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Abstract. The aim of this paper is to extend the Technique for Order Performance by
Similarity to Ideal Solution (TOPSIS) approach with Gaussian Interval Type-2 Fuzzy Sets
(GIT2FSs) as an alternative to the traditional triangular Membership Functions (MFs) in
which GIT2FSs are more suitable for stating curved MFs. For this purpose, a new Limit
Distance (LD) based on alpha cut is presented for prioritizing GIT2FSs. The proposed
method determines the maximum and minimum reference limits of GIT2FSs as the positive
and negative ideal solutions and, then, calculates distances between assessments and these
limits. In addition, in order to eliminate the weights derived from the LD calculations,
the weights of the quantitative and qualitative criteria are extracted using two linear
programming models, separately. In order to show the e�ectiveness of the proposed method,
a case study is exhibited on a real GMCABCIC problem, and the results are then compared
with those obtained by other techniques.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The selection of exact ordering policies, such as Fixed
Order Size (FOS), for an unimportant item and, also,
inexact ordering policies, such as Twin Bin (TB), for
an important item will impose additional costs such
as inspection and stock-out penalty costs, respectively.
Hence, the determination of ordering policy based on
rankings of items is one of the popular methods for
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decreasing the costs. The traditional ABC classi�-
cation categorizes inventory items into three classes:
(A) very important; (B) moderately important; (C)
unimportant. Unfortunately, it only considers the
criterion of the total annual dollar usage for classifying
items. However, in the real world, other important
criteria such as average unit cost, annual dollar usage,
critical factor, lead time, consumption rate, perishabil-
ity of items, storing cost of raw materials, stock ability,
certainty of supply, number of hits, average value per
hit, and payment terms [1,2] may a�ect ABC inventory
classi�cation. Thus, herein, it is attributed as Multiple
Criteria ABC Inventory Classi�cation (MCABCIC).
Since items in an MCABCIC problem are assessed with
respect to a set of qualitative and quantitative criteria
and experts may have di�erent points of view regarding
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the qualitative criteria, it can be considered as a
Group Multiple-Criteria Decision-Making (GMCDM)
problem in which the assessments of items with respect
to the qualitative criteria are expressed as linguistic
variables (stated with fuzzy sets). There are di�erent
methods for solving GMCDM problems according to
the appraising style of criteria or alternatives. The
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) is one of these techniques. TOPSIS
was �rst developed by Hwang and Yoon [3]. In the
classical TOPSIS method, the appraisals and weights
of criteria are precise values. However, in the real
world, the crisp data are not suitable, because human
judgments are vague and imprecise when dealing with
decision-making issues and cannot be estimated with
exact numeric values. To state the ambiguity in real-
world problems, the fuzzy data instead of crisp data
have been incorporated in many MCDM techniques
including TOPSIS. In Fuzzy TOPSIS (FTOPSIS), all
the ratings and weights are de�ned by means of the
fuzzy data. However, a decision-maker may have doubt
about the measure of Membership Function (MF). In
other words, in a type-1 fuzzy set, it is often di�cult
for an expert to express his/her notions as a speci�ed
number at an interval [0, 1] related to MF. Hence,
the type-2 fuzzy sets were suggested by Zadeh [4] for
relieving the uniqueness of MF measure of the type-
1 fuzzy sets. Interval Type-2 Fuzzy Sets (IT2FSs)
represent a particular version of type-2 fuzzy sets
characterized by an interval MF. There are known
versions for IT2FSs such as Trapezoidal Interval Type-
2 Fuzzy Sets (TraIT2FSs), Triangular Interval Type-2
Fuzzy Sets (TriIT2FSs), and Gaussian Interval Type-2
Fuzzy Sets (GIT2FSs) in the literature. Triangular or
trapezoidal MFs are the simplest MFs formed using
straight lines. MFs of triangular and trapezoidal
fuzzy numbers have steep slopes in their reference
points. In real problems, however, the decision-maker
may consider a smoother slope for the MFs in refer-
ence points. Hence, \Gaussian MFs are suitable for
problems requiring continuously di�erentiable curves,
whereas the triangular and trapezoidal fuzzy numbers
do not possess these abilities" [5].

In this paper, the performance ratings related
to the qualitative criteria are expressed as linguistic
variables; then, GIT2FSs are then de�ned for them.
Generally, the generalization of the TOPSIS method
based on GIT2FNs using the proposed ranking method,
the aggregation of group decisions presented by experts
based on GIT2FNs, and the determination of criteria
weights by the linear programs are the principal con-
tributions in this paper.

The rest of this paper is organized as follows:
Section 2 presents the literature review related to
TOPSIS and IT2FSs and, also, the MCABCIC tech-
niques. The suggested methodology framework is

represented in Section 3. In Section 4, preliminaries
(including arithmetic operations of the type-2 fuzzy
sets) are reviewed. The suggested approach to ranking
GIT2FNs is introduced in Section 5. In Section 6, the
proposed ranking methodology is incorporated into the
TOPSIS framework. Section 7 includes a real case
study in which the proposed ranking methodology is
used in the TOPSIS method and, �nally, conclusions
are summarized in Section 8.

2. Literature review

In a general classi�cation, most studies implemented in
MCABCIC can be categorized into the following seven
classes:

1. Arti�cial intelligence techniques;
2. Data Envelopment Analysis (DEA) approaches (op-

timization models);
3. Statistical and mathematical approaches;
4. Weighted Euclidean distance-based approaches;
5. MCDM-based techniques;
6. Approaches based on machine learning;
7. Combination approaches.

Several approaches have applied arti�cial intelli-
gence techniques to the MCABCIC problem. Cherif
and Ladhari [6] presented an integrated approach based
on the arti�cial bee colony algorithm and VIKOR
method for MCABCIC where the arti�cial bee colony
algorithm was used to learn and optimize the criteria
weights as the input parameters for VIKOR, which
was then utilized for ranking items. Isen and Bo-
ran [7] generated a hybrid model including genetic
algorithm, fuzzy c-means, and adaptive neuro-fuzzy
inference system for inventory classi�cation. Their
model does not need to be resolved when a new item
arrives at the warehouse and, also, can consider both
quantitative and qualitative criteria. Lopes-Soto et al.
[8] designed a three-layer neural network with discrete
activation functions using a multi-start constructive
learning procedure to solve the posteriori MCABCIC
problem e�ciently.

A number of the DEA-based (optimization) meth-
ods have also been developed to solve the MCABCIC
problem. Ramanathan [1] proposed a weighted linear
optimization model (after the R-model) for MCABCIC
where the performance score of each item was obtained
by a DEA-like model. Zhou and Fan [9] extended
the R-model by obtaining the most and the least
favorable scores of each item. Then, a composite
index was constructed to combine the two scores.
Ng [10] proposed a weighted linear model for MCAB-
CIC (here, after the Ng-model). By using proper
transformation, Ng obtained the scores of inventory
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items without any linear optimizer. Since the Ng-
model leads to a situation in which the weight of an
item may be ignored, Hadi-Vencheh [11] proposed a
simple nonlinear programming model where a common
set of weights was determined for all items. Torabi
et al. [12] proposed a modi�ed version of an existing
common weight DEA-like model that can handle both
quantitative and qualitative criteria. Hate� et al. [13]
presented a modi�ed linear optimization method for
the MCABCIC problem including both qualitative and
quantitative criteria. It transforms data relating to
each qualitative criterion with the cardinal format
using some scales such as Likert. Kaabi and Jabeur [14]
combined Zhou and Fan [9] and Hadi-Vencheh [11]
models for utilizing their advantages. Their hybrid
model obtained better results than the two approaches
mentioned above.

Cohen and Ernst [15] introduced a combination
of the statistical clustering procedures and operational
constraints for the MCABCIC problem. Lei et al. [16]
applied the principal component analysis with Arti�cial
Neural Networks (ANNs) and the BP algorithm to the
MCABCIC problem. The proposed hybrid approach
can not only resolve the shortcomings of input limita-
tion in ANNs, but also improve the prediction accuracy.
Ghorabaee et al. [17] constructed a new approach based
on the positive and negative distances from the average
solution. Raja et al. [18] developed a hierarchical
clustering procedure for improving inventory policies
of spare parts.

