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1. Introduction

Abstract. This work presents a new GA-fuzzy method to model dynamic behavior of a
process, based on recurrent fuzzy modeling through Mamdani approach, whose inference
system is optimized by genetic algorithms. By using the Mamdani approach, the proposed
method surmounts the need to solve various types of mathematical equations governing
the dynamic behavior of the process. The proposed method consists of two steps: i)
constructing a startup version of the model and ii) optimizing the shape of membership
functions of the fuzzy sets corresponding to the variables existing in the fuzzy model along
with the production rules constituting the inference such that the obtained fuzzy model
can predict the dynamic behavior of the process fairly accurately. The proposed method
is used to predict the dynamic behavior of the reaction section of the Tennessee Eastman
(TE) benchmark. The overall accuracy of the obtained results is shown in comparison
with their corresponding counterparts in TE benchmark. The Mean Absolute Percentage
Error (MAPE) of the key process variables, which are temperature, pressure, and level of
the reactor, and the reactor cooling water outlet temperature are calculated 1.17%, 0.38%,
1.5%, and 1.57%, respectively, showing high prediction capability of the proposed method.

(© 2018 Sharif University of Technology. All rights reserved.

One of the main limitations in dealing with devel-
oping a TS-type model is the requirement of adequate

There are two major approaches to the use of Fuzzy In-
ference System (FIS), namely Mamdani [1] and Takagi-
Sugeno (TS) [2]. They have found many applications
for steady state or dynamic modeling and control pur-
poses in chemical as well as biological processes [3-9] as
alternative approaches to the conventional mechanistic
modeling approach.
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data to come up with the crisp expression used as the
consequences of the production rules and their corre-
sponding parameters [10]. In addition, each TS-type
model is a local approximator and the predictability of
the model is valid for the specific operating conditions
under which the model is developed and tested [11].
Accordingly, it can hardly be applied for analyzing the
process and therefore, it is less useful for industrial
practice. In contrast, there is no need for data when
developing a Mamdani-type model; yet, if the data
is available, the Mamdani-type fuzzy model can be
optimized to increase the accuracy of prediction in a
semi-quantitative manner. In addition, one can recog-
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nize that the Mamdani-type fuzzy model demonstrates
several other interesting features compared to TS-type.
It is more intuitive, transparent, and interpretable [12],
and the knowledge of the expert dealing with the
process can be easily incorporated into the model.

Despite the capabilities, the Mamdani-type fuzzy
model suffers from some shortcomings. One of its main
shortcomings is the lack of accuracy when it deals
with high-dimensional or poorly understood systems.
This shortcoming is one of the reasons why most of
the researchers use the TS-type fuzzy model instead,
losing the capabilities of the Mamdani approach. The
estimation of the minimum miscible pressure in gas
injection process [13], modeling virus removal from
water using microfiltration membrane [14], prediction
of diffusion coefficients in the caffeine release from
hydrogel colloidosomes [15], and fuzzy estimation of the
temperature distribution of furnace inner surface [16]
are among limited reported applications of Mamdani
approach for modeling purposes in chemical engineer-
ing.

The accuracy improvement of Mamdani-type
models preserving good interpretability, which has
found wide applicability in the fuzzy logic research
community, can be handled using the existing op-
timization algorithms [17]. Merging of Mamdani-
type fuzzy model and genetic (or, in general, evo-
lutionary) algorithms can provide an opportunity to
alleviate their shortcomings and capitalize on their
strengths [18]. The role of GA is recognized in the
optimal parameters estimation of the fuzzy model, such
as the parameters of scaling functions and the uni-
verses of discourse [19,20] or the Membership Functions
(MFs) [21,22]. GA is also applied as a method for
rule reduction/selection by removing some rules like
redundant, unnecessary, or misleading ones [21] when
dealing with high-dimensional problems in which the
number of rules is so large that cannot be managed
efficiently. Such a problem has also been formulated as
a multi-objective optimization problem in the literature
to reduce the number of rules while the accuracy of the
obtained model is maximized [22].

