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Abstract. Against the background of supply chains, this paper constructs a class
Hotelling model to describe and explore sequential auctions of close substitutes with slightly
more general associated valuations. In this generalized model, both close substitutes and
bidders are hypothetically distributed at the interval [0; 1], types of bidders are continuous,
and each bidder's valuations for close substitutes are not independent. Moreover, with
the aid of this model, equilibriums are explored, and e�ciencies of the auctions are
analyzed under second-price sealed-bid auction formats. Further, considering two typical
information policies, we investigate some concrete bids and revenues of the e�cient
sequential auctions, while bidders' valuations are linear functions of distances between
them and close substitutes. Results show that e�ciencies of the sequential auctions are
conditional, and in
uences of information policies on revenues of the auctions are related
to both numbers of bidders and locations of items.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In 1929, Hotelling developed a model of spatial compe-
titions to demonstrate relationships between locations
and pricing behaviors of �rms through a line of �xed
length and predict an aggregation of two competing
�rms in the middle of the customers' support inter-
val [1,2]. The standard Hotelling model assumes that
all consumers are identical (except for locations) and
evenly dispersed along the line; both the �rms and
consumers respond to changes in demand and the
economic environment. As a game model, it can
also be used to describe some auction problems in
supply chains: m suppliers sell their supply contracts
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sequentially or simultaneously to n agents with unit-
demands via auctions, and both suppliers and agents
are located in the same tra�c line. Here, suppliers and
agents correspond to �rms and customers, respectively.
In addition, these contracts are deterministic and
undi�erentiated for agents; thus, di�erences among
agents' valuations for contracts mainly depend on their
transportation costs.

The above-mentioned problem can be abstracted
as sequential auctions of close substitutes. Since the
distance between an agent and his or her suppliers is
considered, each agent's valuations for the suppliers'
contracts are also considered, which are di�erent from
interdependent valuations among agents [3]. Hence,
by means of the Hotelling model, our paper tries to
focus on sequential auctions of close substitutes with
slightly more general associated valuations. Here, key
functions of close substitutes are the same or similar;
however, their con�gurations or external performances



E. Hu et al./Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 1778{1788 1779

are slightly di�erent so that various needs of consumers
are met; thus, the private valuations of consumers are
not exactly the same.

A key consideration of sequential auctions is a
bidder's expected surplus for the follow-up auctions,
which is usually concerned with future objects, bidder
numbers, previous winning information, etc. Thus,
information policy is always an important topic for auc-
tions or other business activities, and theoretical and
experimental studies have shown that revealing some
information in advance will possibly a�ect the overall
e�ciency and revenues of auctions [4,5]. Presently,
there are major controversies and, consequently, a
large body of literature about sequential auctions and
information policies. Usually, while auctioned objects
are heterogeneous and bidders' valuations are indepen-
dent of each other, an expected revenue-maximizing
auctioneer should fully and publicly reveal all infor-
mation about auctioned objects [6-8]. However, while
auctioned objects are homogeneous and bidders' valu-
ations are not mutually independent, it was revealed
that future objects or other related information in
advance would uncertainly a�ect the overall e�ciency
and revenues of sequential auctions [9-12]. Currently,
in these pieces of literature, a bidder's valuations
for homogeneous objects are usually supposed to be
identical or proportional, which may be considered as
especially associated valuations and lead to learning
behaviors [13]. Owing to the di�culty of modeling
general associated valuations and processing mathe-
matical expectations while a bidder type is multi-
dimensional and continuous, existing researches mostly
focus on sequential auctions where a bidder type is
hypothetically discrete, namely H (High) or L (Low),
and his or her valuations of objects are identical.

Recently, Zeithammer [14] studied sequential auc-
tions of heterogeneous objects, discussed the in
u-
ence of revealing future objects on auction e�ciency
and proved the existence of symmetric equilibriums
and pure bidding strategies. Bayesian methods and
the models used for processing a multi-dimensional
continuous type in his paper inspired our studies.
Accordingly, combined with characteristics of sup-
ply chains, this paper explores the class Hotelling
model for describing sequential auctions with some
particular assumptions under second-price sealed-bid
auction mechanisms. In the proposed model of the
current study, both close substitutes and bidders are
hypothetically distributed at the interval [0; 1]; a bidder
type is continuous and multi-dimensional (namely, each
bidder has di�erent valuations for each close substi-
tute); each bidder's valuations for close substitutes are
not independent. Moreover, this model can skillfully
convert multi-dimensional types into one-dimensional
types via interdependence of distances between bidders
and items in [0; 1].

The rest of this paper is organized as follows:
Section 2 states formally the sequential auctions of
close substitutes with associated valuations and con-
structs a class Hotelling model. Section 3 proves the
existence of equilibrium bids based on the model under
the second-price sealed-bid auction format and explores
some conditions of e�cient auctions. Further, infor-
mation policies, equilibrium bids, and overall revenues
of the sequential auctions of close substitutes with
especially associated valuations are speci�cally deduced
and discussed in Section 4. Relevant conclusions are
summarized in Section 5.