The approaches based on weighted Euclidean
distance have also been adopted for the MCABCIC
problem. Chen et al. [19] proposed a case-based
distance model to handle the MCABCIC problems in
which the criteria weights and sorting thresholds were
generated by a quadratic optimization program based
on the decision-maker's assessment of a case set. It
resolves di�culties related to the direct acquisition
of preference information. Ma [20] suggested a two-
phase classi�cation approach based on the concept of
mixed integer programming and case-based distance
methods for removing the shortcomings of Chen et
al. [19] approach. The proposed approach can decrease
the number of misclassi�cations, improve the problem
of multiple solutions, and remove the impact of outliers.

The �fth class is related to the application of
MCDM techniques. Bhattacharya et al. [2] adopted
the TOPSIS method for the MCABCIC problem and,
then, applied the analysis of variance (ANOVA) tech-
nique for studying the suitability, practicability, and
e�ectiveness of the TOPSIS method. Jiang [21] imple-
mented the Analytic Hierarchy Process (AHP) method
for classifying fresh agricultural products. Arikan
and Citak [22] proposed AHP-TOPSIS for ranking
the inventory items in an electronics �rm. Dhar
and Sarkar [23] adopted the multi-objective optimiza-

tion by ratio analysis (MULTIMOORA) approach for
MCABCIC where AHP handled the weights of crite-
ria.

There are also machine learning-based methods
for MCABCIC. For example, Douiss and Jabeur [24]
utilized the PROAFTN method as a supervised learn-
ing algorithm to classify items into one of the three
categories. Lajili et al. [25] utilized and compared �ve
well-known machine learning techniques: (1) decision
trees, (2) naive Bayesian networks, (3) ANNs, (4)
support vector machines, and (5) K-nearest neighbors
for inventory classi�cation. Hu et al. [26] suggested
the dominance-based rough set approach where the
three main phases are: (1) learning, (2) validation,
and (3) classi�cation of the spare parts in industrial
manufacturing. Lolli et al. [27] applied the exhaustive
simulation method to a subset of items for attaining
their optimal classes and, then, utilized decision trees
and random forests for specifying the class of the non-
simulated items.

Finally, there are some papers that have, at
least, integrated two decision-making approaches to
classify items in the last class. Hadi-Vencheh and
Mohamadghasemi [28] adopted AHP and DEA for the
MCABCIC problem. Kabir and Sumi [29] applied
the fuzzy Delphi method and Fuzzy AHP (FAHP)
for the MCABCIC problem. Kabir and Hasin [30]
integrated FAHP and ANN for determining the weights
of criteria and classifying inventories into di�erent
classes, respectively. Lolli et al. [31] integrated AHP
with the K-means algorithm to solve the MCABCIC
problem where the AHP and K-means techniques were
applied for ranking items and sorting classes, respec-
tively. Douissa and Jabeur [32] used the ELECTRE III
method for ranking items in which the continuous
variable neighborhood search metaheuristic method
was adopted to estimate the indi�erence, preference,
and veto thresholds.

3. The proposed methodology framework

The �rst stage in the proposed methodology is to de�ne
the qualitative criteria, quantitative criteria, and items
(as shown in Figure 1).

Then, the Group Multiple Criteria ABC In-
ventory Classi�cation (GMCABCIC) matrix is con-
structed for the MCABCIC problem in which the
assessment measures with respect to the qualitative
and quantitative criteria are GIT2FNs and crisp data,
respectively. Next, TOPSIS is extended by the pro-
posed method to calculate the distances of qualitative
assessments from the positive and negative ideal solu-
tions. At last, since the two di�erent methods have
been used for calculating the distances of the positive
and negative ideal solutions, the weights of criteria are
determined based on two linear programming models.
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Figure 1. The framework of the proposed methodology.

4. Preliminaries

4.1. Type-2 fuzzy sets and their arithmetic
operations

De�nition 1. A type-2 fuzzy set ~~A in the universe
of discourse X is described by a type-2 MF expressed
as follows [33]:

~~A =
��

(x; u); � ~~A
(x; u)

�����8x 2 X; 8u 2 Jx
� [0; 1]; 0 � � ~~A

(x; u) � 1
�
; (1)

where � ~~A
refers to the MF (secondary MF) of ~~A, and Jx

is a sub-interval in [0, 1] denoting the primary MF. The
type-2 fuzzy set ~~A can be also represented as follows:

~~A =
Z
x2X

Z
u2JX

� ~~A
(x; u)=(x; u); (2)

where Jx � [0; 1], and
R R

denotes the overall admissi-
ble union of x and u.

De�nition 2. For the type-2 fuzzy set ~~A, if all
� ~~A

(x; u) = 1, ~~A is named IT2FS. An IT2FS ~~A can
be described as follows [33]:

~~A =
Z
x2X

Z
u2JX

1=(x; u); (3)

where Jx � [0; 1].

De�nition 3. Footprint Of Uncertainty (FOU) is
derived from the union of all primary memberships:

FOU( ~~A) =
Z
x2X

JX : (4)

The FOU can also be represented by the lower and
upper MFs [34]:

Figure 2. A subnormal TraIT2FN.

FOU( ~~A) =
Z
x2X

�
� ~~A

(x); �� ~~A
(x)
�
; (5)

where � ~~A
(x) and �� ~~A

(x) are the lower and upper MFs

of the type-2 fuzzy set. An IT2FS ~~A is said to be
normal if � ~~A

(x) = �� ~~A
(x) = 1. An IT2FS ~~A is said to

be subnormal if � ~~A
(x) < 1 and �� ~~A

(x) = 1.

De�nition 4. Let ~XL and ~XU (L and U are equal
to the lower and upper MFs) be two non-negative
trapezoidal type-1 fuzzy numbers [35,36]. In addition,
let HL

~A and HU
~A denote the heights of ~XL and ~XU ,

respectively. Let xL1 , xL2 , xL3 , xL4 , xU1 , xU2 , xU3 , and xU4 be
non-negative real values. Trapezoidal Interval Type-2
Fuzzy Numbers (TraIT2FNs) de�ned on the universe
of discourse X are given by (see Figure 2):

~~X =[ ~XL; ~XU ] =
��
xL1 ; x

L
2 ; x

L
3 ; x

L
4 ;HL

~X

�
;�

xU1 ; x
U
2 ; x

U
3 ; x

U
4 ;HU

~X

�
; (6)

De�nition 5. Let ~~X1 and ~~X2 be two non-negative
TraIT2FNs, where:

~~X1 = [ ~XL
1 ; ~XU

1 ]

=
��
xL11; x

L
12; x

L
13; x

L
14;HL

~X1

�
;
�
xU11; x

U
12; x

U
13; x

U
14;HU

~X1

��
;

and:

~~X2 = [ ~XL
2 ; ~XU

2 ]

=
��
xL21; x

L
22; x

L
23; x

L
24;HL

~X2

�
;
�
xU21; x

U
22; x

U
23; x

U
24;HU

~X2

��
:

The arithmetic operations between ~~X1 and ~~X2 are
de�ned as follows:

Addition operation:
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~~X1 � ~~X2

=
��
xL11 + xL21; x

L
12 + xL22; x

L
13 + xL23; x

L
14 + xL24;

min
�
H ~X

L
1 ;H ~X

L
2

��
;
�
;��

xU11 + xU21; x
U
12 + xU22; x

U
13 + xU23; x

U
14 + xU24;

min
�
H ~X

U
1 ;H ~X

U
2

���
: (7)

Subtraction operation:

~~X1� ~~X2

=
��
xL11 � xL24; x

L
12 � xL23; x

L
13 � xL22; x

L
14 � xL21;

min
�
H ~X

L
1 ;H ~X

L
2

��
;
�
;��

xU11 � xU24; x
U
12 � xU23; x

U
13 � xU22; x

U
14 � xU21;

min
�
H ~X

U
1 ;H ~X

U
2

���
: (8)

Multiplication operation:

~~X1 � ~~X2

=
��
xL11:x

L
21; x

L
12:x

L
22; x

L
13:x

L
23; x

L
14:x

L
24;

min
�
H ~X

L
1 ;H ~X

L
2

��
;�

xU11:x
U
21; x

U
12:x

U
22; x

U
13:x

U
23; x

U
14:x

U
24;

min
�
H ~X

U
1 ;H ~X

U
2

���
: (9)

Division operation:

~~X1' ~~X2

=
��

xL11

xL24
;
xL12

xL23
;
xL13

xL22
;
xL14

xL21
; min

�
H ~X

L
1 ;H ~X

L
2

��
;�

xU11

xU24
;
xU12

xU23
;
xU13

xU22
;
xU14

xU21
; min

�
H ~X

U
1 ;H ~X

U
2

���
: (10)

Multiplication by an ordinary number:

Figure 3. A normal GIT2FN.