A high-performance Mamdani fuzzy model should
have optimal linguistic discretization of the variables
in their universe of discourse as well as correct rules
defined according to true knowledge about all aspects
of the underlying system. Neither one can guarantee
the performance of the resulting model alone. They
both must be considered in the optimization formu-
lation of the problem. This issue is addressed in
the present study by proposing a novel genetically
tuned fuzzy method through which the shape of MFs
(concerning both input and output variable MFs in the
coding) along with the production rules composing the
inference system of a startup version of the model are
optimized such that it can predict the dynamic behav-

ior of the process accurately enough, using a binary-
coded GA. The heuristic derived from the chemical
engineering knowledge is the only required information
utilized in the development of the startup version of the
model of the underlying process, thanks to Mamdani
approach capabilities.

The GA problem is formulated such that it in-
cludes both integer and continuous decision variables
leading to mixed integer nonlinear optimization prob-
lem [23]. In addition, the optimization problem is
subjected to many inequality and integer constraints
preserving the interpretability of the model. The pro-
posed method is used to predict the dynamic behavior
of the reaction section of the Tennessee Eastman (TE)
process, which is a challenging benchmark.

The rest of the paper is organized as follows.
In Section 2, Mamdani fuzzy inference method is
briefly described. Afterwards, Section 3 presents the
proposed genetically tuned fuzzy modeling approach,
which is then followed by Section 4, in which the
selected case study is introduced. The implementation
of the proposed method for the selected case study
and its obtained results along with their comparisons
with their corresponding data of TE benchmark are
explained in Section 5. Section 6 concludes the paper.

2. Mamdani fuzzy inference

The process of construction of a mapping from the
given inputs to the desired outputs using fuzzy logic is
called fuzzy inference that can be used for development
of the fuzzy model. Mamdani fuzzy inference expects
the output MFs to be fuzzy sets and involves main
pieces of selecting MFs, constructing production rules,
applying logical operations, and defuzzification [24].

The performance of a Mamdani fuzzy model
depends upon many factors, among which the following
are very important:

a) The type and parameters of MFs of the fuzzy sets
assigned to the variables existing in the model;

b) The degree of the expertise according to which the
rule table is defined.

The rule table corresponds to the governing phenomena
leading to the behavior of the system. These rules
that commonly consider linguistic variables in the
consequence (to finally provide real-valued outputs) are
written as follows for an n-input and m-output system:

If X; is Ay and --- and X, is A,,
then Y7 is By and --- and Y, is B,

(with CF = w),

where X; and Y; are the fuzzy model linguistic input
and output variables, respectively, and A; and B; are
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the linguistic values associated with the fuzzy sets
specifying their meaning. The number of linguistic
values of B; is equal to the number of fuzzy sets
assigned to Y; that can be represented by integer
numbers ranging from 1 to the maximum number of
fuzzy sets assigned to Y;, while from this point on,
they are called consequence indices. Moreover, C'F
(Certainty Factor) is a number between zero and one
that weights the certainty of the rule by the value of
w. The rule is definitely true when w is equal to one,
but if it is not a well-established rule widely accepted
by the experts of such a system, it is less than one.

In order to enhance the performance of a Mam-
dani fuzzy model, both the fuzzy sets characterizing
the linguistic discretization of the variables and the
production rules must be optimized.

However, choosing MFs with optimum parame-
ters is not an easy task. Sometimes, this is based on the
time-consuming trial and error process. In addition,
defining optimum rules that accurately present the
system under investigation completely depends upon
the expertise of the system to be modeled. In complex
cases or in the cases that some aspects of the phe-
nomena under study are poorly understood, expressing
the phenomena by rules is difficult and, as a result,
consequence indices of some rules may be incorrect.
These wrong or badly defined rules (hereinafter called
uncertain rules) worsen the model prediction capability
when co-existing with other rules.