2. A class Hotelling model for describing
sequential auctions

It is supposed that two close substitutes, Items A and
B, are auctioned sequentially for n � 3 bidders via
second-price sealed-bid auctions. Auction rules and
some assumptions are as follows:

1. Item A is sold at the �rst auction, and Item B is
sold at the second one. In addition, at each auction,
the bidder with the highest bid wins and pays the
second highest bid. A tie is broken by rolling a fair
coin;

2. Each bidder is risk neutral and has a unit-demand;
accordingly, the bidder with Item A will exit the
second auction;

3. Both items and bidders are distributed at the inter-
val [0; 1] and mutually stochastically independent,
as Figure 1 shows. The location of each bidder is
his or her private information;

4. Each bidder's valuation for Item k 2 fA;Bg is Vk�
�(dk), where �(dk) � 0, � 0(dk) > 0, and dk denotes
the distance between the bidder and Item k. Here,
the value of Item k 2 fA;Bg, Vk � 1 is commonly
known.

The last assumption is inspired by the standard
Hotelling model [15]. When making trades in real-life
markets, it is imperative to consider the factor of cost
in general and its various types such as transportation
costs or maintenance costs, which usually increase the
functions of transportation distances. In this paper, Vk
is the same for all bidders. However, when taking into
account transportation cost �(dk), each bidder's true
valuation for k 2 fA;Bg should be Vk � �(dk), which
is di�erent from those of other bidders.

Figure 1 shows the class Hotelling model. In
Figure 1, the locations of Items A and B are denoted
by � 2 [0; 1] and � 2 [0; 1], respectively. Without loss

Figure 1. The class Hotelling model.
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of generality, it is assumed that � � �. The location
of a bidder at the interval is denoted by t 2 [0; 1]. To
simplify the expressions, Bidder t is used to denote the
bidder whose location in [0; 1] is t. Thus, the distance
between Bidder t and Item A is dA(t) = j� � tj, and
one between Bidder t and Item B is dB(t) = j� � tj.
Accordingly, vk(t) = Vk � �(dk(t))(k 2 fA;Bg) is
Bidder t's valuation for Item k 2 fA;Bg. Furthermore,
let bk(t) represent Bidder t's bid for k 2 fA;Bg.
Remark 1. In Figure 1, items and bidders corre-
spond to �rms and customers in the standard Hotelling
model, respectively. While VA = VB, � � � = 0 means
that the close substitutes (Items A and B) are identical
for bidders, and � � � = 1 means that maximum
di�erences exist among them. Moreover, similar to
the preferences in the standard Hotelling model, the
smaller the distance dk(t)(k 2 fA;Bg) is, the greater
Bidder t's valuation for item k will be.

Remark 2. In Figure 1, bidders' valuations for two
items are their own private information and indepen-
dent among bidders; however, each bidder's private
valuations for two items vA(t) = VA � �(dA(t)) and
vB(t) = VB � �(dB(t)) are correlated because either
jdA(t) � dB(t)j = � � � or dA(t) + dB(t) = � � �,
while � and � are given in advance. Thus, the
model in Figure 1 can be used approximatively to
describe sequential auctions of close substitutes with
particular assumptions of non-independent valuations,
under which the probability of Bidder t winning Item
B is intuitively relevant to one of his or her winning
A. Concurrently, by means of t, our model skillfully
converts a two-dimensional type of a bidder into a one-
dimensional one. Thus, t may be also regarded as the
bidder type.

3. Equilibrium and winners

Because the second stage of the sequential auctions
in this paper is actually a private-value second-price
sealed-bid auction, Bidder t's dominant strategy for
Item B is to bid his or her own valuation for Item B,
namely bB(t) = vB(t). However, deciding the bid
for Item A is more complicated than that for Item
B, because Bidder t will consider his or her expected
surplus in the second stage.

Let:
x = max

� 6=t bA(�);

be the highest bid of Bidder t's n� 1 opponents in the
�rst stage. If bA(t) > x, then Bidder t wins at the �rst
auction and his or her surplus is vA(t)�x. If bA(t) < x,
then Bidder t loses at the �rst auction and all his or her
remaining opponents at the second auction belong to

(x) = ft0jbA(t0) � xg, which is a set of bidders whose

bids for Item A are not more than x. Further, let:

�n�2=�t(z;
(x)) = P ( max
�2
(x) and � 6=t vB(�) � z);

be the probability distribution function of the highest
valuation of the remaining bidders (except t) at the
second auction. Then, Bidder t 2 
(x) can win Item B
with a probability of �n�2=�t(vB(t);
(x)), and his
expected surplus at the second auction is as follows:

�(vB(t); x) =

vB(t)Z
0

(vB(t)� z)d�n�2=�t(z;
(x)): (1)

Obviously, winning Item A is more bene�cial to t if
and only if vA(t) � x > �(vB(t); x). In addition, a
logical and ideal bid bA(t) should satisfy vA(t)�bA(t) =
�(vB(t); bA(t)) so that it would not make any di�erence
for Bidder t to win Item A or to win Item B. In
addition, because vA(t) � �(vB(t); 0) implies that
giving up Item A is always a good choice for Bidder
t even though all other bidders bid 0 or do not submit
their bids at the �rst auction, it is assumed here
that vA(t) > �(vB(t); 0) holds for 8 t 2 [0; 1] in this
paper. Inspired by Zeithammer [14], Proposition 1
gives necessary and su�cient conditions of equilibrium
bid bA(t).

