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Abstract. The risk imposed by the stochastic nature of wind energy sources has always
been a major barrier despite their proliferation in power systems. To further penetrate these
sources, this paper draws upon dynamic prices, which realize demand response potentials
along with decimating the risk involved. To do so, a model is �rst established to study the
impact of activating demand response on the risk index in a system with a high penetration
of wind resources. Then, the model is used to estimate the extra wind capacity that can
be hosted by the system such that the risk remains within the acceptable range. The
well-being indices are calculated via sequential Monte Carlo simulation approach and fuzzy
theory. The demand response with dynamic prices is modeled by self and cross elasticity
coe�cients of di�erent load sectors. The performance and applicability of the proposed
model are veri�ed through simulations on the IEEE Reliability Test System (IEEE-RTS).

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Due to its economic and environmental bene�ts, wind
energy has mainly been envisioned to play an indis-
pensable role in future energy systems. The stochastic
nature of this energy source, however, has negative
impacts on the safe operation of power systems [1].
This drawback is even more highlighted in power
systems with higher wind penetrations. In the liter-
ature, several solutions have been proposed to mitigate
concerns about the risk of uncertain sustainable energy
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sources like wind. In [2], energy storage units were
proposed to tackle deviations in the output power of
wind sources. It was demonstrated that the optimal
location and capacity of distributed generation in a
grid could be determined by quantifying the hosting
capacity of di�erent nodes of the grid. As found
in that study, the marginal bene�t of the battery
decreases by increasing storage size. In [3], hybrid
renewable energy resources were applied to increase the
availability of output power of these sources. These
methods, however, are more bene�cial in areas where
at least two di�erent renewable energy sources are
pro�table and applicable. In [4{8], demand response
was proposed as a complement for uncertain energy
sources like wind. In [4], by using a case study based
on the ERCOT (Electric Reliability Council of Texas)
power system, system operating cost was compared
when imperfect forecasts and perfect foresight of wind
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were available. They demonstrated that wind uncer-
tainty could impose substantive costs on the system
and that demand response could eliminate more than
75% of these costs if consumers responded to system
conditions immediately. The research reported in [5]
simulated and compared system operation with high
wind penetration levels with and without applying
real-time prices. It was shown that activating de-
mand response with Real-Time Pricing (RTP) could
increase the percentage of load that might be served
by wind generation. In [6], RTP and Demand-Side
Management (DSM) were proposed to increase the
penetration of wind energy. It was shown that o�ering
dynamic tari�s to customers could increase the bene�t
of sustainable energies on both supply and demand
sides. It was also demonstrated that wind penetration
could be increased by 40% if RTP and DSM were
applied together [7]. According to this study, an
increment in the production of wind energy sources can
be translated to a reduction in energy price, thereby
motivating consumers to consume more. On the other
hand, higher energy prices due to low wind generation
encourage consumers to consume less. This implies
that the availability of wind energy and demand is
more correlated when demand response is activated via
dynamic prices. According to the study, the idea of
applying dynamic prices to correlate wind energy with
system demand was proposed. However, it lacked a
comprehensive study on risk indices. It is also required
to quantitatively assess the impacts of using demand
response on the maximum allowed penetration of wind.
To this end, this paper aims to establish a model
to quantify well-being indices in systems with high
penetrations of wind energy when demand response
is activated. The model is then used to estimate the
extra wind capacity that can be hosted by the system
if demand response potentials are realized through
dynamic prices. This study is required to quantify
the contribution of demand response concerning the
increased penetration of wind in future power systems.
The demand 
exibility behavior in response to dynamic
prices is captured via price elasticity coe�cients [8,9].
The model investigates various sectors of load with
various elasticity levels and energy use pro�les. The
risk assessment is subjected to the system well-being,
where (sequential) Monte Carlo simulation and fuzzy
theory are practiced. The e�ectuality of the o�ered
model is unveiled by applying it to the IEEE-RTS.

2. Preliminart bases

In this section, the signi�cant-on-paper concepts used
in the evolved model are brie
y described. Here, quick
descriptions of the investigated model for Wind Energy
Conversion Systems (WECS) and well-being analysis
are given.

