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Abstract. Extremal hypotheses without bank stability constraint typically over-predict
and under-predict channel width in large rivers and natural streams, respectively. In
general, results obtained from unconstrained extremal hypotheses show inappropriate
agreement between predicted and observed dimensions of the rivers. One of the important
factors in disparity of the data may be lack of appropriate relationships to assess bank
vegetation of the rivers. For this reason, a modi�ed analytical model was developed to
reduce the e�ect of bias by considering bank stability and vegetation. The model took
into account channel shape factor, a wide range of bed load equations in the form of
excess shear stress, and vegetation quanti�cation, which made it able to predict optimal
channel geometry dimensions. Finally, the developed model was calibrated using the
�eld data of the United Kingdom and Iran. In addition to indicating the e�ect of bank
stability and vegetation on estimation of the geometric characteristics of the channel, the
obtained results con�rmed the e�ciency of the constrained model in comparison with the
unconstrained model. This study also provides support for the use of the concepts of
maximum sediment transporting capacity and minimum stream power for understanding
the operation of alluvial rivers.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In the advent of the new millennium, a great deal of
advancement in engineering science has been achieved.
However, to the problem of alluvial river response
to natural and man induced environmental changes,
a simple, reasonable, and understanding solution is
still being looked for. In general, there are two
principal approaches of analytical and empirical to the
determination of stable channel geometry in alluvial
rivers of which the application could have advantages
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and disadvantages [1]. Among analytical models, in
the last decades, extremal hypotheses have been used
as objective functions to estimate optimum channel
dimensions. By means of this type of models, sediment
transport and 
ow resistance equations are applied
together with a third equation to predict stable channel
dimensions. This equation plays the role of an objective
function for optimization and is expressed in terms
of stream power, energy dissipation rate, sediment
transport, etc. [2]. In the early 1960s, researchers like
Leopold and Langbein [3] applied minimum variance
theory to the design of stable channel dimensions.
Pickup [4] and Kirkby [5] suggested Maximum Sedi-
ment Transporting Capacity (MSTC). Yang [6] pro-
posed Minimum Energy Dissipation Rate (MEDR) as a
general rule in hydraulics. Although MEDR hypothesis
made remarkable progresses in the determination of
velocity and sediment concentration, Yang et al. [7]
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indicated that MEDR hypothesis would result in a
width to depth ratio of 2, which is hardly encountered
in natural rivers. Subsequently, Song and Yang [8]
suggested Minimum Unit Stream Power hypothesis
(MUSP) on the basis of which a self-formed stable
channel might adjust its cross shape and dimensions
in such a way that transport of water and sediment
could take place at optimum condition. Huang and
Nanson [9] also emphasized that the stable condition
of adjustable alluvial rivers was equivalent to the
condition at which the maximum sediment load was
transported. Due to insu�cient basic 
ow relation-
ships (i.e., continuity, resistance, and sediment) for
expressing the equilibrium state, they recommended
the application of extremal hypothesis. In their opin-
ion, the higher number of unknowns than the number
of equations might be resolved by de�ning channel
shape factor (width/depth). They calculated optimum
shape factor by assuming rectangular cross section and
solving basic 
ow equations together with extremal
hypothesis, simultaneously. They derived hydraulic
geometry relationships analytically similar to others.
They also de�ned Maximum Flow E�ciency (MFE)
as the 
ow at which maximum sediment transporting
capacity occurred per available stream power unit.

Later on, Eaton and Millar [10] applied MTC
hypothesis with bank stability constraint by consid-
ering trapezoidal shape for the cross section under
Parker's bed load [11] and Manning's 
ow resistance
equations [12]. They showed that channel geometry
depended upon bank material and vegetation.

Investigations state that results obtained by ap-
plying extremal hypotheses without bank stability
constraint (unconstrained model) show a relative dis-
agreement between observed and predicted channel
geometries, particularly in large rivers [13]. For this
reason, an analytical model is developed to accomplish
an unconstrained model in which e�ect of bank stabil-
ity and vegetation is considered to estimate channel
dimensions of gravel bed rivers. The model is able
to predict optimum channel dimensions under static
and dynamic equilibrium by considering shape factor
in trapezoidal form together with a wide range of

ow resistance and sediment transport equations as
a function of excess bed shear stress. According to
Knighton [14] and Lane [15], when the ratio of river
design discharge to the threshold discharge of the
sediment motion is about 1 or smaller, or, in other
words, the entrainment of sediments from the river bed
and banks is zero (
ow can carry sediments, but cannot
erode the river boundaries), the river is considered in
the static stability condition. However, when the ratio
is larger than 1 (sediments are transported from bed
and banks, but the erosion and sedimentation rates are
almost the same), the river is considered in the dynamic
stability condition. In general, this model is meant

to follow Huang and Nanson [9] and couples up with
Eaton and Millar [10]. The aim of the presented model
in this study is to design dimensions of a stable section
carrying a dominant discharge equal to the discharge in
the actual river section with the same parameters, such
as the Manning's roughness coe�cient, longitudinal
slope, bank vegetation, and bed and bank materials. In
other words, the model is meant to be a practical tool
for river restoration and engineering applications, e.g.,
river dredging. Attempts have been made to design a
section that would:

1. Have stable characteristics;

2. Pass a discharge equal to the river dominant dis-
charge.

2. Material and methods

Selection of dependent and independent variables is one
of the most important problems suggested in analytical
models. The suggested model may be proper to both
constant and variable slopes. For constant slope, the
model input data are dominant discharge, longitudinal
slope, bed and bank material size, friction angle of
bank material, and roughness coe�cient, while in the
case of variable slope, slope is replaced by sediment
transport rate in input data to work out the optimum
slope. River cross section is considered trapezoidal with
constant side slope of 1 (horizontal): z (vertical).

In Figure 1, Pbed, Pbank, W , D, z, and �0 are
bed perimeter, bank perimeter, channel surface width,
maximum channel depth, bank slope (� is bank angle),
and bank friction angle, respectively. According to
Eaton and Millar, and Lane, in natural rivers, the angle
between banks of the channel and 
oodplain surface
can be considered as �0 [10,15]. Bed and banks may be
easily distinguishable by Parker's de�nition, followed
by proceeding from the 
oodplain margins to the center
of the river channel and getting to the �rst point with
the depth of 0:99Dmax, to determine the river bank
area [17].

2.1. Model assumptions
� Flow is steady and uniform;

� The model is applicable to straight reach of the river,
through which sediment is mainly transported as
bedload;

Figure 1. River cross section [16].
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� Bed and bank are mainly composed of coarse grain
sized materials; hence, resistance due to form rough-
ness is negligible;

� River cross section is in trapezoidal form;
� Stability is achieved by satisfying extremal hypothe-

ses;
� Dominant discharge is considered to be estimated

by bankfull discharge.

2.2. Governing 
ow equations
There are six equations to develop channel geome-
try, namely continuity, resistance, sediment transport,
mean bank shear stress, mean bed shear stress, and
bank stability, whereas seven dependent variables are
available, namely bed perimeter (Pbed), maximum
channel depth (D), longitudinal slope (S) (in constant
slope state) or bed load discharge (Qs) (in variable
slope state), mean velocity (V ), mean bank shear stress
(��bank), mean bed shear stress (��bed), and bank angle
(�). To estimate these variables, it is required to have
seven equations as well. This made the authors use
extremal hypothesis as the seventh equation. The
equations are de�ned as follows:

Flow continuity to be maintained in alluvial chan-
nels is:

Q = A� V; (1)

in which A, V , and Q are cross sectional area, average

ow velocity, and dominant or bankfull 
ow discharge,
respectively.

In the model, a generalized form of 
ow resistance
based on Huang and Nanson [9] with some modi�ca-
tions may be expressed as:

V = crRxSyD�; (2)

in which cr is a coe�cient determined by sediment
size; x, y, and � are functions of channel bed forms
or 
ow regimes; and R is hydraulic radius. Many
resistance equations, such as Manning [12], Lacey [18],
Brownlie [19], etc., may be same as the above.

To avoid a particular equation of bed load in the
model, a general form of the bed load equation in the
form of excess bed shear stress was initially suggested
by Huang and Nanson [9]. Although there are bed load
equations with no sediment threshold of motion [20],
hydraulic engineers emphasize the determination of
sediment threshold of motion. As this is the state
at which sediment particles are in equilibrium, its
formulation will help in solving problems such as non-
erodible stable channel design, riprap size design to
protect bed and banks of the channels, and calculation
of sediment transport in rivers [21].

qs = cs��mbed (��bed � �c)j ; (3)

where qs, cs, ��bed, and �c are bed load discharge per

unit channel width, a constant relating to sediment
characteristics, mean bed shear stress, and critical
shear stress for the incipient motion of sediments,
respectively. Exponents m and j vary widely, as
shown in many bed load transport models. Huang
and Nanson [9] indicated that the above equation could
easily be in the form of Meyer-Peter and Muller [22],
Du Boys [23], Parker [24], etc.