Proposition 1. Suppose that vA(t) > �(vB(t); 0) for
8t 2 [0; 1). If and only if 1 + @�(vB(t);x)

@x > 0 for
8t 2 [0; 1], there is a unique equilibrium bid bA(t) that
satis�es the following equation:

bA(t) = vA(t)� �(vB(t); bA(t)): (2)

Proof. Let S(x) = vA(t) � x � �(vB(t); x). Proposi-
tion 1 needs to be proved based on the following two
aspects:

1. S(x) = 0 has a unique solution, x0 > 0, if and only
if 1 + @�(vB(t);x)

@x > 0 for 8 t 2 [0; 1];
2. x0 > 0 is Bidder t's equilibrium bid for Item A.

The solution under this condition can be divided into
the following two cases to discuss:

i. If 1+ @�(vB(t);x)
@x > 0, then S0(x) = �1� @�(vB(t);x)

@x <
0. Therefore, S(x) strictly monotonically decreases
with x. According to vA(t) > �(vB(t); 0) for 8 t 2
[0; 1), we have S(0) > 0. Moreover, S(vA(t)) =
vA(t) � vA(t) � �(vB(t); vA(t)) � 0. Because
S(x) is continuous and strictly monotonic with x,
there must exist a unique solution x0 2 (0; vA(t)]
satisfying S(x0) = 0.

Suppose that 1 + @�(vB(t);x)
@x � 0, then S0(x) =

�1 � @�(vB(t);x)
@x � 0. For instance, S(x) mono-

tonically increases with x. Thus, for 8 x > 0,
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S(x) � S(0) = vA(t) � �(vB(t); 0) > 0, which
con
icts with the condition that S(x) = 0 has one
positive solution: x0 > 0. Thus, 1 + @�(vB(t);x)

@x >
0;

ii. It is assumed that bA(t) < x0. While bA(t) <
x0 < x = max

� 6=t (bA(�)) or x < bA(t) < x0,

Bidder t is indi�erent to bid x0 or bA(t). While
bA(t) < x < x0, Bidder t will lose Item A
and his expected surplus at the second auction
is �(vB(t); x). Notice that S(x) > S(x0) = 0
because S(x) strictly monotonically decreases with
x < x0. Accordingly, �(vB(t); x) < vA(t) � x.
Notice that vA(t) � x is Bidder t's surplus if he or
she bids x0 and wins Item A. Therefore, bidding
bA(t) < x0 is worse than bidding x0 for Bidder
t.

A similar proof shows that bidding bA(t) > x0 is worse
for Bidder t. Therefore, bA(t) = x0 is Bidder t's
equilibrium bid for Item A. �

Remark 3. Essentially, 1 + @�(vB(t);x)
@x > 0 is the

su�cient and necessary condition of vA(t)��(vB(t); x)
that has a �xed point, which is Bidder t's equilibrium
bid for Item A. Here, vA(t)� bA(t) and �(vB(t); bA(t))
are Bidder t's expected surplus at the �rst auction and
that at the second auction, respectively. Accordingly,
Proposition 1 implies that winning Item A or B should
yield the same expected surplus for Bidder t while he or
she determines the optimal bid for Item A. Intuitively,
Proposition 1 is also appropriate for sequential auctions
of more than two items while Item A is regarded as the
current item and Item B as the sum of all follow-up (or
future) items.

Based on Proposition 1, Propositions 2 and 3
identify the winner at the �rst auction.

Proposition 2. If �(dk)(k 2 fA;Bg) is a linear
function of dk, � 0(dk) > 0, and 1+ @�(vB(t);x)

@x > 0, then
Bidder t = arg min

t1;t2;��� ;tn dA(ti) = arg min
t1;t2;��� ;tn jti � �j

will win Item A.

Proof. Proposition 1 indicates that if 1+ @�(vB(t);x)
@x >

0, then equilibrium bid bA(t) for Item A is an implicit
function satisfying Eq. (2). According to vA(t) = VA�
�(dA(t)) and vB(t) = VB � �(dB(t)), we have:

dbA(t)
ddA(t)

=
dvA(t)
ddA(t)

� @�(vB(t); bA(t))
@vB(t)

� dvB(t)
ddA(t)

� @�(vB(t); bA(t))
@bA(t)

� dbA(t)
ddA(t)

:

Namely:

dbA(t)
ddA(t)

=
�
�d�(dA(t))

ddA(t)
+
@�(vB(t); bA(t))

@vB(t)

�d�(dB(t))
ddB(t)

� ddB(t)
ddA(t)

�
�
1 +

@�(vB(t); bA(t))
@bA(t)

��1

= w
�
�1 +

@�(vB(t); bA(t))
@vB(t)

� ddB(t)
ddA(t)

�
�
1 +

@�(vB(t); bA(t))
@bA(t)

��1

: (3)

In Eq. (3), w = d�(dA(t))
ddA(t) = d�(dB(t))

ddB(t) > 0 because
�(dk)(k 2 fA;Bg) is a linear function of dk and
� 0(dk) > 0. Moreover, obviously:

@�(vB(t); bA(t))
@vB(t)

= �n�2=�t(vB(t);
(bA(t))) � 1;

and:

1 +
@�(vB(t); bA(t))

@bA(t)
> 0:

If � < � � t, then dB(t) = t � � = (t � �) �
(� � �) = dA(t) � (� � �); if � � t < �, then
dB(t) = � � t = (� � �) � (t � �) = (� � �) � dA(t);
if t < � < �, then dB(t) = � � t = (� � �) +
(� � t) = (� � �) + dA(t). Accordingly,

��� ddB(t)
ddA(t)

��� = 1.