2.1. Wind Energy Conversion System
(WECS)

An essential prerequisite for incorporating WECS in
generation system well-being analysis is to counterfeit
the hourly wind speed. There are di�erent approaches
in the literature to modeling wind speed [10]. ARMA,
as a very popular approach, uses the correlation be-
tween wind speed at a speci�c hour and wind speed
within immediate previous hours. The general de�ni-
tion of the ARMA(n;m) model is presented here [11]:

yt =
nX
i=1

�i � yt�i + �t �
mX
j=1

�j � �t�j : (1)

The simulated wind speed at time t, i.e., WKt, is
calculated as follows [11]:

WKt = �t + �t � yt: (2)

After determining the hourly wind speed, the next step
is to determine the power output of a Wind Turbine
Generator (WTG) as a function of wind speed. This
function is represented by the distinctive parameters
of a WTG. Here, Eq. (3) is used to retrieve the hourly
power production of a WTG from the simulated Hourly
Wind Speed (HWS) [12].

P (WKt)=

8<: 0 WKt � Vci
a+b�WSt+c�WS2

t Vci�WKt�Vr
0 Vco �WKt

9=; :
(3)

2.2. Well-being analysis
Traditionally, power system operating states have been
represented by a �ve-state model including normal,
marginal, emergency, extreme emergency, and restora-
tive states. These �ve operating states, however, do not
appropriately re
ect the actual system risk level [13].
To address this issue, the �ve-state model is then
transformed into a wellbeing analysis framework [14].
This framework is considered to evaluate system well-
being in serving load via a set of probabilistic criteria,
as displayed in Figure 1. The system is supposed to
be in the healthy state if system load is served and
enough reserve is available to meet analytic norms like

Figure 1. System well-being model.
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the loss of the largest available unit. The system is
in its marginal state if no problem arises in serving the
load, while the reserve is not adequate to withstand the
analytical criteria. This means that, in the marginal
state, the available reserve is not su�cient to bear when
the largest operating unit is lost. In the at-risk state,
system load overrides the available generation capacity;
therefore, load shedding is inevitable. The three above-
mentioned states serve as the system well-being indices.

Among a variety of simulation methods and an-
alytical criteria used for calculating the system well-
being criteria, the sequential Monte Carlo simulation
method is used in this paper. The available capacity
of the generating system is obtained through random
sampling from the down and up modes of the gener-
ating units [15,16]. The procedure used for calculating
the system well-being criteria is displayed schematically
in Figure 2 [17]. In the �gure, the red diagram
represents the overall available generation capacity, the
blue diagram is the available capacity minus the largest
available unit at that hour, and the green diagram is
load value. t(H) represents the time when generation
minus the largest available unit is greater than load
value, and the system is in a healthy state. t(M)
denotes the time when generation capacity minus the
largest available unit is less than the load and, yet,
the overall generation is greater than the load, and the
system is in the marginal state. Finally, the at-risk
state emerges when the generation is less than the load.

The probability of the system in each state is
�nally calculated by summing up the associated du-
ration times divided by the duration of the simulation
period.

3. Developed methodology

This section develops a step-by-step procedure to in-
clude demand response and wind penetration in assess-
ing the generation system well-being. The 
owchart of

the approach can be seen in Figure 3, which is described
in the following:

Step 1: All system data including load of di�erent
sections, generator information, and information
of wind turbines and wind speed speci�cations are
determined;

Step 2: In this step, the availability and
unavailability of the traditional units are determined
by the Monte Carlo method. Wind speed is also
calculated by applying sequential Monte Carlo
simulation and time-series ARMA model. In reality,
the availability of generating units and wind speeds
of the hour is determined by which access capacity
can be obtained per hour over time;

Step 3: The calculated wind speed is combined
with the WTG model, given in Eq. (3), to estimate
the power output of wind turbines. The output of
this step is the hourly generation of wind turbines
within the simulation period;

Step 4: In this step, the hourly available
conventional generation capacity obtained in Step
2 and hourly production of wind turbines achieved
in Step 3 are combined, and the hour-by-hour total
generation capacity is calculated;

Step 5: The total consumption of loads in di�erent
sectors including large user, governmental, etc. is
shown, and the total hourly load of the system is
calculated in this step;

Step 6: This step is to calculate hourly electric-
ity prices based on cost functions associated with
generating units at the associated hour and the
respective system load. It is worth mentioning that
the generation cost of wind turbines is considered
negligible. The electricity price at a speci�c hour
is considered equal to the marginal production cost
of the last collaborative unit at the same hour.