In this paper, Flintham and Carling [25] relations
for trapezoidal section, which were initially derived by
Knight [26] and Knight et al. [27], are used to estimate
boundary shear stress distribution. The proportion
of the shear force acting on the bank (SFbank) and
the mean bank and bed shear stress values (��bank and
��bed, respectively) are estimated using the following
equations:

log %SFbank =�1:4026 log
�
Pbed

Pbank
+1:5

�
+2:247;

(4)

��bank


DS
= 0:01%SFbank

�
(W + Pbed) sin �

4D

�
; (5)

��bed


DS
= (1� 0:01%SFbank)

�
W

2Pbed
+ 0:5

�
; (6)

where 
 is unit weight of water. The rest of the
parameters are same as before. It is necessary to notice
that in trapezoidal channel, Pbank = 2D

p
1 + z2.

The stability of the bank is assessed by comparing
the value of ��bank calculated from Eq. (5) with a
modi�ed USBR bank stability criterion (after Eaton
and Millar [10]), based on the bank sediment caliber
(D50bank) and bank friction angle (�0):

��cb = ��bank /((
s � 
)D50bank)

= c tan�0
q

1� (sin2 �= sin2 �0): (7)

The coe�cient c is dependent upon the properties
of the unconsolidated, non-cohesive sediment, where
bank strength is unmodi�ed by bank vegetation. The
coe�cient is de�ned as [28]:

c = ��c = tan�; (8)

in which ��c is the critical dimensionless shear stress for
bed material of the same caliber and � is the angle of
repose.

The value of � varies with grain size and
shape [28], ranging from a minimum of about 25� for
�ne sand to about 40� for sub-rounded gravel. Setting
��c � 0:04, c will vary between about 0.086-0.048.
In this paper, we use c = 0:048 for natural gravel
rivers. The value of �0 ranges from a lower bound
of �0 = �, where the where the bank sediment is
una�ected by bank vegetation or interstitial cohesive



1172 M. Mahmoudi et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 1169{1181

sediment, up to a maximum value approaching 90�,
which corresponds to a non-erodible bank [10]. Here,
MSTC and MSP hypotheses are combined as the
seventh equation proper to an alluvial river to adjust its
slope and geometry for maximizing sediment transport.

2.3. Theory
As it was mentioned, the model is meant to follow
Huang and Nanson [9] and couples up with Eaton and
Millar [10].

First, a non-dimensional channel shape factor � is
de�ned as:

� = Pbed=D; (9)

by which trapezoidal cross section geometric parame-
ters are expressed as:

A = D2(� + z); (10)

P = Pbed + Pbank = D
�
� + 2

p
1 + z2

�
; (11)

R = A=P =
(� + z)�

� + 2
p

1 + z2
�D; (12)

W = Pbed + 2zD = D(� + 2z): (13)

To determine the relationship of depth with �, Q, z, S,
and cr, it is su�cient to substitute Q=A from Eq. (1)
for the velocity in Eq. (2) and incorporate the result
into Eqs. (10) and (11):

D=
�
� + 2

p
1 + z2

�x=(x+2+�)

(� + z)(x+1)=(x+2+�)
(Q=cr)1=(x+2+�)

Sy=(x+2+�) : (14)

By incorporating Eq. (14) with Eqs. (5), (6), and (9)-
(12), the relationships are derived to estimate Pbed, V ,
��bed, and ��bank in terms of �, Q, z, S, and cr:

Pbed(= �D) =
�
�
� + 2

p
1 + z2

�x=(x+2+�)

(� + z)(x+1)=(x+2+�)

(Q=cr)1=(x+2+�)

Sy=(x+2+�) ; (15)

V (= Q=A)

=
�
S2yQ(x+�)c2r

�1=(x+2+�)(�+z)(x��)=(x+2+�)�
� + 2

p
1 + z2

�(2x)=(x+2+�) ;
(16)

��bed = 
DS(1� 0:01%SFbank)
�
� + z
�

�
; (17)

��bank = 
DS � 0:01%SFbank

�
(� + z) sin �

2

�
: (18)

Value of D can be replaced in Eqs. (17) and (18) from

Eq. (14). %SFbank can be estimated in terms of � and
z as:

%SFbank = 102:247
�

�
2
p

1 + z2
+ 1:5

��1:4026

: (19)

Huang and Nanson [9] suggested that channel slope,
S, could be regarded as a function of channel shape
factor �, S = S(�); therefore, Pbed = Pbed(�; S(�)),
D = D(�; S(�)), and ��bed = ��bed(�; S(�)); leading to:

dPbed

d�
=
@Pbed

@�
+
@Pbed

@S
dS
d�
; (20a)

d��bed

d�
=
@��bed

@�
+
@��bed

@S
dS
d�
; (20b)

where Eqs. (15) and (17) give:

@Pbed

@�
=

"
(1 + x+ �)� + 2(1 + �)

p
1 + z2�

� + 2
p

1 + z2
�

(� + z)(2 + x+ �)

+
(2 + 2x+ �)z + (4+2x+2�)z

p
1+z2

��
� + 2

p
1 + z2

�
(� + z)(2 + x+ �)

35Pbed;

@Pbed

@S
=

�y
(2 + x+ �)S

Pbed; (21a)

Eq. (21b) is shown in Box I.
To have an in-depth understanding of the varia-

tions of bed width, depth, and mean bed shear stress
with shape factor, it is required to determine S =
S(�). The following section shows that obtaining the
explicit relationship of S = S(�) is still impossible with
selection of a bed load equation due to the lack of an
extra 
ow equation.