3. Genetically tuned fuzzy modeling method

The proposed genetically tuned Mamdani fuzzy model-
ing method consists of two main steps: (i) Constructing
a startup version of the model using only the heuristic
knowledge; and (ii) Tuning the procedure using the
genetic algorithm. In the first step, the variables
determining the dynamic behavior of the system are
defined. Given that, the input variables which affect
the selected output variables are determined. The
recurrent fuzzy model [25] is used, which is a mapping
of past inputs and outputs to the future outputs. By
doing so, the previously calculated sampling times of
the output variables are also considered as the input
variables of the model. As a result, the transient be-
havior of the model can be well predicted. Afterwards,
a base fuzzy model is defined in which the fuzzy sets
of the variables are chosen to be evenly distributed
throughout their corresponding universes of discourse.
The production rules constituting the rule table of the
starting model are also set up based on the knowledge
and expertise of the experts who have been working
with the system. These rules are constructed to present
all feasible combinations of the input variables of the
model.  Among them, there are vague or complex
aspects, especially in complex nonlinear systems, where

there is no sufficient knowledge, leading to uncertain
rules. Even there may be some wrong rules among
uncertain rules, leading to opposite prediction of the
model in some time intervals. This model is used
as the startup version of the model which has to be
tuned. The only required information to construct the
startup version of the model is the heuristic derived
from chemical engineering knowledge and the analysis
of the underlying system, bypassing solving a couple of
the differential and algebraic mathematical equations
governing the dynamic behavior of the process.

In the second step, using a new method, a binary-
coded GA is formulated for simultaneous optimization
of both parameters that characterize the linguistic def-
inition of the variables in the model (MFs of the fuzzy
model variables) and consequence indices (or output
linguistic values) of the uncertain rules of the system.

For the sake of simplicity, all the variables existing
in the system are represented by three fuzzy sets whose
MFs are chosen to be the most frequently used ones,
which are the triangular ones for the middle fuzzy set
and half trapezoidal ones for the sets existing at the
extremes of the domains of variables. Selection of these
types of MFs is due to the fact that they are very sim-
ple, and therefore, the calculation of the output values
is computationally less demanding. This decreases the
required time to obtain the optimum values of the de-
cision variables of the optimization problem [26]. The
most important drawback of triangular and trapezoidal
MFs is that they are non-differentiable in their corner
points and consequently, they may lead to problems if
using classical gradient-based optimization algorithms.
However, when evolutionary algorithms are used as the
optimization method, this drawback does not come into
the picture at all.

The triangle MF is specified by three parameters
{a,b,c} as follows:

0, r<a
z—a <r<b
— b—a’ @ = —
) = 1
=5 2L, 1)
0, r>c

Likewise, trapezoidal MF is specified by four parame-
ters {a, b, c,d} as follows:

0, rz<a
=2, a<r<h
gz) =41, bd<z<c (2)
fl:gc”, c<x<d
0, r>d

3.1. Tuning of fuzzy model as an optimization
problem

The formulation of the problem is a typical Mixed In-

teger Non-Linear Programming (MINLP) optimization
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as follows:

min, ,,Obj. Fun: MAPE

b
_ 100 Z Yii(m) — yi;(p) ?/w( )
a X b] rii ym

st. veV elo1],
weWe{-1,01}, (3)

where a is the number of data points, b is the number
of model output variables, and MAPFE is the mean
absolute percentage error that is defined according to
the difference between y(m) (the vector of measured
data) and y(p) (the vector of model predictions data).
In addition, v and w are continuous (MF parameters)
and integer (consequence indices) decision variables,
respectively. All input and output data of the variables
of the model are normalized with all variables being
between 0 and 1. Therefore, all the parameters that
characterize the MFs of the model variables are real
values between 0 and 1.