~~X1:r = r: ~~X1

=

8>>>>>>>>>><>>>>>>>>>>:

��
r:xL11; r:xL12; r:xL13; r:xL14;H ~X

L
1

�
;�

r:xU11; r:xU12; r:xU13; r:xU14;H ~X
U
1 ;
��

if r � 0;��
r:xL14; r:xL13; r:xL12; r:xL11;H ~X

L
1

�
;�

r:xU14; r:xU13; r:xU12; r:xU11;H ~X
U
1 ;
��

if r � 0:

(11)

De�nition 6. Let ~~G be a normal GIT2FN as follows
(see also Figure 3):

~~G = [ ~GL; ~GU ]=
��
�L;�L;HL

~G

�
;
�
�U ;�U ;HU

~G

��
; (12)

where �L; �L and �U ; �U are the mean and standard
deviation of the lower and upper Gaussian MFs, re-
spectively, such that �L = �U and �L < �U .

De�nition 7. The �-cut of ~~A is presented as fol-
lows [37]:

A� =
�

(x; u)
����fx(u) � �

�
: (13)

De�nition 8. The �-cut of ~~A may also be repre-
sented by the �-cut of its FOU:

A� =
�
x
����� ~~A

(x) � �; �� ~~A
(x) � �

�
: (14)

For a GIT2FN ~~G, the �-cut may be presented as an
interval as follows (see Figure 4):

Ĝ� =
��

�xl1�; x
l
2�

�
;
�
xr1�; �x

r
2�

��
; (15)

where l and r show the left and right MFs of ~~G,
respectively.

De�nition 9. Let X = [x1; x2] and Y = [y1; y2] be
two positive interval numbers such that x1 � x � x2
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Figure 4. The left, right, minimum, and maximum reference limits ~~G.

and y1 � y � y2 (x1; y1 and x2; y2 are the in�ma
and the suprema, respectively). Interval arithmetic
operations of addition, subtraction, multiplication, and
division are de�ned, respectively, as follows [38]:

Addition operation:

X + Y = [x1 + y1; x2 + y2]: (16)

Subtraction operation:

X � Y = [x1 � y2; x2 � y1]: (17)

Multiplication operation:

X:Y =[min(x1:y1; x1:y2; x2:y1; x2:y2);

max(x1:y1; x1:y2; x2:y1; x2:y2)]: (18)

Division operation:

X
Y

= [x1; x2]:
�

1
[y1; y2]

�
; where

1
[y1; y2]

=
�

1
y2
;

1
y1

�
if 0 =2 [y1; y2]: (19)

Distance between X and Y :

�X�Y =
1
2
j(x1 � y2) + (x2 � y1)j : (20)

5. A new Limit Distance (LD) for ranking
GIT2FNs

5.1. The normal GIT2FNs case
This paper presents an approach based on �-cut for
comparing and ranking GIT2FNs. The proposed
approach is able to calculate the distances at di�erent
levels and concurrently rank GIT2FNs at the inter-
val [0, 1].

The proposed methodology �rst selects the left
and right reference limits. For this purpose, let the MF
of � ~~G

(x; u) for a GIT2FN split into two curves �l(x; u)

and �r(x; u), the left and right MFs of ~~G, respectively
(as shown in Figure 4).

� ~~G
(x; u) =

�
�l(x; u) for xh�
�r(x; u) for xi�

�
: (21)

In addition, the minimum reference limit, �min(x; u),
and the maximum reference limit, �max(x; u), are
fminf�li(x; u)gi 2 all GIT2FNsg, and fmaxf�ri(x; u)g
i 2 all GIT2FNsg, respectively. In order to show the
left and right reference limits and �-cut of a GIT2FN,
GIT2FNs are considered, as shown in Figure 4.

Note that the �-cut of a GIT2FN creates interval
numbers; thus, one can apply the interval arithmetic
operations to them. As illustrated in Figure 4, suppose
that the �-cut of the minimum and maximum reference
limits �min

� (x; u) and �max
� (x; u) (intersection points of

level � with the MFs of �min(x; u) and �max(x; u))
makes intervals [�xmin

1 ; xmin
2 ]� and , [xmax

1 ; �xmax
2 ]� re-

spectively, on X, where �xmax
1 and xmin

2 are related to
the upper and lower MFs of �min(x; u), respectively,
and xmax 1 and �xmax 2 are equal to the lower and upper
MFs of �max(x; u), respectively. Moreover, let �-cut
of the left and right MFs of a GIT2FN such as ~~G2,
�l�(x; u) and �r�(x; u) (intersection points of level �
with the MFs of �l(x; u) and �r(x; u)) generate the
intervals [�xl1; xl2]� and [xr1; �xr2]�, respectively, where
�xl1 and xl2 are related to upper and lower MFs of
�l(x; u), and xr1 and �xr2 are equal to lower and upper
MFs of �r(x; u). With these assumptions in mind,
for a GIT2FN, the LD can be calculated for the
Positive Ideal (PI) solution with respect to cost (C)
criterion (Eq. (22) shown in Box I), where � =
0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8, and 0.9. In Eq.
(22) shown in Box I,

P1
�=0:1 (�l�(x; u)� �min

� (x; u)) is
a positive value, and

P1
�=0:1 (�r�(x; u)� �max

� (x; u) )
is a negative value. Therefore, the negative sign
is considered in the denominator. To simplify the
calculations, Eq. (22) can be converted into Eq. (23)
shown in Box II. Obviously, in the situations such as
[�xl1; xl2]� � [xmax

1 ; �xmax
2 ]� and [xr1; �xr2]� � [xmax

1 ; �xmax
2 ]�,

one always obtains a negative measure, while (�xl1 <
�xmax

2 ;xl2 < xmax
1 ) or (xr1 < �xmax

2 ; �xr2 < xmax
1 ). Instead,

by using Eq. (20), the distance between two interval
numbers is calculated by Eq. (24) as shown in Box III.

Similarly, the PI solution for the set of bene�t
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LDPI;C( ~~A) =

P1
�=0:1

�
�l�(x; u)� �min

� (x; u)
�
�P1

�=0:1

�
�l�(x; u)� �min

� (x; u)
�
�P1

�=0:1

�
�r�(x; u)� �max

� (x; u)
� : (22)

Box I

LDPI;C( ~~A) =
P1
�=0:1 [�xl1; xl2]� � [�xmin

1 ; xmin
2 ]�P1

�=0:1 [�xl1; xl2]� � [�xmin
1 ; xmin

2 ]� �P1
�=0:1 [xr1; �xr2]� � [xmax

1 ; �xmax
2 ]�

: (23)

Box II

(B) criteria, the Negative Ideal (NI) solution for the
set of C criteria, and the NI solution for the set of
B criteria are calculated, respectively, by Eqs. (25),
(26), and (27), as shown in Box IV. Obviously,
the measures obtained through the above equations
are included at the interval [0, 1]. Since measures
(xr1� �xmax

2 )+(�xr2�xmax
1 ) and (�xl1�xmin

2 )+(xl2� �xmin
1 )

are equal to zero, while [xr1; �xr2] matches �max(x; u)
and [�xl1; xl2] matches �min(x; u), or while distances of
reference limits �max(x; u) and �min(x; u) are obtained

from themselves, measures
P1
�=0:1 j(�xmax

2 �xmax
1 )�j

� andP1
�=0:1 j(xmin

2 ��xmin
1 )�j

� are used for calculating LDs.

5.2. The subnormal GIT2FNs case
If GIT2FN is subnormal (see Figure 5), then the LDs
are based on Eqs. (24)-(27) for � � HL

~G and Eqs. (28)-

(31) for HL
~G < � � HU

~G .