Figure 2. Combined generation and load.
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Figure 3. Block diagram of the developed methodology.

The output of this step is the hourly electricity
prices;

Step 7: In this step, the hourly electricity prices
calculated in Step 6 are provided for customers
whose hourly energy use is calculated in Step 5. Load
responsiveness is obtained based on the self-elasticity
and cross-elasticity coe�cients and the hourly

variable price [16]. This is done as follows [16]:

Lk;t =

(
Lk;t0 +

X
t0
ek(t; t0)� L

k;t
0

�k;t
0

0
�h�k;t0��k;t00

i)
�
(

1 +�ek(t; t)
�k;t0

� h�k;t � �k;t0

i)
: (4)

Note that the coe�cients in the above expression
are assumed to be given. This is because the
determination of these coe�cients needs thorough
social, cultural, and �nancial investigation, which is
beyond the scope of this paper. At the end of this
step, revised load pro�les associated with diverse
load sectors and total system load pro�le after
applying demand response are achieved;
Step 8: To evaluate system well-being criteria, the
largest available unit per hour is determined during
the simulation time interval;
Step 9: In this step, the evaluation of system
well-being criteria for the system with the existence
of wind energy is done based on the results of the
previous steps as follows:

Step 9-1: The hourly loads are compared to load
response times based on the elasticity coe�cients
and the hourly price, as well as the available
capacity of the traditional generators and wind
energy accumulated per hour during the simulation
time interval. If the load exceeds the total available
capacity at that hour, it will be in the risk mode;
otherwise, it will be compared to the fraction of
the largest available unit by load. If the available
capacity minus the largest unit is greater than the
load, it is in a state of health; otherwise, it is in a
marginal state;
Step 9-2: The procedure is followed in sequence in
each state for all of the time periods of simulation;
Step 9-3: Termination criteria are examined
in this step. Given the time-consuming nature
of the calculations and a large number of time
periods of simulations, the calculation termination
criterion is checked. If the calculation termination
touchstone is met, the calculated indices are
reported; otherwise, the process continues;
Step 9-4: In this step, the next time period is
selected for examination, and the process returns
to Step 9-2.

Well-being calculations by the method mentioned
above, i.e., with a particular criterion in the speci�ca-
tion of the well-being states such as the largest gener-
ating unit, su�er from a fundamental defect. In such
conditions, load changes, even small ones, may make
great changes in the well-being state probabilities. This
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issue is particularly evident when the largest unit is
considerably larger than the others. To solve the issue,
it can be cleared up using fuzzy theory. As compared
to the conventional method for well-being calculations,
where the probability of each state is assigned to one of
the well-being states, state probability is appropriately
applied to the well-being states in the fuzzy method.
In this approach, state probability is modi�ed by
a correction coe�cient and, thus, is added to the
probability of the well-being states. It is of great
importance to select the right correction coe�cients.
There are two parameters involved in calculating the
correction coe�cients [14]. One of the parameters is
the number of usable units whose failure does not lead
to load loss in all other units. The second parameter
is de�ned as the scale of the lost load in an event
owing to the available capacity loss of the largest unit.
In fact, the second parameter demonstrates the e�ect
of the largest unit available in each event on load
provision. The probability of healthy state increases
as this parameter decreases. Interested readers are
referred to [14] for more detailed explanations over the
fuzzy approach to calculating the well-being index.

4. Numerical results

To demonstrate the e�ectiveness of the proposed
methodology, it is applied to the modi�ed IEEE-RTS;
in addition, the impacts of activating demand response
on well-being indices are studied in di�erent scenarios.
The original IEEE-RTS system has 32 generating units
with a total installed capacity of 3405 MW and a
peak load of 2850 MW [18]. In the simulations,
the load composition data associated with residential,
agricultural, o�cial, industrial, governmental, and
commercial load sectors given in [19] are used. Table 1
provides the peak demand and load factor associated
with seven load sectors. As mentioned earlier, demand

exibility in response to time-varying prices is captured
via elasticity coe�cients. Table 2 gives the elasticity
coe�cients associated with di�erent load sectors [8,9].
It is worth mentioning that the peak period ranges from

Table 1. Di�erent load sectors peak load (IEEE-RTS).