MINLP inherently contains many solution candi-
dates and is a non-convex and complex problem [27].
Being different from gradient-based methods, GA re-
quires only the information about the values of the ob-
jective function that can effectively tackle MINLP [28]
with reduced chances of being trapped in local op-
tima. Furthermore, the restrictions imposed on the
conventional optimization method, such as the need for
linearization of non-linear terms of the formulation, are
all relaxed. The solution to MINLP problems with GA
is a valid approach in non-convex problems in which
computational time is not of primary concern [29].

3.2. Chromosomal representation of the
optimization problem

Fach chromosome of GA is encoded such that it is

composed of two parts of a certain length, which is

schematically shown in Figure 1.

The first part is encoded to determine the pa-
rameters of the triangular and trapezoidal MFs (a;,
bi, ¢;, and d;). The second part corresponds to the
consequence indices of the uncertain rules.

As mentioned, not all the combinations of input
variables are completely understood by the expert.
The lack of knowledge in each combination of the
input variables can be characterized by the C'F values
corresponding to the rules.

25 (2018) 3381-3390

Among all the rules of the inference system, the
consequence indices of those whose C'F has been set
to a value lower than a threshold (say 0.8) are chosen
to be optimized through optimization procedure. The
threshold value of 0.8 is completely a case dependent
value that is defined according to the desired level of
accuracy from the optimum model. Needless to say,
the larger the threshold value is defined, the larger the
portion of the rule consequence indices is considered to
be optimized through the optimization problem that
leads to the higher accuracy of the obtained model at
the expense of increasing the chromosome length.

3.3. Constraints of the optimization problem
The search performed by the GA is subject to inequal-
ity and integer constraints. Three types of inequality
constraints are put on the parameters of the MF's con-
cerning their semantic and interpretability properties
as shown in Figure 2.

The first type is the constraints that try to keep
the shape of triangular and trapezoidal MFs. For
instance, the “a” parameter should not be larger than
the “b” parameter in a triangular MF shape. The
second type is the constraints that try to keep the fuzzy
sets semantic such that the center point (that is, “b” for
triangular, “¢” for the trapezoidal assigned to the first
fuzzy set, and “b” for the trapezoidal assigned to the
third fuzzy set) of each fuzzy set would not be greater
than the center point of the subsequent linguistic terms.
The third type is the constraints that force at least two
subsequent fuzzy sets to cross each other.

& Constraint type (1): c1<d1, a2<bsz, ba<ca, az<bs
M (To keep the shape of triangular and trapezoidal MFs)

Constraint type (2): c1<ba, ba<bs
(To keep the fuzzy sets semantic)

Constraint type (3): ax<di, az<cs
(To keep at least two overlapped fuzzy sets)

C1 bo bg

a2 d1 as Cco

0 1

0

J

Figure 2. Constraints on MF parameters of the fuzzy
sets in the genetic tuning process.

c1 | d1 | a2 bo | ca | as | b3

|

MFs parameters

Y

Uncertain rules consequence indices

Figure 1. A chromosome sample of GA in this work.
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In addition to the above inequality constraints,
the consequence indices that are decoded and taken
from the second part of the chromosome are con-
strained to be an integer number, whether —1, 0, or
1. Zero implies that the initial index defined for the
corresponding uncertain rule in the startup version
of the model does not need to change while “1” or
“—1” means that it should be added by “1” or “—17,
respectively, to make modification in its prediction
capability. It is worth mentioning that making larger
modifications in the inference system with very uncer-
tain rules through decoding the corresponding genome
of the second part of the chromosome may result in 5
integer numbers to be obtained, i.e., whether —2, —1, 0,
1, or 2. In other words, the lower and upper bounds of
the integer values representing the consequence indices
completely depend upon the degree of uncertainty
of the defined rules, which are characterized by the
threshold value of CF assigned to the rules. The more
uncertain the rules, the lower the threshold value is
recommended to be assigned. The resulting optimum
consequence indices are constrained to be at least one
and at most equal to the number of fuzzy sets of the
corresponding output variable, which is 3 in the model.