LDPI;C( ~~A) =PHU~G
�=HL~G

��(�xl1 � �xmin
1 )�

��PHU~G
�=HL~G

��(�xl1 � �xmin
1 )�

��+
PHU~G
�=HL~G

��(�xr2 � �xmax
2 )�

�� ; (28)

LDPI;B( ~~A) =PHU~G
�=0:1 j(�xr2 � �xmax

2 )�jPHU~G
�=HL~G

��(�xr2 � �xmax
2 )�

��+
PHU~G
�=HL~G

��(�xl1 � �xmin
1 )�

�� ; (29)

LDNI;C( ~~A) =

LDPI;C( ~~A) =
P1
�=0:1

1
2

��(�xl1 � xmin
2 )� + (xl2 � �xmin

1 )�
��P1

�=0:1
1
2

��(�xl1 � xmin
2 )� + (xl2 � �xmin

1 )�
��+
P1
�=0:1

1
2

��(xr1 � �xmax
2 )� + (�xr2 � xmax

1 )�
�� ;P1

�=0:1

��(�xl1 � xmin
2 )� + (xl2 � �xmin

1 )�
��P1

�=0:1

��(�xl1 � xmin
2 )� + (xl2 � �xmin

1 )�
��+
P1
�=0:1

��(xr1 � �xmax
2 )� + (�xr2 � xmax

1 )�
�� : (24)

Box III

LDPI;B( ~~A) =
P1
�=0:1 j(xr1 � �xmax

2 )� + (�xr2 � xmax
1 )�jP1

�=0:1

��(xr1 � �xmax 2)� + (�xr2 � xmax
1 )�

��+
P1
�=0:1

��(�xl1 � xmin
2 )� + (xl2 � �xmin

1 )�
�� ; (25)

LDNI;C( ~~A) =
P1
�=0:1

��(�xl1 � �xmax
2 )� + (xl2 � xmax

1 )�
��P1

�=0:1

��(�xl1 � �xmax
2 )� + (xl2 � xmax

1 )�
��+
P1
�=0:1

��(xr1 � xmin
2 )� + (�xr2 � �xmin

1 )�
�� ; (26)

LDNI;B( ~~A) =
P1
�=0:1

��(xr1 � xmin
2 )� + (�xr2 � �xmin

1 )�
��P1

�=0:1

��(xr1 � xmin
2 )� + (�xr2 � �xmin

1 )�
��+
P1
�=0:1

��(�xl1 � �xmax
2 )� + (xl2 � xmax

1 )�
�� : (27)

Box IV
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Figure 5. A subnormal GIT2FN.PHU~G
�=HL~G

��(�xl1 � �xmax
2 )�

��PHU~G
�=HL~G

��(�xl1 � �xmax
2 )�

��+
PHU~G
�=HL~G

��(�xr2 � �xmin
1 )�

�� ; (30)

LDNI;B( ~~A) =PHU~G
�=0:1

��(�xr2 � �xmin
1 )�

��PHU~G
�=HL~G

��(�xr2 � �xmin
1 )�

��+
PHU~G
�=HL~G

��(�xl1 � �xmax
2 )�

�� : (31)

6. Application of a new LD in TOPSIS with
GIT2FNs

In this section, the TOPSIS approach is generalized
for GIT2FNs using LDs, as stated in Section 5. The
interested readers can refer to [3] for studying the
steps of the classical TOPSIS. Although the method is
explained for GIT2FNs, one can apply it to TraIT2FNs
or TriIT2FNs. The following stages show the proposed
approach to normal GIT2FNs:

1. Let a decision-maker evaluate m alternatives
Ai (i = 1; :::;m) under n criteria Cj (j =
1; :::; n0; n0 + 1; :::; n) via the MCDM matrix
(D; ~~D) = [xij ; ~~xij ]m�n where Cj(j = 1; :::; n0),
Cj(j = n0 + 1; :::; n), D = [xij ]m�(1;:::;n0), and
~~D = [~~xij ]m�(n0+1;:::;n) represent the quantitative
criteria, the qualitative criteria, the crisp values
(with respect to the quantitative criteria), and
GIT2FNs (with respect to the qualitative criteria),

respectively (Eq. (32), shown in Box V), where
~~xij is the synthetic Gaussian interval type-2 fuzzy
rating aggregated by L experts. It is calculated as
follows:

~~xij = (1=L)
 (~~x
1
ij � ~~x

2
ij � � � � � ~~x

L
ij);

i = 1; :::;m; j = n0 + 1; :::; n: (33)

2. Suppose that �xl1ij�, xl2ij�, xr1ij�, and �xr2ij� is
the projection of �-cut's intersection points with
the left and right MFs of GIT2FNs ~~G =��
x; �L;�L

�
;
�
x; �U ;�U

��
when evaluating alterna-

tive i under criterion j. Then, GIT2FN ~~xij� at level
� can be represented as follows:

x̂ij� =
��

�xl1ij�; x
l
2ij�

�
;
�
xr1ij�; �x

r
2ij�

�	
;

i = 1; :::;m; j = n0 + 1; :::; n: (34)

Similarly, GIT2FN ~~x
l
ij� selected by the lth expert

at level � is given by:

x̂lij� =
��

�xl l1ij�; x
l l
2ij�

�
;
�
xr l1iij�; �x

r l
2iij�

�	
;

i=1; :::;m; j=n0 + 1; :::; n; l=1; :::; L: (35)

Three reference points of the triangular fuzzy
numbers selected by L experts, namely ~xij =
(Lbij ;Mbij ; Ubij) according to Buckley [39], are
given by:

Lbij =

 
LX
l=1

Lblij

!�
L;

i = 1; :::;m; j = n0 + 1; � � � ; n; (36)

Mbij =

 
LX
l=1

Mblij

!�
L;

i = 1; :::;m; j = n0 + 1; � � � ; n; (37)

Ubij =

 
LX
l=1

Ublij

!�
L;

i = 1; :::;m; j = n0 + 1; � � � ; n: (38)

D; ~~D =

C1
w1 C2

w2 C3
w3 : : : Cwn0n0 Cwn0+1

n0+1 Cwn0+2
n0+2 � � � Cwnn

A1
A2
A3
...
Am

2666664
x11
x21
x31

...
xm1

x12
x22
x32

...
xm2

x13
x23
x33

...
xm3

� � �
� � �
� � �
� � �
� � �

x1n0
x2n0
x3n0

...
xmn0

~~x1n0+1
~~x2n0+1
~~x3n0+1

...
~~xmn0+1

~~x1n0+2
~~x2n0+2
~~x3n0+3

...
~~xmn0+2

� � �
� � �
� � �
� � �
� � �

~~x1n
~~x2n
~~x3n
...

~~xmn

3777775 : (32)

Box V
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The four reference points for GIT2FNs chosen by L
experts as x̂ij� =

�b�xl1ij�; xl2ij�c; bxr1ij�; �xr2ij�c	 at
level � for � = �1; :::; �N (N is the number of alpha
cuts), i = 1; :::;m, and j = n0+1; :::; n, are obtained
in the following by using the extended technique
explained above:

�xl1ij� =

 
LX
l=1

�xll1ij�

!�
L; i = 1; :::;m;

j = n0 + 1; � � � ; n; � = �1; � � � ; �N ; (39)

xl2ij� =

 
LX
l=1

xll2ij�

!�
L; i = 1; :::;m;

j = n0 + 1; � � � ; n; � = �1; � � � ; �N ; (40)

xr1ij� =

 
LX
l=1

xrl1ij�

!�
L; i = 1; :::;m;

j = n0 + 1; � � � ; n; � = �1; � � � ; �N ; (41)

�xr2ij� =

 
LX
l=1

�xrl2ij�

!�
L; i = 1; :::;m;

j = n0 + 1; � � � ; n; � = �1; � � � ; �N : (42)

In addition, suppose that wj(j = 1; :::; n0), wj(n0 +
1; :::; n), and wj 2 �wlj ; wuj 	 are the weights of the
quantitative criteria, the weights of the qualitative
criteria, and the admissible range for the jth crite-
rion, wj .