Thus, dbA(t)
ddA(t) � 0, that is, bA(t) is a decreasing function

of dA(t) and an increasing function of vA(t) = VA �
�(dA(t)). Therefore, Bidder t nearest to Item A (i.e.,
t = arg min

t1;t2;���tn dA(ti) = arg min
t1;t2;���tn jti � �j) will win

Item A at the �rst auction. �
As a direct result of Proposition 2, the following

corollary is obtained.

Corollary 1. The auction for Item A is e�cient,
while �(dk)(k 2 fA;Bg) is linear, � 0(dk) > 0, and
1 + @�(vB(t);b)

@b > 0.
While �(dk)(k 2 fA;Bg) is a non-linear function

of dk, which is contingent on predicting the winner at
the �rst auction in advance. For example, let �(dk) =
1 � e�dk and 8t � � > � = 0, namely all bidders are
on the right-hand side of Item B in Figure 1. Then:

dA(t) = t; dB(t) = t� �;
and:

dbA(t)
ddA

(t) =
dbA(t)
dt
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= e�t
��1 + e��n�2=�t(vB(t);
(bA(t)))

�
�
1 +

@�(vB(t); bA(t))
@bA(t)

��1

:

If � is large enough, then dbA(t)
ddA(t) or dbA(t)

dt may be
more than zero, which means that bA(t) may be an
increasing function of dA(t) or t. However, vA(t) =
VA � �(dA(t)) = VA � 1 + e�dA(t) = VA � 1 + e�t
is a decreasing function of dA(t) or t. Therefore, the
auction for Item A may be ine�cient.

Proposition 3. If � 0(dk) � 0, � 00(dk) � 0, k 2
fA;Bg, 1 + @�(vB(t);x)

@x > 0, and ti � �(i = 1; 2; � � � ; n),
then Bidder t = arg min

t1;t2;���tn dA(ti) = arg min
t1;t2;���tn jti �

�j will win Item A.

Proof. Notice that ti � � (i = 1; 2; � � � ; n) means
that all bidders on the right-hand side of Item A in
[0; 1]. According to Proposition 1, Bidder t's equilib-
rium bid is bA(t) = vA(t) � �(vB(t); bA(t)). Because
vA(t) = VA � �(dA(t)) and vB(t) = VB � �(dB(t)), we
have:

dbA(t)
ddA(t)

=
�
�d�(dA(t))

ddA(t)
+
@�(vB(t); bA(t))

@vB(t)

�d�(dB(t))
ddB(t)

� ddB(t)
ddA(t)

� �
1 +

@�(vB(t); bA(t))
@bA(t)

��1

:
(4)

Notice that:
@�(vB(t); bA(t))

@vB(t)
= �n�2=�t(vB(t);
(bA(t))) � 1;

and:

1 +
@�(vB(t); bA(t))

@bA(t)
> 0:

If t � �, then dB(t) = t� � = dA(t)� (� � �) � dA(t)
(* t � �) and � � �. Accordingly, ddB(t)

ddA(t) = 1 and
d�(dA(t))
ddA(t) � d�(dB(t))

ddB(t) � 0 (* � 0(dk) � 0, � 00(dk) � 0 and

k 2 fA;Bg). Hence, dbA(t)
ddA(t) � 0.

If t < �, then dB(t) = �� t = (���)� dA(t) � 0
(* t � � = 0 and � � �). Accordingly, ddB(t)

ddA(t) = �1. In

addition d�(dB(t))
ddB(t) � 0 and d�(dA(t))

ddA(t) � 0 (* � 0(dk) � 0,

k 2 fA;Bg). Hence, dbA(t)
ddA(t) � 0.

As a result, bA(t) is a decreasing function of dA(t)
or t. Therefore, Bidder t nearest to Item A (i.e., t =
arg min

t1;t2;��� ;tn dA(ti) = arg min
t1;t2;��� ;tn jti � �j) will submit

the highest bid and win Item A. �
Proposition 3 actually gives nonlinear conditions

of e�cient auctions in the class Hotelling model. Con-
currently, its proof implies the following corollary.

Corollary 2. Let � � �, � 0(dk) � 0, k 2 fA;Bg, and
1 + @�(vB(t);x)

@x > 0. The auction for Item A is e�cient
while any one of the following conditions is satis�ed:

1. � 00(dk) � 0 and ti � � (i = 1; 2; � � � ; n); all bidders
are on the right-hand side of Item A;

2. � 00(dk) < 0 and ti � � (i = 1; 2; � � � ; n); all bidders
are on the left-hand side of Item B;

3. All bidders are between A and B;
4. �(dk) is linear, and Bidders' locations are arbitrary

in [0; 1].

Remark 4. Corollary 2 shows that the e�ciency of
the sequential auctions described by the class Hotelling
model is conditional. More speci�cally, locations
of suppliers and agents in a tra�c line should be
considered for the auctions of supply contracts in
Section 1.

4. Bids and information policies about �

The key to determining the equilibrium bid bA(t) =
vA(t)��(vB(t); bA(t)) in Proposition 1 is the expected
surplus:

�(vB(t); bA(t)) =
Z vB(t)

0
(vB(t)� z)

d�n�2=�t(z;
(bA(t)));

in which both vB(t) and �n�2=�t(z;
(bA(t))) are
closely related to the location of Item B. Thus, in
order to obtain a concrete formula of �(vB(t); bA(t)), we
need to consider information policies about � 2 [0; 1],
namely revealing Item B or hiding Item B before the
auction of Item A ends. Here, revealing Item B means
that all bidders know �, and hiding Item B means that
all bidders do not know � until the �rst auction ends.
In this section, we will apply the class Hotelling model
to deduce some concrete equilibrium bids of sequential
auctions of close substitutes.