As described, the consequence indices taken from
the chromosome have a limited number of candidate
values (for instance, 3 or 5) that significantly reduce
the search space, and thus guarantee obtaining the op-
timum consequence indices of the uncertain rules. Ac-
cordingly, all vague aspects of the model can be treated.

4, Case study: The reaction section of TE
process

Tennessee Eastman process is a plant-wide process
control benchmark introduced by Downs and Vogel [30]
to serve as a test-bed for the purpose of studying new
technologies for process control, modeling, monitoring,
fault diagnosis, and other potential applications. It
consists of a mixed reactor (reaction section), a product
condenser, a vapor-liquid separator, and a product
stripper. The present work is focused on its reaction
section, which is shown in Figure 3.

In the reaction section, the reactants A, C, D,
and E are fed to the reactor, in which the following
exothermic reactions take place:

A(g) + C(g) + D(g9) — G(lig), Product 1, (4)

A(g) + C(g) + E(g) — H(lig), Product 2, (5)

1/3A(9)+D(g)+1/3E(g)—F(lig), Byproduct. (6)

The reactor is agitated and has an internal cooler to
remove the heat of the reactions. The products are
discharged from the reactor along with the non-reacted

Product

v

Water in

> Water out

»

y N

\‘_/

A

Feed

Figure 3. Reaction section in TE process.

reactants and then, they pass through a condenser
to make a two-phase stream consisting of gas and
liquid phases, which goes to the subsequent separation
section. The nonlinear nature of the plant is mainly
due to the reactions occurring in the reactor.

The process has the total of 41 measured vari-
ables, of which 22 variables are continuous and 19
variables are sampled process measurements. These
measurements include pressure, temperature, flow-
rate, molar composition of some streams, and liquid
levels of the equipment. Besides, 12 manipulated
variables are included in this process to be used for
different dynamic excitations or control purposes. The
detailed description of the TE process can be found
in [30].

Using the described genetically tuned fuzzy
method is aimed at developing an optimum Mamdani
fuzzy model to predict the dynamic behavior of the
reaction section of the TE process. The main operating
variables characterizing the dynamic behavior of the
reaction section are the reactor temperature, pressure
and level, and the outlet cooling water temperature in
the internal cooler. According to the chemical engi-
neering knowledge, the first three variables are mostly
affected and determined by the set of reactions taking
place in the reactor and heat exchange against the
cooling water of the internal cooler. Furthermore, the
outlet temperature of the cooling water in the internal
cooler is determined through heat exchange against the
reactor content. As a result, with regard to the manip-
ulated or measured variables defined in the TE process
(Table 1), feed conditions including feed flow and molar
composition; agitator speed, which affects the overall
heat transfer [30]; and cooling water flow are taken into
consideration as the input variables of the model.

The schematic of the fuzzy model is depicted in
Figure 4.

Having defined the input/output variables of the
fuzzy model as well as their linguistic definitions, the
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Table 1. Measured and manipulated variables of the reaction section in TE.

Reactor feed rate - Ffeeq (measured)
Reactor pressure - Preactor (measured)
Reactor level - Lyeactor (measured)

Reactor temperature - Treactor (measured)

Reactor cooling water outlet temperature - Toutcw-reactor (measured)

Reactor cooling water flow - Fiy-reactor (manipulated)

Reactor agitator speed - Ag.Speed (manipulated)

A molar composition in feed - Z4 measured)

B molar composition in feed - Zg (measured)
)

C' molar composition in feed - Z¢ (measured

D molar composition in feed - Zp (measured)
E molar composition in feed - Zg (measured)
F molar composition in feed - Zr (measured)

Recurrent signals (previous sampling time)

-~

~

>
L »
L »
T
i feed (i=A to F) S
— -
B
S
= Preactor
= —
Fteea =
_— el
< s Lsactor
= -
<
Few-reactor x
—_—
Toutew-reactor
\
Ag.Speed
-_——

Figure 4. The fuzzy model scheme of the reaction section
in TE process.

rules that govern the fuzzy model are defined in the
next step to construct the startup version of the model.