3. Let ~~X = [ ~XL; ~XU ] = [(xL1 ; xL2 ; xL3 ; xL4 ;HL
~A), (xU1 ;

xU2 ; xU3 ; xU4 ;HU
~A )] be a TraIT2FN. The normalized

performance measures can be calculated by Rashid
et al. [40] for Bene�t Criteria (BC) and Cost
Criteria (CC), respectively:

~~nij =
��xL1ij

x+
4j
;
xL2ij
x+

4j
;
xL3ij
x+

4j
;
xL4ij
x+

4j
;HL

~~xij

�
;

�xU1ij
x+

4j
;
xU2ij
x+

4j
;
xU3ij
x+

4j
;
xU4ij
x+

4j
;HU

~~xij

��
;

for i=1; :::m; x+
4j=max

i
xU4ij

where j2BC; (43)

and:

~~nij =
�� x�1j

xL4ij
;
x�1j
xL3ij

;
x�1j
xL2ij

;
x�1j
xL1ij

;HL
~~xij

�
;

� x�1j
xU41j

;
x�1j
xU3ij

;
x�1j
xU2ij

;
x�1j
xU1ij

;HU
~~xij

��
;

for i = 1; :::m; x�1j = min
i
xL1ij

where j 2 CC: (44)

The normalized decision matrix, N̂ , is created for
�-cuts of ~~G for i = 1; :::;m and j = n0 + 1; :::; n;
using the extension of the above normalization
methodology as follows:

bnij� =

("
�xl1ij�
x+
j
;
xl2ij�
x+
j

#
;

"
xr1ij�
x+
j
;

�xr2ij�
x+
j

#)
for i = 1; :::m; � = �1; :::; �N ;

x+
j = max

i
�xr2ij� where j 2 BC; (45)

and:

bnij� =

("
x�j

�xr2ij�
;
x�j
xr1ij�

#
;

"
x�j
xl2ij�

;
x�j

�xl1ij�

#)
for i = 1; :::m; � = �1; :::; �N ;

x�j = min
i

�xl1ij� where j 2 CC; (46)

where N is the number of �-cuts. In addition, the
normalized decision matrix, D̂, for the crisp values
is obtained as follows:

nij =
xijqPm
i=1 x2

ij

; i = 1; :::m; j = 1; :::n0:
(47)

The positive ideal solution, Â+, and the negative
ideal solution, Â�, respectively, are for the qualita-
tive criteria, using:

Â+
� =

�
�+
n0+1�; :::; �

+
n�

�
=
��

�max
� (x; u) = maxf�ri(x; u)gjj 2 BC

�
;�

�min
� (x; u)=minf�li(x; u)g= jj 2 CC

��
; (48)

Â�� =
�
��1�; ��2�; :::; ��n�

�
=
��

�min
� (x; u) = minf�li(x; u)gjj 2 BC

�
;�

�max
� (x; u)=maxf�ri(x; u)gjj 2 CC

��
: (49)
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For the crisp values, the positive ideal solution,
A+, and the negative ideal solution, A�, for the
quantitative criteria are calculated as follows:

A+ =
n�

max
i
nij jj 2 BC

�
;
�

min
i
nij jj 2 CC

�o
=
�
�+

1 ; �
+
2 ; :::; �

+
n0
	
; (50)

A� =
n�

min
i
nij jj 2 BC

�
;
�

max
i
nij jj 2 CC

�o
=
�
��1 ; ��2 ; :::; ��n0

	
: (51)

4. Calculate Ŝ+
i and Ŝ�i for each i = n0+1; :::; n based

on the measures (distances) LDPI and LDNI ,
respectively, between alternatives and the positive
and negative ideal solutions for ~~G using Eqs. (24)-
(27) or Eqs. (28)-(31) and, then, calculate S+

i and
S�i for each j = 1; :::; n0 using:

S+
i =

rXn0

j=1
(nij � n+

j )2 i = 1; :::;m; (52)

S�i =
rXn0

j=1
(nij � n�j )2 i = 1; :::;m: (53)

5. Calculate the relative closeness, RCi, to the ideal
alternatives with respect to the quantitative criteria
(j = 1; :::; n0) and the qualitative criteria (j = n0 +
1; :::; n0), respectively, as follows:

RCi =
S�i

S�i + S+
i

i = 1; :::;m;

and :

RCi =
(Ŝ�i )

(Ŝ�i ) + (Ŝ+
i )
; i = 1; :::;m: (54)

6. According to Shipley et al. [41], the separation
of each alternative from S+

i and S�i is dependent
on the criteria weights, and the criteria weights
are incorporated in the distances measurements.
Therefore, in order to eliminate the criteria weights
from S+

i and S�i , the following linear programming
model (1) is solved for prioritizing alternatives (the
bigger the measure of objective function, the better
the alternative) related to the quantitative criteria:

Model (1):

Si = max
n0X
j=1

0@wj q
(nij � ��j )2q

(nij � ��j )2 +
q

(nij � �+
j )2

1A
for i = 1; :::m; (55)

s.t.:

n0X
j=1

wj � 1; (56)

wlj � wj � wuj ; j = 1; :::; n0; (57)

wj = wj0 ; j 6= j0; j; j0 2 1; :::; n0; (58)

wj � wj0 or wj � wj0 ;
j 6= j0; j; j0 2 1; :::; n0; (59)

wj � 0; j = 1; :::; n0; (60)

where Constraints (57)-(59) show the lower (wlj)
and the upper (wuj ) limits of weights, the equal
importance of criteria, and the ranking order of
criteria, respectively. Obviously, since the interval
weights of criteria are considered, it can be men-
tioned that, in the case of overlapping intervals,
Constraints (58) and (59) are applied to show the
preference level of a decision-maker.

Similarly, weights of the qualitative criteria
are obtained by the following linear programming
model (2):

Model (2):

S0i = max
nX

j=n0+1

�
w0j

LDNI

LDPI + LDNI

�
for i = 1; :::m; (61)

s.t.:
n0X

j=n0+1

w0j � 1; (62)

w0lj � w0j � w0uj ; j = n0 + 1; :::; n0; (63)

w0j = w0j0 ; j 6= j0; j; j0 2 n0 + 1; :::; n0;
(64)

w0j � w0j0 or w0j � w0j0 ;
j 6= j0; j; j0 2 n0 + 1; :::; n0; (65)

w0j � wj00 ; or w0j � wj00 ;
j 6= j00 j00 2 1; :::; n0; j0 2 n0 + 1; :::; n0;

(66)

w0j � 0; j = n0 + 1; :::; n0; (67)

where the constraint w0j � wj00 or w0j � wj00 is
applied for showing the preference level between
the weights of the quantitative and the qualitative
criteria.
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7. Case study

To show the e�ectiveness of the proposed approach, it is
implemented in the material warehouse of a soft-drink
factory, Zahedan, Iran. This warehouse consists of 35
items. The authors used the suggestions and points of
view of three inventory managers.

7.1. Determination of criteria
Inventory managers have chosen �ve criteria (annual
dollar usage, lead time, average lot cost, limitation of
warehouse space, and availability of the substitute raw
material) as the most important criteria that a�ect the
ranked items.

Here, it is worth stating that the �rst four criteria
are of bene�t type, and the �fth criterion is a cost-type
criterion (the smaller the measure, the more important
it will be). On the other hand, the �rst three criteria
and the last two criteria are the quantitative and
qualitative criteria, respectively.

7.2. Construction of GMCABCIC matrix
The linguistic variables with their GIT2FNs (as repre-
sented in Table 1) are applied to evaluate the items
with respect to qualitative criteria. Three experts
are then asked to select one of them for determining
their preference degree. In addition, the representation
of GIT2FNs for these linguistic variables is shown in
Figure 6.

Table 2 represents the measures of items related

Figure 6. The representation of GIT2FNs de�ned in
Table 1.

to the quantitative criteria and, also, the assessment
of items with respect to the qualitative criteria, re-
spectively, in which the linguistic variables are selected
by inventory managers based on Table 1 and are
aggregated using Eqs. (39)-(42). In fact, this table is
the GMCABCIC matrix.

Afterwards, the GMCABCIC matrix is normal-
ized for the quantitative criteria using Eq. (47) and for
the qualitative criteria using Eqs. (45)-(46). Table 3
presents the normalized GMCABCIC matrix, where in
order to summarize calculations, the normalized mea-
sures of the qualitative criteria have been incorporated
only for � = 0:01.

Table 4 shows Euclidean distances S+
i and S�i

between items and the ideal solutions for criteria C1,
C2, and C3 using Eqs. (52)-(53) separately and, also,
LDPI and LDNI (for � = 0:1; 0:2; 0:4; 0:6; 0:8; 0:9
using Eq. (25) and Eq. (27) for criteria C4 and C5,
respectively.