Intuitively, any bidder at auctions subjectively
regards himself or herself as a marginal loser [12]
or winner, because he or she will rationally give up
auctions if he or she �nds no opportunities to win.
Here, a marginal loser or winner respectively points
to the loser with the highest bid or the winner with the
lowest bid. Speci�cally, in our class Hotellling model
with �(dk) = dk, the bidder nearest to Item A will
win according to Proposition 2 or Proposition 3. Thus,
Bidder t regarding himself or herself as a marginal loser
or winner of Item A always believes that the rest of
his or her opponents are distributed on his right side
(namely in [t; 1]), except none of his opponents dis-
tributed in [0; t). Such an idea of a preponderant rival
exactly leads to the bidding equilibrium mentioned by
Proposition 1. For convenience, Bidder t is called a
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preponderant rival of Item A if and only if there is at
most one opponent in [0; t).

In order to facilitate discussions, it is assumed in
this section that:

1. VA = 1 and VB = 1;
2. � = 0 and �(dk) = dk for k 2 fA;Bg.

The above assumptions imply that all bidders are
on the right-hand side of Item A, namely t � � = 0,
and �(dk) is linear. Furthermore, let f(x) (F (x)) and
g(x) (G(x)) denote the probability density (probability
distribution) of t and one of �, respectively.

By means of Proposition 1 and Corollary 2, we
will deduce the expected surplus �(vB(t); bA(t)) of
Bidder t as a preponderant rival and verify and prove
that bA(t) = vA(t)��(vB(t); bA(t)) is exactly his or her
equilibrium bid for Item A.

4.1. Equilibrium bids when revealing �
Each bidder knows Item A' location � = 0, Item B's
location � 2 [0; 1], his or her own location (or type)
t 2 [0; 1], and bidders' number n and does not know
the locations (or types) of other bidders. However,
he or she regards other bidders' locations as random
variables distributed in [0; 1]. First, all n bidders
submit their sealed bids for Item A. Then, the bidder
with the highest bid wins Item A, pays the second
highest bid, and exits the second auction. Next, the
remaining n � 1 bidders submit their sealed bids for
Item B. Finally, the bidder with the highest bid wins
Item B and pays the second highest bid.

First, let �yx(vB(t)) denote Bidder t's expected
surplus of winning Item B while he or she faces a group
of opponents distributed at the interval [x; y], where
x; y 2 [0; 1] and x � y. According to Proposition 2,
a preponderant rival of Item A can only defeat the
bidders who are far away from Item A. Obviously, the
probability density of the location of an opponent in
[t; 1] is f(s)

1�F (t) , in which s 2 [t; 1]. Thus, the probability
and the probability density that all locations of n � 2
opponents in [t; 1] are greater than s 2 [t; 1] should

be
�

1�F (s)
1�F (t)

�n�2
and n�2

1�F (t)

�
1�F (s)
1�F (t)

�n�3
, respectively.

Therefore, while Bidder t only considers opponents on
his or her right side, his or her expected surplus of
winning Item B should be:

�yx(vB(t)) =
Z y

x

n� 2
1� F (t)

�
1� F (s)
1� F (t)

�n�3

(vB(t)� vB(s))ds;

where t � x � y � 1.
Then, in order to determine the expected surplus

�(vB(t); bA(t)) of Bidder t as a preponderant rival of
Item A in Figure 2, the interval [0; 1] is divided into

Figure 2. The case of W2.

three subintervals, namely W1 = [0; t], W2 = [t; (1 +
t)=2], and W3 = [(1 + t)=2; 1]. Thus, three cases need
to be considered for �.

Figure 2 shows the case of W2. By observ-
ing Figure 2, the optimal solution t� of Eq. (2)
denotes the symmetric of t in [0; 1] with respect
to �, namely t� = 2� � t. Obviously, bids of
opponents in [t; t�] for Item B should be greater
than one of Bidder t. Again, because opponents
are distributed in [0; 1], �(vB(t); bA(t)) is only rel-
evant to the opponents in [0; t] and [t�; 1]. As a
preponderant rival of Item A, Bidder t subjectively
believes that his or her n � 2 opponents in the sec-
ond stage should be distributed on his or her right
side, namely in [t; 1]. Therefore, �(vB(t); bA(t)) =
�1
t�(vB(t)). In addition, the other cases can be inferred

similarly.
Finally, a concrete formula of �(vB(t); bA(t)) is

related to the speci�c probability distribution of t and
one of �. Further, it is assumed in Section 4 that t and
� are uniformly distributed in [0; 1].

To be speci�c, f(x) = 1, g(x) = 1, F (x) = x,
and G(x) = x while x 2 [0; 1]. In conclusion, the
expected surplus �(vB(t); bA(t)) in various cases is
shown below.