Letting Qs be sediment discharge on total channel
width and because Qs = Pbedqs, Pbed = Pbed(�; S(�)),
��bed = ��bed(�; S(�)), and thus Qs = Qs(�; S(�)), the
following relationship is maintained:

dQs
d�

=
@Qs
@�

+
@Qs
@S

dS
d�
; (22)

where the selected bed load transport relationships of
qs = cs��mbed(��bed � �c)j and Qs = Pbedqs give:

@Qs
@�

=
@Qs
@�0

@��bed

@�
+

@Qs
@Pbed

@Pbed

@�

= Qs
��

m
��bed

+
j

(��bed � �c)
�
@��bed

@�

+
1

Pbed

@Pbed

@�

�
; (23a)
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@��bed

@�
=

264 �� � 2(1 + x)
p

1 + z2 � (2 + �)z � 2(2 + x+ �)
z
p

1 + z2

��
� + 2

p
1 + z2

�
(� + z)(2 + x+ �)

+
0:01� 102:247 � 1:4026(1� 0:01%SFbank)�1

2
p

1 + z2
�

�
2
p

1+z2 + 1:5
�2:4026

375 ��bed;

@��bed

@S
=

(2 + x+ �� y)
(2 + x+ �)S

��bed: (21b)

Box I

@Qs
@S

=
@Qs
@�0

@��bed

@S
+

@Qs
@Pbed

@Pbed

@S

= Qs
��

m
��bed

+
j

(��bed � �c)
�
@��bed

@S

+
1

Pbed

@Pbed

@S

�
: (23b)

Incorporating the expressions @Pbed
@� , @Pbed

@S , @��bed
@� , and

@��bed
@S in Eqs. (21a), (21b) into Eq. (23a), (23b) pro-

duces Eq. (24a) and (24b) as shown in Box II.
Now, to determine optimum cross section char-

acteristics, Qs is di�erentiated with respect to � and
made equal to zero; consequently, from Eq. (22), it

results that:

dS
d�

= � @Qs=@�
@Qs=@S

: (25)

From Eqs. (24a), (24b), and (25), it is clear that
variations of dS=d� depend on variations of ��bed=�c and
�. For given values of the ratio of ��bed=�c, dS=d� varies
from negative to positive values by increase in the value
of �. This means that there is an upward concavity
in S � � plot and S reaches its lowest value when it
intersects with the horizontal axis.

2.4. Optimum dimensions of channel cross
section (Qs = Qsmax)

Now, with regards to Eq. (25), to minimize the slope of

@QS
@�

=

24 (x+ 1 + �)� + 2(1 + �)
p

1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z
p

1+z2

��
� + 2

p
1 + z2

�
(� + z)(2 + x+ �)

�K (m+ j)��bed �m�c�
� + 2

p
1 + z2

�
(� + z)(2 + x+ �)(��bed � �c)

#
QS ; (24a)

where:

K =�
8><>:2
p

1 + z2
�

�
2
p

1+z2 + 1:5
�2:4026 h�� � (2 + �)z � 2(1 + x)

p
1 + z2 � 2(2+x+�)z

p
1+z2

�

i
2
p

1 + z2
�

�
2
p

1+z2 + 1:5
�2:4026

+
0:01� 102:247 � 1:4026(1� 0:01%SFbank)�1(� + 2

p
1 + z2)(� + z)(x+ 2 + �)

2
p

1 + z2
�

�
2
p

1+z2 + 1:5
�2:4026

9>=>; ;

@QS
@S

=
�

[(x+ 2 + �� y)(m+ j)� y]�0
S(2 + x+ �)(�0 � �c) +

[y �m(x+ 2 + �� y)]�c
S(2 + x+ �)(�0 � �c)

�
QS : (24b)

Box II
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��bed = �c
(x+ 1 + �)�m + 2(1 + �)

p
1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z

p
1+z2

�m �mK
(x+ 1 + �)�m + 2(1 + �)

p
1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z

p
1+z2

�m � (m+ j)K
: (26)

Box III

(dS=d� = 0), @Qs=@� should be equal to zero as shown
in Box III, in which K is calculated from Eq. (24a). In
the above equation, for given values of Q, S, cr, and
D50 (i.e. constant slope), shape factor (�) and bank
slope (z) are unknowns, therefore, another equation is
required. This may be obtained by coupling USBR
modi�ed bank stability equation (Eq. (7)) to mean
bank shear stress (Eq. (18)).