In order to construct the objective functions of
programs (1) and (2), the measures RC are obtained
for each criterion using Eq. (54) based on the data in
Table 4 and are represented in Table 5.

Now, the linear programs (1) and (2) are solved
for obtaining the scores of items with respect to the
quantitative and qualitative criteria (SE and SE0),
respectively:

Model (1):

SEi = max
3X
j=1

0@wj q
(�ij � ��j )2q

(�ij � ��j )2 +
q

(�ij � �+
j )2

1A
for i = 1; :::; 5;

s.t.
3X
j=1

wj � 1;

0:2 � w1 � 0:45;

Table 1. De�nitions of linguistic variables for evaluating items with respect to the qualitative criteria.

Linguistic variables
�
(�L; �L;HL

~G); (�U ; �U ;HU
~G )
�

Absolutely Unimportant (AU) [(3; 0:5; 1); (3; 1; 1)]

Very Unimportant (VU) [(5; 0:5; 1); (5; 1; 1)]

Unimportant (U) [(7; 0:5; 1); (7; 1; 1)]

Medium (M) [(9; 0:5; 1); (9; 1; 1)]

Important (I) [(11; 0:5; 1); (11; 1; 1)]

Very Important (VI) [(13; 0:5; 1); (13; 1; 1)]

Absolutely Important (AI) [(15; 0:5; 1); (15; 1; 1)]



A. Mohamadghasemi et al./Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 2988{3006 2999

Table 2. Evaluated values of items with respect to di�erent criteria.

Item
no.

Annual
dollar usage
(thousand $)

Lead time
(day)

Average
lot cost

($)

Limitation of
warehouse space

Availability of the
substitute raw

material

Experts Experts

1 2 3 1 2 3

1 9.8 8 50.3 AU U VU AU VU U

2 21.88 19 40.5 U VU VU VU U VU

3 35.84 17 68.4 M I I U VU U

4 32.32 17 66.34 I M M I VI VI

5 100.73 16 42.32 VI I VI M M I

6 726.86 13 26.5 M M I U VU M

7 53.09 13 16.54 M U M U U U

8 71.47 13 19.8 I I M U U U

9 14.77 13 16.53 U U VU VU U VU

10 11.82 32 90.4 VI I I VU U VU

11 10.98 32 85.32 VI I I U VU U

12 3.2 17 71.8 I U VU I I I

13 2.07 17 68.5 U U U I U VI

14 3.18 8 13.64 AU VU VU AU VU U

15 2.09 8 8.84 VU VU VU AU VU U

16 38.34 9 6.39 VU U U VU U VU

17 619.39 7 38.9 AI VI VI U I M

18 26.8 18 34.5 VU U VU U M VU

19 28.11 6 28.87 VU VU M I U U

20 55.12 15 37.5 M U VU AI AI AI

21 6.29 6 24.67 U U U VU U VU

22 26.79 6 23.54 VU AU U VU U U

23 38.95 27 33.12 VU U VU U U M

24 30.15 27 15.4 VU AU VU U VU VU

25 22.58 27 17.21 VU VU VU I M M

26 1.02 27 15.87 VU AU AU VU U U

27 3.12 27 16.81 VU VU AU AU VU U

28 12.1 27 20.9 AU U AU AU U U

29 4.06 27 21.4 U VU VU U U U

30 13.58 27 19.3 U AU VU I U VU

31 1.01 27 18.65 U U AU VU U VU

32 15.49 9 11.45 U VU VU U U AU

33 8.53 27 9.4 U U VU M M U

34 7.35 17 64.17 VU U VU U M U

35 19.02 8 43.07 U VU U M I M
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Table 3. The normalized GMCABCIC matrix.

Item
no.

Annual
dollar usage
(thousand $)

Lead time
(day)

Average
lot cost

($)

Limitation of
warehouse space

Availability of the
substitute raw

material

1 0.0100 0.0696 0.2082 [(0:180; 0:248); (0:383; 0:451)] [(0:166; 0:229); (0:354; 0:416)]

2 0.0225 0.1653 0.1676 [(0:222; 0:291); (0:426; 0:493)] [(0:205; 0:268); (0:392; 0:455)]

3 0.0368 0.1479 0.2831 [(0:518; 0:586); (0:721; 0:789)] [(0:245; 0:307); (0:575; 0:581)]

4 0.0332 0.1479 0.2746 [(0:476; 0:544); (0:679; 0:747)] [(0:612; 0:619); (0:625; 0:631)]

5 0.1036 0.1392 0.1751 [(0:645; 0:713); (0:848; 0:916)] [(0:663; 0:669); (0:675; 0:682)]

6 0.7480 0.1131 0.1096 [(0:476; 0:544); (0:679; 0:747)] [(0:283; 0:346); (0:471; 0:533)]

7 0.0546 0.1131 0.0684 [(0:392; 0:460); (0:595; 0:663)] [(0:284; 0:346); (0:471; 0:533)]

8 0.0735 0.1131 0.0819 [(0:518; 0:586); (0:721; 0:789)] [(0:284; 0:346); (0:471; 0:533)]

9 0.0152 0.1131 0.0684 [(0:265; 0:333); (0:468; 0:536)] [(0:206; 0:268); (0:393; 0:456)]

10 0.0121 0.2785 0.3741 [(0:603; 0:670); (0:806; 0:873)] [(0:206; 0:268); (0:393; 0:456)]

11 0.0112 0.2785 0.3531 [(0:603; 0:670); (0:806; 0:873)] [(0:245; 0:307); (0:432; 0:494)]

12 0.0032 0.1479 0.2972 [(0:350; 0:418); (0:553; 0:620)] [(0:517; 0:579); (0:704; 0:767)]

13 0.0021 0.1479 0.2835 [(0:308; 0:375); (0:510; 0:578)] [(0:478; 0:541); (0:665; 0:728)]

14 0.0032 0.0696 0.0564 [(0:138; 0:207); (0:342; 0:410)] [(0:167; 0:229); (0:354; 0:417)]

15 0.0021 0.0696 0.0365 [(0:181; 0:249); (0:384; 0:452)] [(0:167; 0:229); (0:354; 0:417)]

16 0.0394 0.0783 0.0264 [(0:265; 0:333); (0:468; 0:536)] [(0:206; 0:268); (0:393; 0:456)]

17 0.6374 0.0609 0.1610 [(0:730; 0:797); (0:932; 1:000)] [(0:400; 0:463); (0:587; 0:650)]

18 0.0275 0.1566 0.1428 [(0:223; 0:291); (0:426; 0:494)] [(0:283; 0:346); (0:471; 0:533)]

19 0.0289 0.0522 0.1195 [(0:265; 0:333); (0:468; 0:536)] [(0:361; 0:424); (0:549; 0:611)]

20 0.0567 0.1305 0.1552 [(0:307; 0:375); (0:510; 0:578)] [(0:751; 0:813); (0:937; 1:000)]

21 0.0064 0.0522 0.1021 [(0:308; 0:375); (0:510; 0:578)] [(0:206; 0:268); (0:393; 0:456)]

22 0.0275 0.0522 0.0974 [(0:181; 0:249); (0:384; 0:452)] [(0:245; 0:307); (0:432; 0:494)]

23 0.0400 0.2350 0.1370 [(0:223; 0:291); (0:426; 0:494)] [(0:323; 0:385); (0:510; 0:572)]

24 0.0310 0.2350 0.0637 [(0:138; 0:207); (0:342; 0:410)] [(0:206; 0:268); (0:393; 0:456)]

25 0.0232 0.2350 0.0712 [(0:181; 0:249); (0:384; 0:452)] [(0:439; 0:502); (0:626; 0:689)]

26 0.0010 0.2350 0.0656 [(0:096; 0:164); (0:300; 0:367)] [(0:245; 0:307); (0:432; 0:494)]

27 0.0032 0.2350 0.0695 [(0:138; 0:207); (0:342; 0:410)] [(0:167; 0:229); (0:354; 0:417)]

28 0.0124 0.2350 0.0865 [(0:139; 0:206); (0:342; 0:410)] [(0:206; 0:268); (0:393; 0:456)]

29 0.0041 0.2350 0.0885 [(0:223; 0:291); (0:426; 0:494)] [(0:284; 0:346); (0:471; 0:533)]

30 0.0139 0.2350 0.0798 [(0:181; 0:249); (0:384; 0:452)] [(0:322; 0:385); (0:510; 0:572)]

31 0.0010 0.2350 0.0771 [(0:223; 0:291); (0:426; 0:494)] [(0:206; 0:268); (0:393; 0:456)]

32 0.0159 0.0783 0.0473 [(0:223; 0:291); (0:426; 0:494)] [(0:206; 0:268); (0:393; 0:456)]

33 0.0087 0.2350 0.0389 [(0:265; 0:333); (0:468; 0:536)] [(0:361; 0:424); (0:549; 0:611)]

34 0.0075 0.1479 0.2656 [(0:223; 0:291); (0:426; 0:494)] [(0:323; 0:385); (0:510; 0:572)]

35 0.0195 0.0696 0.1782 [(0:265; 0:333); (0:468; 0:536)] [(0:439; 0:502); (0:626; 0:689)]
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Table 4. The Euclidean and limit distances between items and the ideal solutions.

