. The
LBM is used to study the uid ow with mesoscopic
physics in which the interactions between particles are
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considered by a particle mass distribution function.
The LBM is suitable for parallel computing due to
the locality of the particle dynamics, which is par-
allel in nature. Furthermore, programming of the
LBM is simple, and it is easy to model additional
physical phenomena by using this method, considering
the microscopic interactions. The standard LBM
is applied to the uniform Cartesian grid and has a
major restriction with respect to the curved boundary
condition implementation. Further, the capability of
this methodology to solve high Reynolds number ows
may be trivial due to the inherent numerical instability.
This instability comes from nonlinear ow features and,
also, implementation of boundary conditions. The two
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mentioned di�culties greatly limit the standard LBM
applications to model practical ow problems with
complex geometries. Thus, some e�orts have been put
forward to improve the e�ciency and stability of the
standard LBM.

The most common bounce-back method is used
for applying the wall boundary condition in the LBM.
The implementation of this method for curved bound-
ary leads the LBM to be a scheme with only �rst-
order accuracy in space because of a staircase-like
approximation of the boundary [1]. The di�culty of
employing conventional LBM for curved boundaries
is tackled by introducing the immersed boundary
method [2,3] and a family of boundary �tting methods
proposed by Fillipova and H�anel [4], as improved by
other researchers [5,6]. In the immersed boundary
method, a local force computes the e�ect of the wall
on the uid, which is added by a source term to the
governing equation. The existence of the forcing term
in the LBM and immersed boundary approach impacts
the stability of a numerical solution, thus is limited to
using small CFL numbers.

In the boundary �tting approach, the lattice
nodes inside and outside the uid domain are con-
sidered as `uid nodes' and `solid nodes', respectively.
Then, to implement no-slip boundary condition on the
curved wall, extrapolation of the velocity is used at the
neighboring solid nodes, and the unknown distribution
of the particles at the boundary nodes is de�ned by us-
ing the populations derived from uid nodes. A similar
procedure with very general formalism was derived by
L�att et al. [7], which can use both interpolation and
extrapolation of the velocity at the boundary nodes.
Verschaeve and M�uller [8] extended L�att's approach
to curved boundary conditions, veri�ed for the two-
dimensional LBM; in this regard, thorough veri�cation
of the three-dimensional case is still necessary. In the
present work, the approach proposed by Guo et al. [6]
and Verschaeve and M�uller [8] is extended and applied
to three-dimensional LBM to solve practical uid ows.
Note that the application of an appropriate interpola-
tion or extrapolation scheme to the implementation of
the curved boundary conditions allows one to preserve
spatial second-order accuracy of the LBM near the
boundaries.

Di�erent developments have been proposed to
overcome the inherent instability of the standard LBM
for solving ow problems at high Reynolds number.
One way is to discretize the Lattice Boltzmann Equa-
tion (LBE) by using interpolation- or di�erential-
type schemes [9-11]. These approaches eliminate the
instability problem of the LBM by decoupling time
and space discretizations [12]. Although these schemes
provide a stable solution for LBM, the stencil used in
discretizing the spatial derivatives sacri�ces the locality
of the collision of particles. Consequently, one of the

main bene�ts of the LBM for e�cient parallel compu-
tation is lost [13]. Another well-known approach to al-
leviating the stability limits of the LBM in solving high
Reynolds number ows is to use the Multi-Relaxation-
Time (MRT) [14,15] instead of the standard Single-
Relaxation-Time (SRT) approach. The MRT approach
allows selecting di�erent values for the relaxation time
parameter to keep the kinematic viscosity positive
and, consequently, improve the numerical stability of
the LBM. However, the MRT-based approach impacts
the computational cost, especially for solving three-
dimensional and practical ow problems.

One further idea to improve the stability of the
LBM is to prevent the growth of the high-frequency
spurious waves that usually originate from boundary
conditions and nonlinear ow features in the ow
domain. It is found that the implementation of
boundary condition for the open boundaries strongly
deteriorates the stability of the interior solution be-
cause of spurious wave reections [16] in most of
the numerical methods and the standard LBM. Non-
Reecting Boundary Conditions (NRBCs) have been
developed to improve the numerical stability of the
ow solutions by controlling the wave reections from
the boundaries. There are three main categories for
NRBCs, including Characteristic Boundary Conditions
(CBCs) [17,18], absorbing boundary condition based on
the Perfectly Matched Layer (PML) concept [19,20],
and the sponge layer concept [21,22]. These types of
boundary conditions are successfully implemented to
have stable numerical computing and realistic results
based on the Navier-Stokes equations [17,19,21] and
LBM [18,20,22].