As an example of these rules, suppose that at
the current sampling time, the feed has the normal
amount of raw material, the cooling water flow is
high, and the value of the reactor temperature is low,
while the other inputs are medium; thus, the reactor is
expected to have low temperature in the next sampling
time. As another example, suppose that at the current
sampling time, the feed has a high amount of raw
material, the cooling water flow is low, and value of
the reactor temperature is high, while the other inputs
are medium; thus, the reactor is definitely expected to
have high temperature in the next sampling time and
the cooling water outlet temperature will be high if its
previous sampling time temperature is medium or high.

Likewise, the table of rules can be created us-
ing such a heuristic analysis derived from chemical
engineering knowledge about the model, without con-
sidering the relation of reaction rate, the relation
of heat transfer coefficient, etc. This capability is
unique to Mamdani-type fuzzy approach, in which the
qualitative translation of the governing phenomenon of
the underlying system is incorporated in the model,

bypassing the complexity of solving various types of
mathematical equations used in conventional dynamic
modeling methods.

The uncertain rules and the shape of fuzzy sets
will be optimized by application of genetic algorithm.
The inference table consists of 1458 rules, of which 59
have C'F's lower than 0.8 (uncertain rules), that can be
considered as integer decision variables. In addition,
the model has 12 input/output variables, each having
7 parameters to be optimized; thus, the number of MF
decision variables is 84.

5. Results and discussion

The code provided by Downs and Vogel [30] is used
to test and validate the developed optimized model
for a variety of operating conditions. Using a random
method, which is called “Random Number Random
Interval —RNRI,” the dataset is generated by stimu-
lating the manipulated variables of the TE, and the
dynamic data corresponding to the reaction section are
collected. RNRI is a specific algorithm to generate
step-wise random excitation pattern in manipulated
variables of the TE process, simultaneously. Having
set the plant initial condition as steady-state values
provided by Downs and Vogel [30], two random num-
bers are generated for each manipulated variable during
the dynamic run of the plant. The first random
number (say, MVrandoml) is a value inside the 0
and 100 limits for one of the manipulated variables.
The second random number is a time (say, trandom1)
during which the corresponding manipulated variable
is set to the MVrandoml. After a time interval
of trandoml, another random number is generated
by the RNRI (say, MVrandom?2) that is set to the
corresponding manipulated variable during another
randomly generated time interval (say, trandom?2).
Likewise, all other 11 manipulated variables are excited
simultaneously and independently using this algorithm
during the transient operation of the plant. The
generated step-wise RNRI values of the two selected
manipulated variables (reactor cooling water flow-rate
and, simultaneously, the reactor agitator speed) of the
reaction section are shown in Figure 5.

With this process stimulating procedure, the gen-
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Table 2. MAPE of the output variables of the startup version and optimized fuzzy models™.

Treactor Preactor Lreactor TOUtcw-reactor
MAPE (startup version of the model) 6.56% 2.15% 8.36% 8.79%
MAPE (optimized model) 1.17% 0.38% 1.50% 1.57%

*The overall accuracy of optimized model is 98.84%.

100
80
60

ul FJL%ﬂL

20

Fow-reactor (%)

0 500 1000 1500
Time (s)

(a)

S [

500 1000 1500
Time (s)

(2)
Figure 5. The RNRI generated value for (a) reactor
cooling water flow rate, and (b) the reactor agitator speed.

[
[ =1
fes}

23]
[es}

D
(e}

_l]

'S
o

Ag.Speed (%)

M
o

fesl

o

erated data set embraces almost all characteristics of
the whole process so that it would be rich enough to
capture all dynamic modes of the reaction section of
the TE process. It should be noted that the generated
data are not beyond the data process shutdown limits
defined in the TE plant-wide code.