Item
no.

Annual dollar usage
(thousand $)

Lead time
(day)

Average lot cost
($)

Limitation of
warehouse

space

Availability of
the substitute
raw materialq

(nij��+
j )

2
q

(nij���j )
2
q

(nij��+
j )

2
q

(nij���j )
2
q

(nij��+
j )

2
q

(nij���j )
2
LDPI LDNI LDPI LDNI

1 0.7379 0.0090 0.2088 0.0174 0.1659 0.1817 0.866 0.231 0.996 0.133

2 0.7254 0.0214 0.1131 0.1131 0.2065 0.1411 0.799 0.280 0.933 0.182

3 0.7111 0.0358 0.1305 0.0957 0.0910 0.2566 0.333 0.622 0.866 0.231

4 0.7147 0.0322 0.1305 0.0957 0.0995 0.2481 0.399 0.573 0.266 0.670

5 0.6443 0.1026 0.1392 0.0870 0.1990 0.1487 0.133 0.768 0.533 0.475

6 0.0000 0.7469 0.1653 0.0609 0.2645 0.0832 0.399 0.573 0.799 0.280

7 0.6933 0.0535 0.1653 0.0609 0.3057 0.0420 0.533 0.475 0.799 0.280

8 0.6744 0.0725 0.1653 0.0609 0.2922 0.0555 0.333 0.622 0.799 0.280

9 0.7328 0.0141 0.1653 0.0609 0.3057 0.0419 0.733 0.329 0.933 0.182

10 0.7358 0.0111 0.0000 0.2263 0.0000 0.3477 0.200 0.719 0.933 0.182

11 0.7367 0.0102 0.0000 0.2263 0.0210 0.3267 0.200 0.719 0.866 0.231

12 0.7447 0.0022 0.1305 0.0957 0.0769 0.2707 0.599 0.426 0.400 0.573

13 0.7458 0.0010 0.1305 0.0957 0.0906 0.2570 0.666 0.378 0.466 0.524

14 0.7447 0.0022 0.2088 0.0174 0.3177 0.0300 0.933 0.182 0.996 0.133

15 0.7458 0.0011 0.2088 0.0174 0.3376 0.0101 0.866 0.231 0.996 0.133

16 0.7085 0.0384 0.2001 0.0261 0.3477 0.0000 0.733 0.329 0.933 0.182

17 0.1105 0.6363 0.2175 0.0087 0.2131 0.1345 0.029 0.866 0.599 0.426

18 0.7204 0.0265 0.1218 0.1044 0.2313 0.1163 0.799 0.280 0.799 0.280

19 0.7190 0.0278 0.2263 0.0000 0.2546 0.0930 0.733 0.329 0.666 0.378

20 0.6912 0.0556 0.1479 0.0783 0.2189 0.1287 0.666 0.378 0.029 0.866

21 0.7415 0.0054 0.2263 0.0000 0.2720 0.0756 0.666 0.378 0.933 0.182

22 0.7204 0.0265 0.2263 0.0000 0.2767 0.0709 0.866 0.231 0.866 0.231

23 0.7079 0.0390 0.0435 0.1827 0.2370 0.1106 0.799 0.280 0.733 0.329

24 0.7169 0.0299 0.0435 0.1827 0.3104 0.0372 0.933 0.182 0.933 0.182

25 0.7247 0.0221 0.0435 0.1827 0.3029 0.0447 0.866 0.231 0.533 0.475

26 0.7469 0.0000 0.0435 0.1827 0.3085 0.0392 0.996 0.133 0.866 0.231

27 0.7447 0.0021 0.0435 0.1827 0.3046 0.0431 0.933 0.182 0.996 0.133

28 0.7355 0.0114 0.0435 0.1827 0.2876 0.0600 0.933 0.182 0.933 0.182

29 0.7438 0.0031 0.0435 0.1827 0.2856 0.0621 0.799 0.280 0.799 0.280

30 0.7340 0.0129 0.0435 0.1827 0.2943 0.0534 0.866 0.231 0.733 0.329

31 0.7469 0.0000 0.0435 0.1827 0.2969 0.0507 0.799 0.280 0.933 0.182

32 0.7320 0.0149 0.2001 0.0261 0.3267 0.0209 0.799 0.280 0.933 0.182

33 0.7392 0.0077 0.0435 0.1827 0.3352 0.0124 0.733 0.329 0.666 0.378

34 0.7404 0.0065 0.1305 0.0957 0.1085 0.2391 0.799 0.280 0.733 0.329

35 0.7284 0.0185 0.2088 0.0174 0.1959 0.1518 0.733 0.329 0.533 0.475

0:1 � w2; w2 � 0:15;

w3 � 0:35; w1 � w3; w3 � w2;

w1 � 0; w2 � 0; w3 � 0:

Model (2):

SE0i = max
5X
j=4

�
w0j

LDNI

LDPI + LDNI

�
for i = 1; :::5;

s.t.:
5X

j=41

w0j � 1;

0:2 � w04 � 0:55;

0:1 � w05 � 0:2;

w04 � w05
w04 � w1 (obtained from Model (1));
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Table 5. Measures RC with respect to the di�erent criteria.

Item
no.

Annual dollar usage
(thousand $)

Lead time
(day)

Average lot cost
($)

Limitation of
warehouse

space

Availability of
the substitute
raw material

1 0.0121 0.0769 0.5226 0.2105 0.1178
2 0.0287 0.5000 0.4060 0.2595 0.1632
3 0.0479 0.4230 0.7381 0.6513 0.2105
4 0.0431 0.4230 0.7136 0.5895 0.7158
5 0.1373 0.3846 0.4276 0.8523 0.4712
6 1.0000 0.2692 0.2393 0.5895 0.2595
7 0.0717 0.2692 0.1208 0.4712 0.2595
8 0.0970 0.2692 0.1596 0.6513 0.2595
9 0.0189 0.2692 0.1207 0.3097 0.1632
10 0.0148 0.9999 0.9999 0.7823 0.1632
11 0.0137 0.9999 0.9395 0.7823 0.2105
12 0.0030 0.4230 0.7785 0.4156 0.5889
13 0.0014 0.4230 0.7393 0.3620 0.5292
14 0.0029 0.0769 0.0862 0.1632 0.1178
15 0.0014 0.0769 0.0291 0.2105 0.1178
16 0.0514 0.1153 0.0000 0.3097 0.1632
17 0.8519 0.0384 0.3869 0.9675 0.4156
18 0.0355 0.4615 0.3346 0.2595 0.2595
19 0.0373 0.0000 0.2675 0.3097 0.3620
20 0.0745 0.3461 0.3703 0.3620 0.9675
21 0.0072 0.0000 0.2175 0.3620 0.1632
22 0.0355 0.0000 0.2041 0.2105 0.2105
23 0.0522 0.8076 0.3181 0.2595 0.3097
24 0.0401 0.8076 0.1072 0.1632 0.1632
25 0.0297 0.8076 0.1287 0.2105 0.4712
26 0.0000 0.8076 0.1128 0.1178 0.2105
27 0.0029 0.8076 0.1240 0.1632 0.1178
28 0.0152 0.8076 0.1727 0.1632 0.1632
29 0.0042 0.8076 0.1786 0.2595 0.2595
30 0.0173 0.8076 0.1536 0.2105 0.3097
31 0.0000 0.8076 0.1459 0.2595 0.1632
32 0.0199 0.1153 0.0602 0.2595 0.1632
33 0.0103 0.8076 0.0358 0.3097 0.3620
34 0.0087 0.4230 0.6877 0.2595 0.3097
35 0.0248 0.0769 0.4366 0.3097 0.4712

w04 � 0; w05 � 0;

where the importance order of criteria has been ad-
justed based on the inventory managers' points of view
and experiences.