1) � 2W1:

�(vB(t); bA(t)) = �1
t (vB(t))

=
1Z
t

n�2
1�F (t)

�
1�F (s)
1�F (t)

�n�3

(s�t)ds =
1�t
n�1

:
(5)

2) � 2W2 :

�(vB(t); bA(t)) = �1
2��t(vB(t))

=
1Z

2��t

n� 2
1� F (t)

�
1� F (s)
1� F (t)

�n�3

(t+ s� 2�)ds

=
(1� 2� + t)n�1

(n� 1)(1� t)n�2 : (6)

3) � 2W3 :

�(vB(t); bA(t)) = 0: (7)

Proposition 4. If � is revealed before auctioning
Item A, then Bidder t's equilibrium bid for Item A
is bA(t) = 1� t� �(vB(t); bA(t)), where �(vB(t); bA(t))
is shown as in Eqs. (5), (6), and (7).
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Proof. Let x = bA(tx) = max
� 6=t bA(�) be the highest

bid of Bidder t's n� 1 opponents in the �rst stage and
h(x) denote the probability density of x. Usually, equi-
librium bid bA(t) should maximize Bidder t's expected
surplus �(bA(t)) at the �rst auction, namely:

max
bA(t)

�(bA(t)) = max
bA(t)

0B@ bA(t)Z
0

(VA(t)� x)h(x)dx

+
1Z

bA(t)

�(VB(t); x)h(x)dx

1CA : (8)

Let:
d�(bA(t))
dbA(t)

= (VA(t)� bA(t))h(bA(t))

� �(VB(t); bA(t))h(bA(t)) = 0;

then:
VA(t)� bA(t)� �(VB(t); bA(t)) = 0:

Hence, according to Proposition 1, we have 1 +
@�(vB(t);x)

@x > 0. Again, on the base of Corollary 2,
x � bA(t) in Eq. (8) means tx � t. Moreover,
tx � � � 1 for 8 � 2 
(x) = f�jbA(�) � xg while
x � bA(t).

) �n�2=�t(z;
(x)) = P
�

max
�2
(x) and � 6=tvB(�) � z

�
= (P (vB(�) � z while � 2 
(x)

= f�jbA(�) � x:g and tx � � � 1))n�2

=

 R 1
1+��z f(�)d�R 1
tx
f(�)d�

!n�2

=
�
z � �
1� tx

�n�2

;

where z � VB(1) = 1 � (1 � �) = � and f(�) = 1 in
[0; 1].

Next, we discuss the expected surplus in various
cases as follows:

1. � 2W1:

�(vB(t); x) =

vB(t)Z
0

(vB(t)� z)d�n�2=�t(z;
(x))

=
1+��tZ
�

(1+��t�z) (n�2)
1�tx

�
z � �
1� tx

�n�3

dz

=
(1� t)n�1

(n� 1)(1� tx)n�2 :

According to Corollary 2, x = bA(t) means tx = t.

Hence, �(vB(t); bA(t)) = 1�t
n�1 ;

2. � 2W2:

�(vB(t); x) =

vB(t)Z
0

(vB(t)� z)d�n�2=�t(z;
(x))

=
1��+tZ
�

(1��+t�z) (n�2)
1�tx

�
z��
1�tx

�n�3

dz

=
(1� 2� + t)n�1

(n� 1)(1� tx)n�2 :

Hence:

�(vB(t); bA(t)) =
(1� 2� + t)n�1

(n� 1)(1� t)n�2 :

3. � 2W3: � � (1+t)=2 means vB(t) = 1��+t � �.
Then:

�(vB(t); x)=
Z vB(t)

�
(vB(t)�z)

d�n�2=�t(z;
(x)) = 0:

Hence:

�(vB(t); bA(t)) = 0:

Therefore, Bidder t's equilibrium bid for Item A should
be bA(t) = 1� t��(vB(t); bA(t)), where �(vB(t); bA(t))
is shown as in Eqs. (5), (6), and (7). �

It is also easy to verify dbA(t)
dt < 0 through

Eqs. (5), (6), and (7). Thus, Item A will be allocated
to the bidder with the highest valuation, namely one
closest to A.

Remark 5. Eqs. (5), (6), and (7) imply that Bidder
t = 1 or t � 2� � 1 always bids his or her true
valuation in the �rst stage because he or she as a
preponderant rival of Item A believes in advance that
his or her expected surplus of winning Item B will be
0. However, Bidders t = 0 always hide their surplus
(1�2 maxf�;1=2g)n�1

(n�1) in the �rst stage by making use of
the advantage of their location.

4.2. Equilibrium bids when hiding �
Item B (namely �) is hidden before the end of auction-
ing A. Each bidder knows � = 0, his or her own location
(or type) t, and bidders' number n and does not know
� and other bidders' locations (or types). However,
he or she regards other bidders' locations as random
variables distributed in [0; 1], and believes that Item B
is also distributed in [0; 1]. Similar to Section 4.1, the
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key to determining the equilibrium bid is the expected
surplus of winning Item B.

While � is regarded as a random variable, Bidder
t's expected surplus of winning B is �(�; b0A(t)) =
E� [�(vB(t); bA(t))], and Bidder t's equilibrium bid for
Item A should be b0A(t) = vA(t)� �(�; b0A(t)). Hence:

�(�;b0A(t)) = E� [�(vB(t); bA(t))]

=
tZ

0

�(vB(t); bA(t))g(�)d� =
tZ

0

1� t
n� 1

d�

+

1+t
2Z
t

(1� 2� + t)n�1

(n� 1)(1� t)n�2 d�

=
(1� t)(1 + (2n� 1)t)

2n(n� 1)
: (9)

Proposition 5. If � is hidden before the end of
auctioning Item A, then Bidder t's equilibrium bid for
Item A is b0A(t) = 1 � t � �(�; b0A(t)), where �(�; b0A(t))
is introduced in Eq. (9).