Most of the previous LBMs developed in literature
by implementing absorbing boundary conditions are
used for solving aeroacoustic problems. The behavior
of spurious reections at open boundaries and their ef-
fects on the stability of LBM for high Reynolds number
ows have been rarely considered. In the present work,
the stability problem of the standard LBM with SRT-
based approach and Bhatnagar-Gross-Krook (BGK)
approximation for solving the high-Reynolds number
ow problems is assessed by implementing absorbing
boundary conditions in the outlet boundary. The
application of this approach implies a stable solution
through the standard LBM for solving the ow prob-
lems in a turbulent regime by absorbing the vorticity
uctuations, eliminating the spurious waves generated
by nonlinear ow features, and preventing reection
to the interior solution domain. Herein, the concept
of the sponge layer zone is employed to damp the
reecting spurious waves from the open boundaries.
An improvement is also proposed for this approach,
which is discussed in detail in Section 3. The LES
methodology with the Smagorinsky subgrid model is
used for turbulent ow simulations [23]. The accuracy
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and e�ciency of the D3Q19 SRT-lattice Boltzmann
method implemented are investigated by solving in-
compressible ows around the practical geometries
in di�erent conditions. In the present paper, the
stability and accuracy of the incompressible ow solver
developed for solving ow problems in a wide range of
Reynolds numbers are proved by implementing an o�-
lattice wall boundary condition for curved geometries
and an absorbing boundary condition on the standard
SRT-LBM with BGK approximation.

The paper is organized as follows: A brief in-
troduction to the D3Q19 lattice Boltzmann single-
relaxation-time method is presented in Section 2. Sec-
tion 3 deals with the implementation of the curved
boundary conditions with an interpolated o�-lattice
scheme. The application of the procedure of the
sponge layer technique near the open boundaries is
also described in Section 3. The numerical results
of two ow problems are presented and discussed in
Section 4 to examine the performance and accuracy of
the solution of the LBM implemented. Finally, some
conclusions are made in Section 5.

2. Numerical solution method

2.1. LBM for solution of laminar ows
The single relaxation time LB equation used with
the collision term in the BGK approximation can be
expressed as follows [24]:

@f
@t

+ e � rf = �1
�

(f � feq); (1)

where f(t; c; x) is the particle (mass) distribution func-
tion, � is the collision relaxation time, e denotes the
microscopic velocity of the particle, and feq de�nes
the equilibrium distribution function (the Maxwell-
Boltzmann distribution function). The right-hand side
of Eq. (1) (collision term) models the uid viscosity
e�ects on the molecular level through the collision
process. A three-dimensional cubic lattice model with
nineteen particle velocity directions (D3Q19) is em-
ployed to discretize Eq. (1) in the lattice con�guration
as follows:

@f�
@t

+ e� � rf� = �1
�

(f� � feq� );

� = 0; 1; :::; 18; (2)

Figure 1. The cubic D3Q19 lattice model and the
microscopic velocities.

where � denotes the possible direction of the particle
velocity, e. Figure 1 indicates the directions of the
discrete velocity, e�, for the D3Q19 discrete Boltzmann
model employed, that are obtained by Eq. (3) shown
in Box I, where c = �x=�t is the lattice speed. �x
and �t are the grid spacing and the time step size,
respectively, which are assumed to be unity.