DS � 0:01%SFbank

�
(� + z) sin �

2

�
=0:048(Gs�1)D50banktan�0

s
1� sin2 heta

sin2 �0 ; (27)

in which D is calculated from Eq. (14). By solving
Eqs. (26) and (27) simultaneously, optimum values of

shape factor (�) and bank slope (z) are computed and,
by substituting these values into Eqs. (14) to (17), Dm,
(Pbed)m, Vm, and (��bed)m are computed likewise for
other parameters. Optimum channel slope may also be
computed by applying Eqs. (17) and (26) as shown in
Box IV.

By substituting Sm from Eq. (28) into Eqs. (14)
and (15), relationships of bed width ((Pbed)m) and
maximum depth (Dm) are derived (variable slope)
which is shown in Box V.

Substituting Eq. (30) into Eq. (13), the relation-
ship of optimum surface width is produced by Eq. (31)
as shown in Box VI. Incorporating the expressions
(Pbed)m and (��bed)m in Eqs. (26) and (29) into:

Qs = Pbedcs��mbed(��bed � �c)j ;

Sm =

 �
cr
Q

��
�c



�(x+2+�)
! 1
x+2+��y ((1� 0:01%SFbank)�1�m)(2+x+�)(x+2+��y)

(�m + z)(1+�)=(x+2+��y)
�
�m + 2

p
1 + z2

�x=(x+2+��y)

�
0@ (x+ 1 + �)�m + 2(1 + �)

p
1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z

p
1+z2

�m �mK
(x+ 1 + �)�m + 2(1 + �)

p
1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z

p
1+z2

�m � (m+ j)K

1A (x+2+�)
(x+2+��y)

: (28)

Box IV

(Pbed)m =
�
Q
y

cr�yc

� 1
(x+2+��y)

�
(1� 0:01%SFbank)y�x+2+��2y

m
�1=(x+2+��y) ��m + 2

p
1 + z2

�x=(x+2+��y)

(�m + z)(y�x�1)=(x+2+��y)

�
0@ (x+ 1 + �)�m + 2(1 + �)

p
1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z

p
1+z2

�m � (m+ j)K

(x+ 1 + �)�m + 2(1 + �)
p

1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z
p

1+z2

�m �mK

1A y
(x+2+��y)

(29)

Dm =
�
Q
y

cr�yc

� 1
(x+2+��y) ((1� 0:01%SFbank)y��ym )1=(x+2+��y) ��m + 2

p
1 + z2

�x=(x+2+��y)

(�m + z)(y�x�1)=(x+2+��y)

�
0@ (x+ 1 + �)�m + 2(1 + �)

p
1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z

p
1+z2

�m � (m+ j)K

(x+ 1 + �)�m + 2(1 + �)
p

1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z
p

1+z2

�m �mK

1A y
(x+2+��y)

: (30)

Box V
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Wm =
�
Q
y

cr�yc

� 1
(x+2+��y)

�
(1� 0:01%SFbank)y��ym (�m + 2z)(x+2+��y) ��m + 2

p
1 + z2

�x�1=(x+2+��y)

(�m + z)(y�x�1)=(x+2+��y)

�
0@ (x+ 1 + �)�m + 2(1 + �)

p
1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z

p
1+z2

�m � (m+ j)K

(x+ 1 + �)�m + 2(1 + �)
p

1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z
p

1+z2

�m �mK

1A y
(x+2+��y)

:
(31)

Box VI

Qs( = Qsmax) = jjcs

y

(x+2+��y) �
m+j� y

(x+2+��y)
c (Q=cr)

1
(x+2+��y)Kj

�
�

(x+ 1 + �)�m + 2(1 + �)
p

1 + z2 + (2 + 2x+ �)z + (4+2x+2�)z
p

1+z2

�m �mK�m� y
(x+2+��y)�

(x+ 1 + �)�m + 2(1 + �)
p
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Box VII

Qsmax is maintained as shown in Box VII, in which
K is calculated from Eq. (24a). As in stable channels,
Qsmax = Qs; therefore, for given Qs, optimum shape
factor (�) and stable bank slope (z) can be computed by
solving Eqs. (27) and (32), simultaneously, for variable
slope condition. In fact, in this case, the slope of the
river is adjusted in such a way that it can transport
in
ow of water and sediment. It is noticeable that
in Qs = Pbedcs��mbed(��b ed � �c)j , if ��bed < �c, ��bed is
considered to be equal to �c for stable channel design, in
which Qs = 0. In other words, channel dimensions are
designed for bed sediment threshold of motion, which
may be interpreted as static stability of the channel.
Under these circumstances, Eq. (26) may be applied as:

Kj =0) K = 0) 0:01� 102:247

� 1:4026(1� 0:01%SFbank)�1

�
�m + 2

p
1 + z2

�
(�m + z)(x+ 2 + �)

= �2
p

1 + z2
�

�m
2
p

1 + z2
+ 1:5

�2:4026

"
��m � (2 + �)z � 2(x+ 1)

p
1 + z2

� 2(x+ 2 + �)
z
p

1 + z2

�m

#
: (33)

With regards to Eq. (26), if K = 0 (i.e., Eq. (33)),
Qs = 0, which conforms to the sediment threshold of
motion. Likewise, for @��bed=@� = 0, from Eq. (21b),
Eq. (33) is resulted and bed shear stress reaches its
maximum value, which again con�rms the sediment
threshold. This equation could be applied for static
equilibrium in channel, when 
ow can transport
sediment without erosion in the channel [14,15].

3. Results and discussion

3.1. Sensitivity analysis
In this section, e�ect of modi�ed bank friction angle
(�0) on river geometry is investigated by applying Man-
ning's roughness [12] and MPM [22] and Parker [24] bed
load equations, where other input variables are kept
constant (Figure 2). It is noticed that with increase
in �0, surface width (W ) decreases while water depth
(D) increases. This could be justi�ed by the fact that
as �0 increases (i.e., bank vegetation increases), bank
resistance also increases and, therefore, bed sediments
are more exposed to erosion than the banks are, which
may cause channel deepening. This could also be
con�rmed by velocity reduction in the vicinity of the
banks, which leads to the situation in which deposition
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Figure 2. Sensitivity analysis of �0 to water surface
width and depth.

Figure 3. Variations of computed bed load versus bed
width for di�erent values of �0.

occurs faster. This �gure also indicates that �0 could be
e�ective on river geometry in such a way that with its
variation from 40� to 60�, the highest variations occur
in width and depth, while under its variation from 60�
to 90�, variations of width and depth decrease. In
general, it is obvious that the above bed load equations
have the same function with respect to �0.

Furthermore, sensitivity analysis was carried out
by keeping Q, S, D50, and cs constant for four di�erent
values of �0 (namely 50�, 60�, 70�, and 90�) to compute
variations of bed load transport, using MPM [22] equa-
tion, versus bed width (Pbed). It is worth mentioning
that the above analysis was also conducted for the
unconstrained model under two extremal hypotheses
of MSTC and MSP (Figure 3). This illustrates that
with increase in �0, optimum bed width decreases and
maximum sediment transport increases.

Sensitivity analysis was also conducted on vari-
ations of D50bank using MPM [22] and Parker [24]
equations (Figure 4). It shows that with increase
in D50bank, surface width decreases while increasing
depth. The results also state that channel geometry
is most sensitive to D50bank with values up to 0.05 m
while for D50bank > 0:05 m, no changes are observed

Figure 4. Sensitivity analysis of D50bank to water surface
width and depth.

in the geometry. In other words, in this case, with
increase in D50bank, bank stability increases as a result
of which channel widening decreases. When bed
erosion occurs, the channel may reach the state at
which armoring takes place and channel deepening
ceases.

3.2. Model calibration
In this study, two case studies are used to calibrate the
model as follows:

Case study 1. In this section, Hey and Thorne [29]
data set, which was later updated by Darby [30], is
used to calibrate the model. The data set consists
of 62 river stations with river geometries measured in
low 
ow conditions and characterized as stable single
thread with mobile bed; four categories are proposed
for bank vegetation density:

� Type 1: represents grassy banks with no trees or
bushes;

� Type 2: 1-5% tree/shrub cover;
� Type 3: 5-50% tree/shrub cover;
� Type 4: greater than 50% tree/shrub cover or

incised in 
ood plain.

In this study, D50bank, suggested by Darby [30], does
not give good results. However, when D50bank =
D50surface is considered [10], less discrepancy is ob-
served in the results. This assumption may be in
agreement with the case that banks are exposed to
erosion and their composition deposits on the river bed.

3.2.1. �0 estimation
As it was shown in the section on sensitivity analysis,
�0 could be the key control parameter in bank stability,
the value of which varies with bank vegetation density.
It is worth mentioning that these values are not given
by Hey and Thorne [29]. Estimation of �0 is made
for 48 stations in the data and it is done with a
particular value of �0 for each station; then, the value is
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Table 1. Calibrated �0 values for di�erent bank
vegetation types for 48 stations of Hey and Thorne [29].