Proof of Proposition 5 is similar to that of Propo-
sition 4. Further:

db0A(t)
dt

=
d
dt

�
1�t�

�
1+2(n�1)t�(2n�1)t2

2n(n� 1)

��
=

2� n
n� 1

< 0(* n � 3):

Thus, b0A(t) is monotonically decreasing with t, which is
consistent with Proposition 2. Concurrently, db0A(t)

dt <
0 also indicates that Item A will be allocated to the
bidder with the highest valuation, namely one closest
to Item A.

Remark 6. According to Eq. (9), �(�; b0A(0)) =
1

2n(n�1) , �(�; b0A(0:5)) = 2n+1
8n(n�1) , and �(�; b0A(1)) = 0.

It can easily be proved that �(�; b0A(t)) reaches the
maximum n

2(n�1)(2n�1) while t = n�1
2n�1 , and �(�; b0A(t))

is monotonically increasing with t in
h
0; n�1

2n�1

i
and

monotonically decreasing in
h
n�1
2n�1 ; 1

i
. Thus, bidders

in
h
0; n�1

2n�1

i
have advantages over those in

h
n�1
2n�1 ; 1

i
.

4.3. Further researches
Let Rk(n) denote the auctioneer's expected revenue
from selling Item k 2 fA;Bg while � is revealed
and R0k(n) denote the aforementioned expected revenue
while � is hidden, where n is the number of bidders.
Then, R(n) = RA(n) +RB(n) is the auctioneer's total
expected revenue at two auctions while � is revealed
and R0(n) = R0A(n) + R0B(n) is the aforementioned

total revenue while � is hidden. In the second stage,
the dominant strategies of bidders are to bid their own
valuations. Accordingly, expected revenues from selling
Item B are the same under the above two information
policies, namely RB(n) = R0B(n). Thus, the di�erence
between the total expected revenues R(n) and R0(n) is
mainly determined by RA(n) and R0A(n).

Di�erent from bidders, an auctioneer only knows
�, �, and n in advance and does not know locations
of bidders, yet believes that bidders are distributed in
[0; 1]. Therefore, with respect to the expected revenue
from selling Item A, RA(n) or R0A(n) is determined by
the expectation of max

t
bA(t) or max

t
b0A(t). Thus, while

F (t) = t or f(t) = 1 in [0; 1]:

RA(n)=
1Z

0

(1�t��(vB(t); bA(t)))�n(1�F (t))n�1dt

=
Z 1

0
(1� t) � n(1� t)n�1dt

�
264 �Z

maxf2��1;0g

(1�2�+t)n�1

(n�1)(1�t)n�2 � n(1�t)n�1dt

+
1Z
�

1� t
n� 1

� n(1� t)n�1dt

375

=

8>>>>>>><>>>>>>>:
1� 1

n+1
� 2
n�1

(1��)n+1

+
(n+2�2�)(1�2�)n

(n+1)(n�1)
for � 2 �0; 1

2

�
1� 1

n+1
� 2
n�1

(1��)n+1 for � 2 �1
2 ; 1
� (10)

R0A(n) =
Z 1

0
(1� t� �(�; b0A(t))) � n(1� F (t))n�1dt

=
Z 1

0

�
(1� t)� 1 + 2(n� 1)t� (2n� 1)t2

2n(n� 1)

�
�n(1� t)n�1dt = 1� (2n� 1)(n+ 3)

2(n� 1)(n+ 1)(n+ 2)
:

(11)

Curve clusters of RA(n) and R0A(n) with n and � are
shown in Figures 3 and 4, respectively. They visually
show the following propositions.

Proposition 6. RA(n) is monotonically increasing
functions of n and �; R0A(n) is monotonically increasing
functions of n.
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Figure 3. Curve clusters of RA(n) and R0A(n) as
functions of n.

Figure 4. Curve clusters of RA(n) and R0A(n) as
functions of � .

Proof.

1. While � 2 �1
2 ; 1
�
, RA(n) = 1� 1

n+1� 2
n�1 (1��)n+1.

Obviously, RA(n) is monotonically increasing func-
tions of n and �.

While � 2 �0; 1
2

�
:

RA(n) =1� 1
n+ 1

� 2
n� 1

(1� �)n+1

+
(n+ 2� 2�)(1� 2�)n

(n+ 1)(n� 1)
:

Then:

dRA(n)
d�

=
2(n+ 1)
n� 1

(1� �)n

� 2(1�2�)n+2n(n+2�2�)(1�2�)n�1

(n+ 1)(n� 1)

=
2

n� 1
�
(n+ 1)(1� �)n � n(1� 2�)n�1

�(1� 2�)n�1� =
2

n� 1
[n((1� �)n

�(1� 2�)n�1) + ((1� �)n � (1� 2�)n)
�

=
2

n� 1
�
n((1� �)n � (1� 2�)n�1)

+((1� �)n � (1� 2�)n)] ;

* � 2 �0; 1
2

�
, ) 1� � � 1� 2� � 0 and (1� �)2 =

1�2�+�2 � 1�2� � 0. Hence, (1��)n � (1�2�)n

and (1��)n � (1�2�)n�1. Therefore, dRA(n)
d� � 0,

namely RA(n) is monotonically increasing functions
of �.