The equilibrium distribution function, feq, can be
expressed as follows:

feq� = �w�

 
1 + 3

e� � u
c2

+
9
2

(e� � u)2

c4
� 3

2
juj2
c2

!
;
(4)

where u = (u; v; w) is the macroscopic velocity vector.
The weight coe�cient, w�, for the D3Q19 model is
given by:

w0 =
1
3
; w1�6 =

1
18

; w7�18 =
1
36
: (5)

The macroscopic hydrodynamic variables such as uid
density � and velocity u are obtained based on the
distribution function with the following relations:

� =
X
�

f� ; �u =
X
�

e� f�: (6)

e� =

8><>:(0; 0; 0) � = 0
c(�1; 0; 0); c(0;�1; 0); c(0; 0;�1) � = 1� 6
c(�1;�1; 0); c(�1; 0;�1); c(0;�1;�1) � = 7� 18

(3)

Box I
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The pressure is de�ned by the state formula p =
�c2s, where cs = c=

p
3 is the sound speed [24]. The

kinematic viscosity, v, depends on the speed of sound,
cs, and relaxation time, � , by the following de�nition:

v = c2s(� � 0:5): (7)

The lattice Boltzmann equation discretized in
Eq. (2) is usually solved in two steps: �rst, collision
on the lattice nodes, known as `collision step':

f�(t; x) = f�(t; x)� 1
�

[f�(t; x)� feq� (t; x)]; (8)

second, propagation of the distribution f� according to
its respective speed known as `free streaming step':

f�(t+ �t; x+ e�) = f�(t; x); (9)

where f�(t; x) and �f�(t; x) denote the pre- and post-
collision states of the distribution function, respec-
tively.

2.2. LBM for solution of turbulent ows with
LES approach

The LBM presented in the previous section has been
used to accurately solve the uid ows up to relatively
moderate Reynolds number in a laminar ow regime.
When the turbulent ow regime is achieved at high
Reynolds number, a wide variety of temporal and
spatial physical scales make such an approach compu-
tationally infeasible to obtain an e�cient and accurate
solution. The unresolved physical scales of turbulent
motion by the governing equation are required to be
captured by using an appropriate turbulence model.
Many researchers have investigated the LBM in con-
junction with Large Eddy Simulation (LES) approach
to develop a suitable combination for simulation of the
turbulent ows [23,25-27]. By applying this approach,
the large-scale ow is solved exactly by the distribution
function, f , and the inuence of small-scale eddies is
modeled through by computing the eddy viscosity, vt.
Therefore, the relaxation time, � , in the Boltzmann
collision term in Eq. (2) should be modi�ed to include
both the molecular viscosity, v0, and the eddy viscosity,
vt. Herein, the LES-LBE used is in the following form:

@f�
@t

+ e� � rf� = � 1
�� (f� � feq� );

� = 0; 1; :::; 18; (10)

where the total relaxation time, ��, is composed of two
parts: the molecular relaxation time, �0, depending on
v0 and the turbulence relaxation time, �t, depending
on vt:

�� = �0 + �t =
(v0 + vt)

c2s
+ 0:5: (11)

Herein, vt is computed by the Smagorinsky model as
follows:

vt = (Cs�x)2 ��S�� ; (12)

where Cs is the Smagorinsky model constant, which
is set to 0:16 according to a sensitivity study in this
work (see Table 3). The magnitude of the strain-

rate tensor
��S�� =

q
2SijSij can be locally computed

through the non-equilibrium momentum ux tensor,
�neq, as follows:

Sij = � 1
2c2s��

neqY
ij

; (13)

where
Qneq
ij =

P
�
e�ie�j(f� � feq� ). Note that the

LBM allows for direct computation of j �Sj using lo-
cal variables, whereas the N-S-based solvers require
an appropriate discretization procedure (like a �nite-
di�erence approximation) to evaluate j �Sj. Finally,
the same streaming-collision procedure discussed in
the previous section is used to numerically solve the
governing Eq. (10).

3. Boundary conditions

The implementation of curved wall boundary condition
and absorbing open boundary condition is described
in this section for the lattice Boltzmann method em-
ployed. For solving the LB equation numerically, it is
required to determine appropriate boundary conditions
for the distribution function, f�, based on the known
macroscopic variables on each boundary.

For curved wall boundaries, the approach pro-
posed by Verschaeve and M�uller [8] is extended and
applied to three-dimensional LBM. Herein, the neigh-
boring nodes of the wall boundary are grouped into
`uid nodes' inside the ow domain (F), `boundary
nodes' near the wall (B), and `solid nodes' outside of the
ow domain (S). These groups are shown in Figure 2
by the black circle, gray circle, and square symbols,
respectively. For the boundary node, N, in Figure 2,
the populations of F, B, and S are as follows:

F = f2; 4; 5; 10; 12; 17g;
B = f0; 8; 9; 11; 14; 15; 18g;
S = f1; 3; 6; 7; 13; 16g; (14)

After streaming, the unknown populations for bound-
ary node N would be f2; 4; 5; 10; 12; 17g, since they
streamed from nodes outside the ow domain. Thus,
those nodes are the opposite of the indices of the solid
nodes Sopposite = f2; 4; 5; 10; 12; 17g.