Sector Peak load
(MW)

Load factor
(%)

Industrial 399.01 83.42
Commercial 284.99 54.41
O�cial 57.02 61.73
Agricultural 113.1 38.38
Large user 855.01 63.44
Residential 968.99 57.48
Government 145.35 56.26
System 2754.75 63.8

17 to 23, shoulder period from 9 to 17 and 23 to 3,
and o�-peak period from 3 to 9. To calculate time-
varying prices that re
ect the wholesale market prices,
the priority order of the generation units is required.
Table 3 gives the priority order used in the simulations.

The stochastic nature of wind speed is modeled
by the time-series ARMA model. In this paper, the
ARMA model, borrowed from [20], is taken into use
as follows:

yt =1:772� yt�1 + 0:1001� yt�1 � 0:3572� yt�3

+ 0:0379�yt�4 + �t � 0:5030��t�1 � 0:2924

��t�2+0:1317��t�3�t2NID (0; 0:5247602):
(5)

It should be mentioned that mean (�) and standard
deviation (�) of wind speed are 19.46 km/h and
9.7 km/h, respectively. The WTG units used in this
paper are assumed to have a rated power of 2 MW
and cut-in, rated, and cut-out wind speeds of 14.4, 36,
and 80 km/h, respectively.

4.1. Study results
Here, a few scenarios are examined to study the
impacts of demand response and wind penetration on
the system well-being.

Scenario 1: In this scenario, the method suggested
in the previous section is applied to the IEEE-RTS,
and relevant well-being indices are calculated. This
scenario serves as a comparison benchmark for
the next three scenarios. The served and unserved
energy values in each state are also calculated,
whose results are shown in Table 4. It is also worth
mentioning that the annual unserved energy of the
system is 4949 MWh;
Scenario 2: This scenario investigates impacts
of realizing demand response from di�erent load
sectors on the system well-being indices. It is worth
mentioning that hourly prices are determined based
on the available units and their loading priorities,
as depicted in Table 3. In this scenario, wind power
penetration is considered zero. This scenario is
simulated, and the achieved well-being indices are
presented in Table 5. As can be seen from the table,
the well-being indices experience signi�cant improve-
ments when the demand response related to resi-
dential and commercial sectors is activated, whereas
the indices face negative impacts when activating
demand response from large user and agricultural
sectors. It is worth mentioning that the best and
worst conditions occur when the demand response
from the residential and large user sectors is enabled,
respectively. These results are in contrast with a
common thought that enabling demand response
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Table 2. Elasticity coe�cients of di�erent load sectors (IEEE-RTS).

Peak Mid-peak O�-peak Peak Mid-peak O�-peak
Residential Large user, industrial

Peak {0.26 0.065 0.048 {0.13 0.054 0.039
Mid-peak 0.065 {0.26 0.04 0.054 {0.13 0.032
O�-peak 0.048 0.04 {0.26 0.039 0.032 {0.13

Commercial, o�cial,
governmental

Agricultural

Peak {0.21 0.020 0.015 {0.15 0.048 0.036
Mid-peak 0.020 {0.21 0.012 0.048 {0.15 0.03
O�-peak 0.015 0.012 {0.21 0.036 0.03 {0.15

Table 3. Priority order of conventional generating units.

Generating
unit no.

Pmax

(MW)
Pmin

(MW)
�

(f/yr.)
A B C

1{6 50 0 4.42 0 0.5 0
7{8 400 200 7.96 216.576 5.345 0.00028
9 350 150 7.62 388.25 8.919 0.00392

10{13 155 60 9.13 206.703 9.2706 0.00667
14{17 76 25 4.47 100.439 12.145 0.01131
18{20 197 80 9.22 301.233 20.023 0.00300
21{23 100 40 7.3 286.241 17.924 0.00220
24{28 12 5 2.98 30.396 23.278 0.13733
29{32 20 6 19.47 40 37.554 0.18256

Table 4. System well-being indices and relevant served energies in Scenario 1.

Healthy Marginal Risk

Probability 0.979286 0.016302 0.004412

Served energy 14919766.02 MWh 357543.45 MWh 97870.29 MWh

would always improve system characteristics. This
strange observation is mainly because the peak period
associated with the large user and agricultural sectors
and the system peak period do not coincide. The
pro�les before and after activating demand response
from large users associated with two typical days are
depicted in Figure 4. As can be seen, the response
from the large user sector causes more severe peak
demand since a portion of consumption from the mid-
peak period shifts to that at the peak time. Moreover,

Figure 4. System load pro�les with and without demand
response for the large user sector.

demand response from the other load sectors has little
e�ect due to their negligible 
exibility or share from
the system demand, or both. Figure 5 also displays
system load pro�les during two typical days with
and without demand response from the residential
user sector. As is shown, demand response from
the residential sector leads to lower peak demands,
thereby enhancing system well-being indices.