Table 6 shows measures SE, SE0, total score
(the larger score, the greater preference), and ABC
classi�cation based on the proposed method and other
techniques in the literature.

In order to compare the results of the proposed
model with those of other approaches, the data in
Table 2 together with some settings are applied.

First, the authors compared the obtained results
of their method with those of the VIKOR technique.
According to Table 6, 33 items remained in the same
classes. For example, two items characterized by the
changed classes are Items 1 and 16 that have been
moved to classes B and C, respectively. Although the
order of rankings obtained in each class is somewhat
di�erent from our approach (for example, Item 6 is
more important than Item 10), the similarity of the
classes obtained from the two models can be a good
reason for the e�ectiveness of our approach.

In the second status, the authors requested
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Table 6. Measures SE, SE0, total score, and MCABCIC based on the di�erent methods.

Item
no.

SE SE0 Total
score

The proposed
model

VIKOR
The

classical
TOPSIS

The
R-model

The
Ng-model

The
traditional ABC

classi�cation
17 0.5238 0.6149 1.1387 A A (17) A A A A
10 0.5065 0.4627 0.9692 A A (6) A A A C
11 0.4848 0.4721 0.9569 A A (10) A A A C
6 0.5741 0.3758 0.9499 A A (11) A A A A
5 0.2691 0.5628 0.8319 A A (5) A A A A
4 0.3326 0.4669 0.7995 A A (3) B A B B
3 0.3433 0.4000 0.7433 A A (4) B B A B
12 0.3371 0.3458 0.6829 B B (12) A A B C
13 0.3227 0.3049 0.6276 B B (13) A B B C
16 0.4040 0.2025 0.6065 B C C C C B
20 0.1624 0.3925 0.5549 B B (20) B B B A
8 0.1399 0.4099 0.5498 B B (34) B B A A
34 0.3081 0.2043 0.5124 B B (8) B B B C
23 0.2560 0.2043 0.4603 B B (23) B B B A
35 0.1755 0.2641 0.4396 B B (2) B B B B
2 0.2300 0.1754 0.4054 B B (18) C C C B
7 0.1149 0.2837 0.3986 B B (35) C C B A
18 0.2023 0.1943 0.3966 B B (7) C C C B
25 0.1796 0.2097 0.3893 C C (25) B B B B
33 0.1383 0.2423 0.3806 C C (24) B B B C
29 0.1855 0.1943 0.3798 C C (30) B B C C
30 0.1827 0.1773 0.3600 C C (29) C B C C
19 0.1104 0.2423 0.3527 C C (19) B C C B
31 0.1722 0.1751 0.3473 C C (28) C C C C
1 0.1997 0.1393 0.339 C B C C C C
21 0.0792 0.2317 0.3109 C C (31) C C B C
28 0.1882 0.1223 0.3105 C C (33) C C C C
24 0.1767 0.1233 0.3000 C C (27) C C C B
9 0.0911 0.2025 0.2936 C C (22) C C C C
27 0.1658 0.1131 0.2789 C C (9) C C C C
26 0.1606 0.1063 0.2669 C C (21) C C C C
22 0.0784 0.1575 0.2359 C C (26) C C C B
32 0.0473 0.1751 0.2224 C C (32) C C C B
15 0.0224 0.1389 0.1613 C C (14) C C C C
14 0.0431 0.1133 0.1564 C C (15) C C C C

experts to apply the crisp numbers (1 to 7) instead
of the language variables in Table 1 for assessing the
qualitative variables and, then, implement the classical
TOPSIS method for ranking items. According to the
obtained results, only 23 out of the 35 items remained
in the same classes. In the real world, experts may
want to choose the middle numbers such as 1.5 with
interval MF when evaluating the qualitative criteria.

It cannot be satis�ed by the crisp values. Thus,
the linguistic variables, such as IT2FSs, are more
suitable for such situations, resulting de�nitely in
di�erent results. This is the reason for the di�erent
classi�cations mentioned above.

Moreover, the results of our approach were com-
pared to those of the R-model [1], in which the following
constraint and scale transformation:
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w4 � w1 � w3 � w5 � w2;

xij �mini=1;:::;m [xij ]
maxi=1;:::;m [xij ]�mini=1;:::;m [xij ]

;

and Eq. (27) were used to show the sequence of
weights importance, converted into a 0-1 scale, and
to determine the crisp measures of items with respect
to the qualitative criteria, respectively. Only 25 items
were reclassi�ed into the same classes. The R-model is
a compensatory approach, i.e., a signi�cantly weak cri-
terion value of an item could be directly compensated
by other good criteria values. On the other hand, the
weights of criteria for low measures may be zero when
solving the model. These will lead to inappropriate
rankings. For example, consider Items 18 and 25.
Although Item 18 has higher measures than Item 25
with respect to the �rst, third, and fourth criteria that
have higher weights in sequence w4 � w1 � w3 � w5 �
w2, it is in class B and moved to class C using R-model
based on our approach.

As a further comparison of the crisp models, the
authors utilized the transformed data in Ng-model [10].
According to the obtained results, 27 items remained
unchanged in their classes. The drawbacks of the
Ng-model are similar to those of the R-model. For
example, consider Item 8. Since Item 8 has a higher
partial average in relation to the fourth criterion, it was
selected as class A without taking into account other
partial averages. However, it was chosen as class B in
the �rst four methods.

On the other hand, by comparing the results of
the proposed model with traditional ABC classi�ca-
tion, only 19 of the 35 items remained in the same
classes. Obviously, the results obtained from our model
di�er from the traditional ABC classi�cation due to the
presence of the other four criteria.

8. Conclusions

In the real world, the selection of the best alternative
with respect to conicting criteria is a di�cult and
complex task when data are vague and inexact. Al-
though type-1 fuzzy sets could greatly resolve ambigu-
ities in decision problems, only a speci�ed measure for
MF was taken into account. Thus, type-2 fuzzy sets
were applied to consider an interval in [0, 1] for MF
when a decision-maker is uncertain about the value of
MF. The MFs of the type-2 fuzzy sets can take di�erent
versions such as triangular, trapezoidal, and Gaussian.
Since GIT2FNs have the smoother MF, the authors
adopted them for evaluating the alternatives in relation
to the qualitative criteria. On the other hand, since the
MCABCIC problem is subject to the qualitative crite-
ria that can be stated with type-2 fuzzy sets, inventory
managers have ambiguity in relation to the value of

the MF and cannot determine certain measure for it.
Hence, this paper presented the TOPSIS method based
on GIT2FNs in which a new LD was introduced to
prioritize them. The proposed method �rst calculated
Ŝ+
i and Ŝ�i by depicting �-cuts and, then, measured

distances from reference limits. It is also able to
rank TriIT2FN, TraIT2FN, and other curved forms for
both normal and subnormal cases. In order to show
the e�ectiveness of the proposed methodology, it was
implemented in a real case study. It included both the
qualitative and quantitative criteria in an MCABCIC
problem. The quantitative data were extracted from
the inventory section, whereas the qualitative data
were obtained from appraisals of experts. Because
of the proposed non-compensatory approach and the
usage of type-2 fuzzy sets, the results obtained by
our methodology showed more logical results when
comparing the crisp methods (the classical TOPSIS,
the Ng-model, and the R-model) with the traditional
ABC classi�cation, as described above.

Some important directions for further researches
are as follows:

1. Managers can carry out this approach to other
manufacturing factories or service organizations;

2. Other criteria or sub-criteria may be taken into
account in other MCABCIC problems;

3. The distance between alpha cuts was determined
0.1 when LDs were calculated. In order to obtain
more accurate results, one can adopt the smaller
values for the distance between alpha cuts such as
0.05 or 0.01;

4. The proposed ranking approach is applicable to
other areas of mathematics such as statistics (such
as normal distribution) and DEA;

5. The proposed approach is also applicable to other
MCDM techniques including VIKOR and ELEC-
TRE, in addition to TOPSIS.
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