The macroscopic quantities u and � are known
after streaming on the uid nodes, and the no-slip
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Figure 2. Close view of the boundary node N and its
neighbors.

Figure 3. Approximating the macroscopic parameters at
the boundary point N by an interpolating scheme along
the dashed line.

boundary condition is imposed on the wall. The
boundary nodes are placed between the uid nodes
and the wall. Therefore, the macroscopic properties
of ow in the boundary nodes can be computed by an
interpolation scheme, as will be discussed below.

3.1. Computing the velocity on the boundary
nodes

The ow velocity components in the uid nodes are
computed after streaming through Eq. (6), and the
wall velocity uw is given by the velocity boundary
condition (Dirichlet type). On the boundary nodes,
however, the velocity is unknown because of unknown
populations streamed in from the outside of the ow
domain. As shown in Figure 3, the velocity, uN, on
the boundary node N of interest can be computed by
interpolating the velocity between uid nodes I1, I2
and the wall boundary condition at Iw. Herein, a
quadratic Lagrangian interpolation scheme is used as
follows:

uN = uwlw + u1l1 + u2l2; (15)

where uw, u1, and u2 are the velocity vectors at
points Iw, I1, and I2, respectively. The interpolation
polynomials lw, l1, and l2 are evaluated as follows:

lw =
(dN � dI1)(dN � dI2)

dI1dI2
; (16)

l1 =
dN(dN � dI2)
dI1(dI1 � dI2)

; (17)

l2 =
dN(dN � dI1)
dI2(dI2 � dI1)

; (18)

where d denotes the distance of the relevant node from
the wall point, Iw. Note that these quantities can
be computed once and for all in the �rst step of the
solution.

3.2. Computing the density on the boundary
nodes

A local algorithm is implemented to compute the
density on the boundary node, N, based on the fact
that the distribution functions are separable in � such
that it can be rewritten from Eq. (4):

feq� = �w�

 
1 + 3

e� � u
c2

+
9
2

(e� � u)2

c4
� 3

2
juj2
c2

!
| {z }

geq�

:
(19)

Similarly, the non-equilibrium part can be approxi-
mated by the following relation [7]:

fneq� � �
�
�3w��

c2
(e�e� � 3

c2
I) : S

�
| {z }

gneq�

; (20)

where I and S are the unit and rate of strain tensors,
respectively. Then, by considering the mass of the post-
streamed populations as approximately equal to the
mass entering in collision, the density of the boundary
node, N, can be approximated by:

�N �
P
�2K

fpoststream
�P

�2K
gprecoll
�

; (21)

where gprecoll
� = geq� + gneq� , and K includes the

known population indices. Of note, to avoid possible
numerical instability reported in [28], it is ensured that
the known populations for node N in Eq. (21) include
only those streamed from the uid nodes around, not
those from the neighboring boundary nodes.
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3.3. Absorbing open boundary condition
As reviewed in the introduction, di�erent non-reecting
boundary conditions have been developed for the N-S
and LB-based ow solvers, most of which are applied
to the solution of the aeroacoustic problems. These
types of boundary conditions damp the unrealistic wave
reection from the boundary to improve the stability
of the numerical solutions. Herein, a simple absorbing
sponge layer approach is applied to keep the numerical
algorithm as simple as possible. The idea behind
this approach is to consider a layer of nodes near
the open boundary, e.g., near the outlet boundary as
shown in Figure 4, and then increase the viscosity
arti�cially in that region. This sponge zone damps
(absorbs) the waves entering this region because of
the added viscosity and prevents those waves from
reecting on the open boundary to the entire domain.
In the LBM, the relaxation time, � , imposes viscosity
on the ow solution. Thus, this parameter should
vary in order to add viscosity across the sponge layer
considered by an appropriate relation. Vergnault et
al. [22] proposed a quadratic relation to determine the
relaxation parameter in a sponge layer as follows:

�sponge layer =

8<: 3v+0:5
1�0:999d2 d � 1

3v+0:5
0:001 d > 1

(22)

where d is the distance in a direction perpendicular to
the open boundary. Such a quadratic relation produces
an abrupt change in the viscosity across the interface
of the uid domain and the sponge layer, which may
produce numerical errors. Herein, a sinusoidal relation
is proposed and applied to evaluate the variation of the
relaxation time in the interface between the uid region
and the sponge layer as follows:

Figure 4. Schematic of the computational domain and
the sponge layer considered near the outlet boundary
condition.