Vegetation
type

�0 (�)
Minimum Mean Maximum

1 30.6 43.5 54.2
2 32.6 47.6 59.7
3 35.0 50.0 72.0
4 44.1 64.3 87.0

changed to make the di�erence between observed and
predicted widths approximately �1% (Table 1). As it
is shown, the average �0 value for each vegetation type
varies with vegetation cover. This con�rms that the
impact of vegetation cover on channel geometry can be
considered by �0.

3.2.2. Comparison of model outputs with �eld data
In this section, predicted results are plotted against
observed data; the predicted results have been obtained
by Manning's roughness equation [12] and Parker's bed
load equation [24] (Figure 5).

3.3. E�ect of bank vegetation
The aim of this section is to investigate the e�ect of
vegetation on estimation of stable width and compare
the results of constrained and unconstrained models by
considering a combination of MSTC and MSP extremal
hypotheses. In order to have deep understanding of

the e�ect of vegetation cover, it is initially considered
in two phases of sparse vegetation (Types 1 and 2)
and dense vegetation (Types 3 and 4) (Figure 6). The
process of analysis is repeated for all types, i.e., 1, 2, 3,
and 4 in detail (Table 2). As it is shown in Figure 6(a),
channels with observed widths lower than 30 m and
sparse bank vegetation are more scattered around the
best �t line, while those with dense vegetation are
less scattered around the same line. For channel
widths greater than 30 m, the discrepancy between the
data and the best �t line increases, which brings the
behavior of the model into question.

In addition, in Table 2, the observed width
values are often greater than the predicted values.
Wpred=Wobs in unconstrained model of the combination
of MSTC and MSP varies between 0.44-0.75 for bank
vegetation Types 1 to 4. In other words, with increase
in vegetation type from 1 to 4, bank resistance also
increases to meet the assumption of bank inedibility in
unconstrained model. Hence, it is expected to have
predicted width values much closer to the observed
ones in Types 3 and 4 than in Types 1 and 2. With
regards to Table 2 and Figure 6, it is obvious that by
inserting vegetation cover in the model, in addition to
improving the disparity of data around the best �t line,
Wpred=Wobs gets closer to 1 for all vegetation types.
This con�rms the improvement in the accuracy of the
model in width prediction by applying bank vegetation.

In the investigation into vegetation impact, many

Figure 5. Comparison of calculated versus observed bankfull width and depth.

Figure 6. Predicted widths using Parker's equation [24] against the observed widths for gravel bed channels by (a)
Unconstrained model and (b) constrained model.
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Table 2. Predicted and observed widths for di�erent vegetation types.

Vegetation
type

Observed Bank strength
unconstrained model

Bank strength
constrained model

Wobserved

(m)
WPredicted

(m)
WPred=Wobs

�0

(degrees)
WPredicted

(m)
WPred=W �obs

1 32.3 14.40 0.44 43.5 36.46 1.08
2 22.4 11.50 0.54 47.6 22.04 1.00
3 27.0 16.48 0.64 50.0 29.08 1.24
4 20.2 14.03 0.75 64.3 16.72 0.93

Figure 7. Relation between discharge and width for
di�erent types of vegetation.

researchers have suggested [29,31] that vegetation type
does not cause variation in the power of width hydraulic
geometry relationships. However, it may in
uence their
coe�cients. Hence, based on the conducted research
studies, the width of hydraulic geometry is considered
W = aQ0:5. The model is applied with Manning's
equation as resistance and Parker [24] as bed load
equation to compute width for all types of vegetation.
Therefore, values of `a' are calibrated for each type by
�tting W = aQ0:5 to the data on log-log scale to obtain
the following (Figure 7):

W = 4:59Q0:5m (Vegetation Type 1); (34a)

W = 3:20Q0:5m (Vegetation Type 2); (34b)

W = 2:69Q0:5m (Vegetation Type 3); (34c)

W = 1:82Q0:5m (Vegetation Type 4): (34d)

These equations indicate that for a given discharge,
there is a decrease in channel width with increase
in vegetation density. The observed and computed
values of `a' are compared for each vegetation type and
relative errors are presented in Table 3. The results
state a reasonable correspondence between computed

Table 3. Mean relative errors of `a' values for W = aQ0:5.

Bank vegetation type
1 2 3 4

Mean relative
error (%)

6.00 (3.90)� (1.47) (22.22)

�() indicates negative values (predicted values are less than
observed values).

and observed values of `a'.