Again, according to Eq. (9), let:

RA(x) =
1Z

0

x(1� t)xdt

�
24 �Z

0

x
(x� 1)

(1� 2� + t)x�1(1� t)dt

+
1Z
�

x
x� 1

(1� t)xdt
375

=
x

x+ 1
�
264 �Z

0

h1(x)dt+
1Z
�

h2(x)dt

375 :
Then:
dh1(x)
dx

=
d
dx

�
x

(x� 1)
(1� 2� + t)x�1(1� t)

�
=

(1�2�+t)x�1(1�t)
(x� 1)2 (x(x�1) ln(1�2�+t)�1)

� 0 (* x � 3 and 0 � 1� 2� + t � 1);

dh2(x)
dx

=
d
dx

�
x

x� 1
(1� t)x

�
=

(1� t)x
(x� 1)2 (x(x� 1) ln(1� t)� 1) � 0

)@RA(x)
@x

=
1

(x+1)2�
264 �Z

0

dh1(x)
dx

dt+
1Z
�

dh2(x)
dx

dt

375
> 0:

Hence, RA(n) or RA(x) is monotonically increasing
functions of n or x;
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2. R0A(n) = 1 � (2n�1)(n+3)
2(n�1)(n+1)(n+2) = 1 � n�2

n2�1 �
5

2(n�1)(n+2) . Obviously, R0A(n) is monotonically
increasing functions of n, owing to n � 3. �

Eqs. (10) and (11) show complicated in
uences
of � and n on the expected revenue. Here, both
Proposition 6 and Figure 4 imply that if n is given, then
there must exist �0 to satisfy RA(n) � R0A(n) while
� � �0, and RA(n) � R0A(n) while � � �0. However,
it is di�cult to �x the exact value of �0 with n. Next,
Proposition 7 provides some su�cient conditions with
respect to comparisons of both RA(n) and R0A(n).

Proposition 7. Let n � 3.

1. RA(n) � R0A(n) while � � 1� � 3n+1
2n(n+2)

� 1
n+1

;

2. RA(n) > R0A(n) while � � 1� � 3n+1
4(n+1)(n+2)

� 1
n+1

.

Proof.

1. While � � 1�� 3n+1
2n(n+2)

� 1
n+1

, (1��)n+1 � 3n+1
2n(n+2) .

* (1 � �)2 � 1 � 2�, ) (n+2�2�)
(n+1)(n�1) (1 � 2�)n �

(n+2)
(n+1)(n�1) (1� �)n+1. Hence:�

1� 1
n+ 1

� 2
n� 1

(1� �)n+1

+
(n+ 2� 2�)(1� 2�)n

(n+ 1)(n� 1)

�
�
�

1� (2n� 1)(n+ 3)
2(n� 1)(n+ 1)(n+ 2)

�
� 0: (12)

Inequation (12) means RA(n) � R0A(n) for � 2�
0; 1

2

�
and, also, means RA(n) � R0A(n) for � 2� 1

2 ; 1
�
.
Hence, according to Proposition 6, RA(n) �

R0A(n) for � 2 [0; 1].

2. While � � 1 � � 3n+1
4(n+1)(n+2)

� 1
n+1

, (1 � �)n+1 �
3n+1

4(n+1)(n+2) . Then:�
1� 1

n+ 1
� 2
n� 1

(1� �)n+1
�

�
�

1� (2n� 1)(n+ 3)
2(n� 1)(n+ 1)(n+ 2)

�
� 0: (13)

Inequation (13) means RA(n) � R0A(n) for � 2 � 1
2 ; 1
�
.

* (n+2�2�)(1�2�)n
(n+1)(n�1) � 0, )
Inequation (13) also means RA(n) � R0A(n) for

� 2 �0; 1
2

�
.

Hence, according to Proposition 6, RA(n) �
R0A(n) for � 2 [0; 1]. �

Here, RA(n) � R0A(n) (RA(n) > R0A(n)) means
that expected revenue for A while revealing � is
less (more) than that while hiding �. Proposition 7
implies that revealing the latter items in advance would
uncertainly a�ect the overall e�ciency and revenues of
sequential auctions, which is consistent with �ndings of
Cason [5], Jane and David [13], Mikusheva [9], Jackson
and Kremer [10], Kannan [11], Rao et al. [16,17],
and Colucci et al. [18]. Owing to RB(n) = R0B(n),
Proposition 7 is also su�cient to compare R(n) with
R0(n).

5. Conclusions

Focusing on sequential auctions of close substitutes
with slightly more general associated valuations, this
paper constructed a class Hotelling model and dis-
cussed equilibrium bids under second-price sealed-bid
auction formats. Conclusions showed that sequential
auctions described by this model were e�cient while
bidders' valuations satis�ed conditions given by Corol-
lary 2. Thus, the class Hotelling model could be used as
a support to deal with some auctions in supply chains.
It is helpful for the analysis and design of some business
mechanisms.

Through the instrumentality of this model, some
sequential auctions were speci�cally explored, while a
bidder's valuation was a linear function of a distance
between him or her and an item. The equilibrium bid
of a bidder as a preponderant rival was deduced and
veri�ed. In addition, it depends on both numbers of
bidders and locations of items whether the latter item
(namely Item B) should be revealed or hidden. Gen-
erally, revealing information usually improves revenues
of auctions with assumptions of independent valuations
for multi-items. However, our conclusions are more
complicated because each bidder's valuations for Items
A and B are not independent in our paper, yet are
correlated. In this paper, although the sequential
auctions with only two items seem simple or far-
fetched, the characterization of the class Hotelling
model for two items is an important step in achieving
similar characterizations of models with more than two
items.
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