Figure 5. Variation of relaxation time parameter, � , in
the interface between the uid domain and the sponge
layer.

�interface =
1 + �

�sponge layer

2
+

1� �
�sponge layer

2

sin(
2

1� �
�sponge layer

tinterface
2 � tinterface

�
); (23)

where �/�sponge layer is the relaxation time ratio be-
tween standard value and the desired value in the
sponge layer. tinterface denotes the width of the
interface, and � is a scale parameter to set the rate
of variations between � and �sponge layer across the
interface. Figure 5 shows the comparison of the
quadratic and sinusoidal variations of the relaxation
time in the interface between the uid domain on the
right and the sponge layer on the left. As shown
in this �gure, the sinusoidal variation is smoother
than quadratic one in the interface, and it is expected
to produce the least numerical errors. In this case,
the width of interface and scale parameter are set
to tinterface = 1 and � = 0:64, respectively. The
relaxation parameter is considered to vary from its
standard value to 1000 times higher value across the
sponge layer interface (�=�sponge layer = 0:001). Note
that by arti�cially adding such viscosity to the sponge
layer, the relaxation time increases to a very large value
such that the Chapman-Enskog expansion is no longer
valid for that condition. As argued by Vergnault et
al. [22], it is not important whether the physics in the
sponge layer match just to dissipate energy.

4. Numerical results

The robustness and accuracy of the LBM implemented
with D3Q19 discretization procedure are demonstrated
for di�erent laminar and turbulent ow problems
with curved wall boundaries. Herein, two test cases
include ow calculation past a sphere in a range of
Reynolds numbers from 102 to 104 and ow around an
NACA0012 wing section in di�erent ow conditions.
The present results obtained are compared with the
available experimental data and numerical results re-
ported in the literature.
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4.1. Flow past a sphere
The ow past a sphere is a well-known benchmark
problem for the assessment of numerical methods due
to the complicated 3-D ow structures and existence of
numerous experimental and numerical results available
in the literature for the sake of comparison [29-35].
The Reynolds number dramatically changes the nature
of ow around the sphere. Applying an experimental
investigation, Taneda [29] found that the ow past a
sphere was perfectly laminar with no ow separation
for the Reynolds numbers less than Re = u0D=� = 24,
where u0 and D are the freestream velocity and the
sphere diameter, respectively. The ow is separated
at the Reynolds number more than 25 from the rear
stagnation point and forms recirculating wakes past
the sphere. These wakes are in the shape of an
axisymmetric vortex ring with steady behavior up to
Reynolds number of approximately 210. However,
the angle of ow separation point and the length of
the wakes grow by increasing the Reynolds number.
In the range of 210 < Re < 270, the laminar ow
remains steady and attached; however, the wake is
no longer axisymmetric. Magarvey and Bishop [31]
considered this ow condition that exhibits planar
symmetric wakes containing two vertical tails. As the
Reynolds number increases within 270 < Re < 400, a
transition from the steady laminar ow with planar
symmetric wakes to a time-dependent laminar ow
with periodic vortex shedding occurs. By increasing
the Reynolds number up to Re = 1000, an unsteady
asymmetric regime is reported for the laminar ow
past a sphere, where the formed vortex loops change
from a cyclic mode to an irregular fashion [36]. The
ow past a sphere with Reynolds numbers higher than
Re > 1000 is categorized in a turbulence regime with
strong uctuations existing in the wake. Taneda [30]
and Achenbach [37] experimentally investigated the
turbulent ow structures around a sphere in di�erent
Reynolds numbers, and showed that the vortex separa-
tion point rotated around the sphere at high Reynolds
numbers.