Table 5. System well-being indices in Scenario 2.

Load sector Healthy Marginal Risk

Residential 0.982500 0.0138030 0.0036970

Large user 0.976831 0.0179080 0.0052100

Industrial 0.979457 0.0160980 0.0044450

Commercial 0.980032 0.0156540 0.0043143

Governmental 0.979223 0.0163430 0.0045340

O�cial 0.979383 0.0161643 0.0044527

Agricultural 0.979035 0.0164010 0.0045640
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Table 6. System well-being indices and relevant served energies in Scenario 3.

Healthy Marginal Risk

Probability 0.983733 0.012905 0.003362

Served energy 15017245 MWh 283308 MWh 74628 MWh

Figure 5. System load pro�les with and without demand
response for the residential user sector.

Scenario 3: In this scenario, the impacts of wind
power penetration on system well-being indices are
examined. To do so, 150 WTGs with a total capacity
of 300 MW are assumed to be added to the system.
Needless to say that demand response is not activated
in this scenario. This scenario is simulated, and the
obtained results are provided in Table 6. As can be
observed, system well-being has improved to a greater
degree than that in the �rst scenario, where no wind
power is integrated in the system. This is because
additional WTGs, despite their stochastic out-put,
increase the total installed capacity of the system
and its available reserve. The value of served energy
in the healthy state has increased by 97479 MWh,
while it has decreased by 23242 MWh in the risk
state. In addition, the annual unserved energy of
the system experiences an improvement of about
25% by reaching from 4949 MWh to a value of
3714 MWh;

Scenario 4: In this scenario, the simultaneous e�ect
of enabling demand response and integrating wind
power in the system is examined. Here, it is assumed
that 150 WTGs with a total installed capacity of
300 MW are added to the system. The scenario is
simulated, and the achieved well-being indices are
provided in Table 7. As can be observed, residential
customers represent the most a�ecting load sector
in improving the system well-being indices. Based
on the enabled demand response from the residential
load sector, the probability of being in the risk state
has decreased by 37%, as compared to the �rst sce-
nario. In addition, the index has improved by 17.7%
as compared to the third scenario, where wind power
is integrated, yet demand response is not enabled.
The probability of being in the marginal state also
experiences about 32% and 14.7% rates of enhance-
ment as compared to the �rst and third scenarios,
respectively. Finally, the healthy state probability

Table 7. System well-being indices in Scenario 4.

Load sector Healthy Marginal Risk

Residential 0.986227 0.011007 0.002766
Large user 0.981934 0.014254 0.003812
Industrial 0.983788 0.012846 0.003366
Commercial 0.984287 0.012480 0.003233
Governmental 0.983515 0.013039 0.003446
O�cial 0.983727 0.012899 0.003374
Agricultural 0.983426 0.013086 0.003488

has reached from 0.979286 in the �rst scenario and
0.983733 in the third scenario to 0.986227, which can
be translated to considerable improvements. Unlike
the residential sector, activating demand response
from large users is accompanied by negative impacts
on the well-being indices. This is mainly because
their peak time does not coincide with the system
peak period. In case the demand response from
large users is enabled, the probability of being at risk
increases by 11.3% as compared to the third scenario,
where demand response is not activated. Finally,
enabling demand response from the other load sectors
leads to less signi�cant changes in the indices since
their share of total system demand is low and/or
their elasticity coe�cients are small. Table 8 gives the
served energy of the system during healthy, marginal,
and risk states. According to the results, the energy
served during the risk state experiences its best and
worst conditions when the demand response from res-
idential and large user sectors is enabled, respectively.
Further, the maximum and minimum values of energy
served during the system healthy state are provided
when residential and large user sectors' response is
activated, respectively. Finally, it is worth mention-
ing that the most signi�cant decrease in the value

Table 8. Served energy (MWh) in system well-being
states in Scenario 4.