A portion of data is used to develop the optimized
fuzzy model and the rest is kept aside for validation
purposes. Two stopping criteria have been used in GA,
which are as follows:

1. The maximum number of generations (100) is
reached;

2. The best solution during the evolution process does
not change to a better value.

The algorithm stops when one of the stopping criteria
is met. The optimal Mamdani fuzzy model is obtained
after 30 generations.

The optimum shapes of fuzzy set MFs for the
input and output variables of the developed fuzzy
model are presented in Figure 6. In addition, the
consequence indices of the rules in the model that have

CFs lower than 0.8 (uncertain rules) are optimized
through the genetically tuned fuzzy method.

The open-loop dynamic responses for four outputs
of the fuzzy model and their corresponding process
measurements in the TE code for startup version of
the fuzzy model (before optimization) as well as the
optimized model are shown in Figure 7.

The randomly excited manipulated variables
cause different dynamic changes in the output variables
of the model. As graphically observed in Figure 7, the
startup version of the model constructed only by the
heuristic analysis of the reaction section demonstrates
almost the same general trends with TE data. It
should be noted that even if there were some wrong
rules among uncertain rules, opposite prediction of
the model might emerge in some time intervals. The
predictability of the startup version of the model is
enhanced in the optimized fuzzy model characterized
by correct optimum rules and optimized shapes of the
fuzzy sets presenting the linguistic definitions of the
variables. As a result, the dynamic behavior of the
reaction section is satisfactorily captured, showing that
the proposed method performs quite appropriately so
that the outputs of the fuzzy model almost coincide
with their corresponding values that are obtained by
the TE simulator proposed by Downs & Vogel [30].
For instance, with increase in the reactor temperature
due to several reasons such as low agitator speed and
cooling water flow or high amount of raw materials
in the feed, in general, the cooling water outlet tem-
perature also increases. In addition, the high reactor
temperature accelerates the reactions in favor of more
conversion of gas reactants to liquid products and
vaporization of the liquid level. This can reduce the
reactor pressure as well as its level. These dynamic
changes are fairly captured by the optimized fuzzy
model.

Table 2 shows a comparison between the outputs
of the fuzzy model (for both the startup version and
the optimized models) and their corresponding values
provided by the TE code.

6. Conclusion

A novel method to optimally develop a fuzzy model
based on Mamdani approach for predicting the dy-
namic behavior of a process was proposed. The
proposed method consisted of two main steps:
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Figure 6. Initial (solid lines) and optimized (dash lines) fuzzy sets of the input and output variables of the model.

i) Constructing a startup version of the model;

ii) Tuning procedure using the genetic algorithm.

In the first step, the only required information was
the heuristic derived based on the chemical engineering
knowledge about the process, bypassing solving various
types of mathematical equations governing the process

dynamic behavior. The input/output variables as well
as production rules of the startup version of the fuzzy
model were selected according to the heuristic knowl-
edge about the governing phenomena with regards to
what was defined by Downs & Vogel [30]. In the second
step, the optimal estimation of the parameters of the
startup version of the fuzzy model was formulated as a
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Figure 7. Observed TE and optimized fuzzy model data
for the reaction section for randomly excited input data.

constrained MINLP problem and carried out. Integer
decision variables of the MINLP problem were the
consequence indices of uncertain rules in the fuzzy
inference system rule-table. These rules corresponded
to the operating conditions of the process or those
combinations of input variables for which there was
no sufficient knowledge or poor understanding was in
hand. Continuous decision variables of the MINLP
problem were the parameters that characterized the
MFs corresponding to fuzzy sets of the input and out-
put variables of the fuzzy model. The performance of
the proposed method was evaluated by its application

in modeling the reaction section of the TE process.
The optimal fuzzy model was obtained and used to
predict the transient behavior of temperature, pressure,
and level of the reactor as well as the reactor cooling
water outlet temperature, with calculated MAPEs of
1.17%, 0.38%, 1.5%, and 1.57%, respectively. The
obtained results showed the appropriate performance
and high accuracy of the proposed genetically tuned
fuzzy method for dynamically modeling of TE reaction
section.
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