The capability of the present solution procedure is
proved in the process of simulating 3-D ow problems
with curved boundaries by solving the ow past a
sphere in a wide range of Reynolds numbers, Re =
100; 200; 103; and 104. Figure 6 indicates the ge-
ometry of the solution domain consisting of a sphere
con�ned in a cuboid with a square cross-section. The
stream-wise length and height of the cuboid are 30D
and 9D, respectively. The sphere is placed in the
middle of cross-section so that its center is at a distance
of 4:5D from the inlet. Herein, the calculations are
performed with the computational grid (650�200�200)
for ows at Re = 100; 200; 103 and the grid (975 �
300�300) for Re = 104. A sponge layer with 2D width
is also considered to damp the vorticity uctuations

Figure 6. Cuboid computational domain implemented
for simulation of ow past a sphere.

near the outlet boundary and stabilize the numerical
solution, especially at high Reynolds numbers.

Figure 7 shows the 3-D computed ow �eld
close to the sphere depicted by the streamlines
(right) and the snapshot of an instantaneous velocity
�eld in the computational domain (left) for Re =
100; 200; 103; and 104, in descending order. A pair of
axisymmetric stationary recirculating regions appears
in the wake of the sphere at both the Reynolds
numbers Re = 100; and 200. As the Reynolds number
increases from Re = 100 to 200, the length of the
ring vortex, xs (the distance from the rear stagnation
point of the sphere to the end of the wake), increases
and the separation angle, �s, (measured from the
front stagnation point) decreases. Table 1 shows the
comparison of the computed results by applying the
present LBM versus the available experimental data
and numerical results regarding the separation angle
and the location of the reattachment point for Re=100
and 200. As shown in this table, the present results by
applying the D3Q19 LBM are compared well with the
results reported in the literature. The irregular vortex
shedding can be observed in Figure 7 with increasing
the Reynolds number to Re = 103. By increasing
the Reynolds number to Re = 104, the ow shows a
chaotic nature resulting from vortex shedding, which is
appropriately resolved by the LES-LBM implemented.
This ow fashion is associated with the small-scale
instabilities in the separated shear layer (the Kelvin-
Helmholtz instability) and the large-scale instabilities
in the wake. Figure 8 shows the mean surface pressure
coe�cient distribution obtained by employing the LES-
LBM for the Reynolds number Re = 104 in comparison
with the experimental data [38] at Re = 1:62�105. The
result obtained exhibits good agreement, and shows
that the pressure distribution is almost independent
of the Reynolds number in the subcritical regimes
(Re � 105) [38].

A further comparison of experimental and nu-
merical results can be made with the drag coe�cient,
given as Cd = 8Fd

�u2
0 �D2 , where Fd is the force on
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Figure 7. Computed ow �eld for ow past a sphere shown by streamlines (a) and velocity contours (b) at Re = 100, 200,
103, and 104, in order from top to bottom.

Table 1. Comparison of the predicted separation angle and the location of the reattachment points for the ow past a
sphere with Re = 100 and 200.

Re Author(s) Method xs �s

100 Taneda [29] Experiment 0.89 127.6

Tomboulides [32] Spectral Element 0.86 {

Magnaudet et al. [33] N.S. 0.84 {

Johnson and Patel [34] N.S. 0.88 126.6

Present solution LBM 0.86 126.8

200 Taneda [30] Experiment { 116.8

Tomboulides [32] Spectral Element 1.43 {

Magnaudet et al. [33] N.S. 1.29 {

Johnson and Patel [34] N.S. 1.45 117.0

Present solution LBM 1.41 117.4

the sphere in the stream-wise direction. Herein, the
drag force, Fd, is computed with the momentum-
exchange method [39]. Table 2 shows the comparison
of the results obtained from the LBM implemented
and the available numerical results and experimental
data for the mean drag coe�cient of the sphere for
Re = 100; 200; 103; and 104. The results obtained
by applying the present solution approach are in good
agreement with those reported in the literature. This
study indicates that the LES-LBM can be used as a
capable and accurate ow solver for simulating 3-D
ow problems with curved wall boundaries, and that
the results obtained are comparable to those of Navier-

Stokes ow solvers.
The Smagorinsky constant, Cs, is an adjustable

parameter [47], generally chosen to be around 0.15.
However, this constant is experimented and analyzed in
the present work to make an appropriate eddy viscosity
prediction for the ow properties studied. Such a
sensitivity study has been done for the ow around
the sphere at Re = 104 by applying the present LES-
LBM. The comparison of the present results for the
drag coe�cient at di�erent Cs is given in Table 3. The
results obtained show that by applying the present
LBM, Cs does not have signi�cant e�ect on the nu-
merical solution. Thus, Cs = 0:16 has been chosen as
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Table 2. Comparison of the predicted drag coe�cient for the ow past a sphere for di�erent Reynolds numbers.