Load sector Healthy Marginal Risk
Residential 15037722 239497 60858
Large user 14943713 313714 84821
Industrial 14995563 281899 74714
Commercial 15025928 273296 71540
Governmental 15010925 286592 76649
O�cial 15016835 283112 74913
Agricultural 15007408 288065 77701



1380 M.N. Hassanzadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1373{1383

of unserved energy is observed when the residential
sector response is enabled. In case demand response
from residential load is realized, the system unserved
energy decreases by 38%, 26%, and 18% as compared
to the �rst, second, and third scenarios, respectively.

4.2. Sensitivity analysis
In order to examine the impacts of wind power
penetration on the performance of the demand
response program, a few studies with 50, 100, 200,
300, 400, and 500 MW wind power installations are
simulated. The achieved results including well-being
indices and served energies during each system state are
given in Tables 9 and 10 for wind power penetrations
of 50 and 500 MW. In addition, Figure 6 displays the
changes in risk state probability versus wind power
penetration and di�erent load sectors responses. As
can be seen, system well-being is more enhanced as
more wind power is installed. Moreover, the impacts of
response from the load sectors decrease by increasing
the penetration of wind energy in the system. For
instance, if 50 MW wind power is installed, the system
risk probability decreases by 1.7% as compared to that
of the original system. Moreover, the risk probability
experiences a greater enhancement by 16.77% if
the response from the residential sector is realized.
However, the index has improved by 34% if 500 MW
wind power is integrated in the system and by 45.9% if
the response from the residential sector is applied, too.

As compared to the �rst scenario with an annual

Table 9. Well-being indices of the system with 50 and
500 MW wind capacities.

Wind
power

Load sector Healthy Marginal Risk

50
M

W
in

st
al

le
d

ca
pa

ci
ty Residential 0.983044 0.013359 0.003597

Large user 0.977833 0.017189 0.004978

Industrial 0.980088 0.015566 0.004346

Commercial 0.980671 0.015126 0.004203

Governmental 0.979761 0.015790 0.004449

O�cial 0.980016 0.015629 0.004355

Agricultural 0.979672 0.015585 0.004470

50
0

M
W

in
st

al
le

d
ca

pa
ci

ty Residential 0.987975 0.009638 0.002387

Large user 0.984203 0.012522 0.003275

Industrial 0.985828 0.011279 0.002893

Commercial 0.986262 0.010957 0.002781

Governmental 0.985589 0.011451 0.002960

O�cial 0.985774 0.011326 0.002900

Agricultural 0.985510 0.011498 0.002992

Figure 6. System risk probability versus wind
penetration and load sectors response.

unserved energy amount of 4949 MWh, the residential
sector has the most e�ective response such that a 19.8%
decrease occurs in case of installing a wind capacity of
50 MW along with a 47.6% decrease in case of installing
a 500 MW wind capacity. In addition, the large user
sector has the least e�ective response with an 11.5%
increase in the unserved energy when 50 MW wind is
integrated and a 27% decrease when 500 MW wind
capacity is installed.

As compared to the second scenario where the
unserved energy has reduced by 35.4%, when 500 MW
wind is added, the response from the large user sector
results in an 8.4% increment. Figure 7 displays
unserved energy changes in the presence of di�erent
load sector responses. As can be observed, residential

Table 10. Served energy (MWh) in states of the system
with 50 and 500 MW wind capacities.

Wind
power

Load sector Healthy Marginal Risk

50
M

W
in

st
al

le
d

ca
pa

ci
ty Residential 14969712 290273 79085

Large user 14854537 378997 109575

Industrial 14915250 382505 96381

Commercial 14946911 370719 92946

Governmental 14928738 389046 98789

O�cial 14935642 384075 96593

Agricultural 14925132 348619 99473

50
0

M
W

in
st

al
le

d
ca

pa
ci

ty Residential 15074468 209854 52512

Large user 14992590 275719 72869

Industrial 15039540 247663 64214

Commercial 15069017 240078 61530

Governmental 15056490 251818 65836

O�cial 15061728 248738 64387

Agricultural 15053189 253258 66667
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Figure 7. System unserved energy versus wind
penetration and load sectors response.

and commercial loads are the most e�ective concerning
the system unserved energy; industrial and o�cial
loads are almost ine�ective; large-user, agricultural,
and public loads have the worst e�ects on the system
unserved energy. Actually, according to the results,
the demand response from large users, agricultural,
and public loads increases the system unserved energy.
As also stated earlier, the main reason behind this
strange observation is related to the negative correla-
tion between these load sectors and the total system
load. As another observation, it can be seen from the
�gure that the gradient values of the curves decrease
as more wind power is integrated into the system.
This can be translated into lower performances of
demand response as more wind power is injected into
the system.