Case study 2. In this section, the data from the
four river reaches of Iran (Khuzestan Province) are
used [32]. The rivers are described as stable channels
with movable gravel beds. The studied stations are
located in the northern and eastern parts of Khuzestan,
which are mountainous regions on the margin of the
Zagros Mountains. The measured data including cross
section, river channel slope, and Manning's roughness
coe�cient are made available at each hydrometric
station by Khuzestan Water and Power Organization.
The average size of bed particles and bankfull discharge
were determined by Mahmoudi et al. [32]. It should
be noted that bank angle (�) cannot be found in the
reference data and is therefore determined at each
station using the AutoCAD software; cross section
shapes for the two riverbanks and the mean values are
used as the input data to the unconstrained model.
In addition, because of the lack of bed load (Qs)
measurements in the data set, the constant slope state
of the model is used for calibration. This section
is meant to evaluate the e�ciency of the presented
model in working out river bank vegetation type by
estimating �0 values. Therefore, the method presented
in Section 3.2.1 for estimation of the angle of �0 is used
by applying the developed model in this study and by
combining the Manning and Parker equations [12,24],
the calibrated values of �0 are obtained for the four
studied river reaches. The results are presented in
Table 4. Then, considering the estimated values of
�0 in comparison with the range of the modi�ed bank
friction angles (Table 1) as well as the de�ned mean �0,
the values with the minimum di�erences are used to
estimate the riverbank vegetation. It should be noted
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Table 4. Calibrated �0 values using Iranian data [32].

River Station �0 (�)
Predicted

bank
vegetation

Karoun Sousan 61.5 4
Aab Shirin Kheir Abad 59.8 3
Maroun Cham Nezam 65.6 4
Zal Pol-e-Zal 47.9 1

that the estimated �0 values are reasonable considering
the location of studied river reaches and �eld surveys.

In the next sage, the model is used with regards to
the Manning's 
ow resistance equation [12] combined
with the Meyer-Peter and Muller [22], Parker [24],
and modi�ed Meyer-Peter and Muller by Huang [33]
relations. In addition, the mean �0 values correspond-
ing to di�erent vegetation types according to Table 1
and other input data are considered with and without
bank constraint. The model error (in percent) in
estimation of the bankfull width and depth is presented
in Table 5. The results clearly show better e�ciency of
the constrained model than the unconstrained model
in estimation of the optimum channel dimensions for
the studied river reach. The results also show better
e�ciency of the Meyer-Peter and Muller bed load
function than others used for the studied reach.

4. Conclusion

The developed model in this study had great 
exibility
with regards to resistance and bed load equations. The
model had a broad scope of applicability based on the
available data.

Data analyses suggested that the predicted width
values by MSTC and MSP under unconstrained condi-
tion were only valid in alluvial channels with highly
resistant banks, so the model might not give cor-
rect results for erodible banks with sparse vegetation
cover. Therefore, consideration of bank vegetation
(constrained condition) might increase the accuracy of
channel dimensions estimation to some extent, partic-
ularly in wide rivers with sparse vegetation cover.

Sensitivity analysis indicated that bed and surface

widths could decrease by increasing bank vegetation or
resistance while depth increased.

The model may also be applicable to the cir-
cumstances that �0 values require to be calibrated in
assessing bank stability at a cross section of a river.

Nomenclature

Q Discharge (m3/s)
A Cross-sectional area (m2)
V Mean velocity (m/s)
cr Coe�cient
R Hydraulic radius (m)
S Longitudinal slope
D Maximum channel depth (m)
x; y; � Exponents
qs Bed load discharge per unit channel

width
cs Coe�cient
��bed Mean bed shear stress (N/m2)
�c Critical shear stress (N/m2)
m; j Exponents
%SFbank Percentage of the shear force acting on

banks
Pbed Bed perimeter
Pbank Bank perimeter
��bank Mean bank shear stress (N/m2)

 Unit weight of water (N/m3)
W Channel surface width (m)
� Bank angle
z Bank slope
��cb Critical dimensionless shear stress for

bank sediment

s Unit weight of sediment (N/m3)
D50bank Bank material size
�0 Bank friction angle
��c Critical dimensionless shear stress
� Angle of repose
� Non-dimensional channel shape factor

Table 5. Mean relative errors for di�erent bed load equations.

Bed load
equation

Unconstrained model Constrained model
Bankfull width

(%)
Bankfull depth

(%)
Bankfull width

(%)
Bankfull depth

(%)
Meyer-Peter & Muller [22] (25.57)� 23.65 3.12 (6.79)
MPM-H [33] (29.13) 28.72 4.95 (7.62)
Parker [24] (29.37) 29.57 6.98 (8.70)
�() indicates negative values (predicted values are less than observed values).
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P Channel perimeter (m)
Qs Bed load discharge
K Variable
D50bed; D50 Bed material size
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