Re Author(s) Method Cd
100 Roos & Willmarth [40] Experiment 1.08

Clift et al. [41] Experiment 1.087
Johnson and Patel [34] N.S. 1.08

Le Clair et al. [35] N.S. 1.096
Present solution LBM 1.091

200 Tabata & Itakura [42] N.S. 0.77
Johnson and Patel [34] N.S. 0.77

Present solution LBM 0.772

103 Ploumhans et al. [43] DNS 0.48
Poon et al. [44] LES-N.S. 0.46
Present solution LES-LBM 0.496

104 Achenbach [37] Experiment 0:40� 0:01
Constantinescu et al. [45] LES-N.S. 0:393� 0:014

Poon et al. [44] LES-N.S. 0.39
Kim [46] LES-N.S. 0.438

Present solution LES-LBM 0:438� 0:008

Figure 8. Comparison of mean surface pressure
coe�cient distribution for the sphere with Re = 104.

an appropriate value for the Smagorinsky constant in
the present work, which is close to the typical value
of Cs = 0:17 used in the Navier-Stokes-based LES
solvers [48].

The reduction of the spurious reections from the
outer boundary by the sponge layer is investigated for
the ow around the sphere at Re = 104. This study
is performed by measuring the pressure wave reection
from the outlet boundary condition. Figure 9 shows the

Table 3. Comparison of the predicted drag coe�cient for
the ow past a sphere at Re = 104 for di�erent
Smagorinsky constants, Cs.

Cs Cd
0.14 0:4379� 0:0079
0.16 0:4381� 0:0083
0.18 0:4381� 0:0077

pressure uctuation history measured in the middle of
the ow domain point (15D; 4:5D; and 4:5D), which is
placed in the downstream of the sphere. In this �gure,
the results obtained by employing the sponge layer on
the outlet boundary are compared with those obtained
without using the sponge layer methodology. As can
be observed, by considering the sponge layer in the
outlet boundary condition, the pressure uctuations
are damped; the reected wave is signi�cantly weak
compared to the condition where the sponge layer is
not employed. This investigation demonstrates that
the sponge layer has an e�ective role in stabilizing the
numerical solutions based on the present LES-LBM by
damping the waves reected from the outlet boundary.

4.2. Flow around a NACA0012 wing section
Flows around the aerodynamic shapes are of complex
nature and are characterized by the ow separation,
reattachment, and unsteady shedding of vortices at
low-to-high Reynolds numbers. These phenomena can
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Figure 9. Comparison of pressure wave reection in the
middle of the ow domain, point (15D, 4:5D, and 4:5D),
for the sphere with Re = 104.

Figure 10. Geometry and the cuboid computational
domain implemented for simulation of ow around the
NACA0012 wing section.

impact the e�ciency of the aerodynamic body (e.g.,
a wing) and, therefore, lead to di�erent numerical
and experimental studies regarding the prediction of
such ow structures for improving engineering designs.
Herein, the numerical simulation of the laminar and
turbulent ows around an NACA0012 wing section is
performed to examine the accuracy and performance of
the D3Q19 LBM implemented. The Reynolds number,
Re = u0c=�, is de�ned based on the freestream velocity,
u0, and the chord length of the NACA0012 hydrofoil,
c. The geometry of the NACA0012 wing section and
the ow �eld with a grid size of (1000�250�250) used
for simulations are shown in Figure 10. The stream-
wise and span-wise lengths of the cuboid ow domain
are 40c and 10c, respectively. The wing is placed in
the middle of the cross-section so that its center is at a

distance of 10c from the inlet. This study is performed
with Re = 500 and 6� 106 at angle-of-attack � = 10�.
The ow around the NACA0012 wing section used is
quit laminar for Re = 500 and involves turbulent ow
structures at Re = 6 � 106. A sponge layer with 2c
width is considered to damp the vorticity uctuations
near the outlet boundary condition at Re = 6� 106.