As shown in Figure 8, a reduction in system
unserved energy caused by realizing demand response
from residential and commercial load sectors is ob-
served when the wind penetration level increases.
By applying the demand response from residential
customers, the system unserved energy decreases by
875.32 MWh when wind power penetration is 50 MW,
while the reduction reaches 603 MWh when 500 MW
wind power is penetrated. In case of applying demand
response form the commercial load sector, the unserved
energy reduces from 209.38 MWh to 159 MWh when
wind power penetration increases from 50 MW to

Figure 8. Loss of energy reduction with the increase of
wind penetration.

Figure 9. E�ectiveness factor in commercial and
residential loads versus wind penetration.

500 MW. These �ndings are seen because the system
reliability and unserved energy are enhanced as the
wind power penetration increases since it provides some
additional generation capacity. As another observa-
tion, with any penetration of wind power, demand
response from the residential load sector is much
more e�ective than that from the commercial load
sector. This is because the residential load sector has a
larger share of system demand with larger elasticity
coe�cients. As stated earlier, the residential and
commercial sectors are the most e�ective load sectors
on well-being indices. To investigate the e�ectiveness
of enabling demand response from the same amount of
load, one can normalize the unserved energy reduction
via dividing it by the peak demand of the load sector
whose response is activated. The normalized e�ec-
tiveness (called e�ectiveness factor) associated with
residential and commercial load sectors at di�erent
penetration levels of wind power is calculated, as
displayed in Figure 9. As can be observed, enabling
demand response from residential loads is relatively
more e�ective. This can be due to the larger elasticity
coe�cients of the residential load sector than those of
the commercial load sector.

5. Conclusions

This paper studied the impacts of enabling demand
response on well-being indices of systems with di�erent
wind power penetration levels. The demand behavior
in response to dynamic prices was captured via self
and cross elasticity coe�cients. In the studies, seven
di�erent load sectors including residential, commercial,
industrial, large user, agricultural, governmental, and
o�cial consumers were examined. As detected in the
simulation outcomes, enabling demand response from
di�erent load sectors has di�erent e�ects on system
well-being. This is largely owing to di�erent shares
from system load, di�erent elasticity coe�cients, and
di�erent load pro�les. It was demonstrated that the
demand response from residential and commercial load
sectors had signi�cant positive impacts on system well-
being. It was also shown that activating demand
response did not necessarily improve the system well-
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being since demand response from large users degraded
system well-being. This resulted from both the 
exi-
bility and load pro�le of that load sector. In dynamic
pricing, prices in peak load period were higher than
those during medium load and low load, and the values
of shift and reduction of load were determined based on
load elasticity. Since residential and commercial loads
were used within the early hours of the night, their
responses were exaggerated when electricity was more
expensive, while industrial loads were less e�ective as
they were less 
exible and often unavailable during the
day. It was also revealed that the potential positive
impacts of demand response decreased as more wind
power was hosted by the system. This is because in-
stalling wind power provides the system with additional
generation capacity, which in turn enhances system
well-being. Moreover, it makes sense that enabling
demand response of the system whose well-being has
already improved is less e�ective.

Nomenclature

yt The time series value at time
�i Auto-regressive average coe�cient,

i = 1; 2; � � � ; n
�j Moving average coe�cient, j =

1; 2; � � � ;m
�t A normal white noise process with zero

mean and variance of �2
�

Pr Rated power output
Vci The cut-in wind speed
Vr The rated wind speed
Vco The cut-out wind speed of the WTG
WKt The simulated wind speed at time t

Lk;t0 Energy use of load sector k during
time interval t before response to
time-varying prices

Lk;t Energy use of load sector k during
time interval t after providing response
to time-varying prices

�k;t0 ; �k;t Electricity prices o�ered to load sector
k at time interval t

ek(t; t0) Elasticity of energy use of load sector
k at time interval t

� Mean deviation of wind speed
� Standard deviation of wind speed

Lk;t0 Energy use of load sector k during
time interval t before response to
time-varying prices

Lk;t Energy use of load sector k during
time interval t after response to
time-varying prices
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