Figure 11 illustrates the computed results of ow
structures around the NACA0012 wing section in the
middle slice of the ow domain by the streamlines
(right) and velocity contours (left) for Re = 500
(top) and 6 � 106 (bottom) at angle-of-attack � =
10�. As observed in this �gure, at the both Reynolds
numbers, the ow separation occurs on the suction
side of the wing, and large-scale vortexes are shed to
downstream. In the case of Re = 6 � 106, the ow is
separated laminarly, and the transition to turbulence
occurs on the separated shear layer along with vorticity
uctuations, which can be seen in the velocity �eld
shown in Figure 11. In Figure 12, the surface pressure
coe�cient distribution calculated based on the present
LBM employed is compared with the numerical results
reported in [13,49] at Re = 500 and � = 10�, showing
good agreement. The time evolution of the drag and lift
coe�cients of the NACA0012 wing section are shown
in Figure 13 for Re = 6 � 106. In this �gure, the
periodicity can be observed, which corresponds to the
large-scale vortex shedding from the separated shear
layer. The mean values of drag and lift coe�cients
obtained are Cd = 0:015 and Cl = 1:10, respectively.
The results obtained agree well with those reported
by Ha�man et al. [50], i.e., Cd = 0:0144 � 30% and
Cl = 1:11 � 5%. Validity and capability of the
present solution algorithm are shown in this study for
simulating the incompressible uid ow �eld around
the practical geometries.

5. Conclusion

In this work, a three-dimensional lattice Boltzmann
method was developed for the numerical simulation of
the uid ows around the arbitrary geometries in a
wide range of Reynolds numbers. The Large Eddy
Simulation (LES) approach with the Smagorinsky
subgrid turbulence model was employed to simulate
high Reynolds number ow structures. An absorbing
zone based on the concept of the sponge layer was
implemented near the outlet boundary to damp the
vorticity uctuations and reduce the spurious wave
reections from the open boundary. An o�-lattice
scheme with a polynomial interpolation was also used
to implement curved wall boundary conditions for the
arbitrary geometries. The calculations were performed
for di�erent laminar and turbulent ow problems to
demonstrate the e�ciency and accuracy of the LBM
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Figure 11. Computed ow �eld for ow around the NACA0012 wing section at � = 10� shown by streamlines (a) and
velocity contours (b) with Re = 500 (top) and Re = 6� 106 (bottom).

Figure 12. Comparison of surface pressure coe�cient
distribution in the middle of span of the NACA0012 wing
section with Re = 500 and � = 10�.

Figure 13. Time variation of drag and lift coe�cients
from ow around the NACA0012 wing section with
Re = 6� 106 and � = 10�.

applied. Some conclusions of the present study can be
itemized as follows:

1. The o�-lattice wall boundary condition proposed
by Verschaeve and M�uller for 2-D geometries was
extended to the three-dimensional LBM using a
Lagrangian polynomial interpolation and was ex-
amined by the simulation of the 3-D ow problems
with curved wall boundaries. It was shown that
such a procedure could accurately resolve the ow
�eld near the curved wall boundaries;

2. For the implementation of the sponge layer near the
outlet boundary, a sinusoidal relation was proposed
to de�ne a smooth variation for the relaxation time
through the interface between the uid domain and
sponge layer to decrease probably numerical errors
in this region. It was shown that the numerical
solution of the high Reynolds number ows by
the SRT-LBM and employing the sponge layer was
robust and stable;

3. The computed results of implementing the LES-
LBM were in good agreement with the available
experimental data and numerical results reported
in the literature for the test cases considered. The
study showed that the present three-dimensional
lattice Boltzmann method employed with the ab-
sorbing open boundary and curved wall boundary
conditions was robust, e�cient, and stable for
solving uid ows over practical geometries, even
at high Reynolds numbers;

4. Results obtained based on the LES-LBM imple-
mented were in good agreement with those of
Navier-Stokes solvers. By considering the simplicity
of the LBM for programming and its capability
for parallel computing, it can be an appropriate
alternative computational technique to the conven-
tional Navier-Stokes solvers for studying physical
phenomena and solving ow problems over practical
and realistic geometries.
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