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Abstract. A new kind of adaptive Dynamic Surface Control (DSC) method is proposed
in this study to overcome parametric uncertainties of Flexible-Joint (FJ) robots. These
uncertainties of FJ robots are transformed into linear expressions of inertial parameters,
which are estimated based on the DSC, and the high-order derivatives in DSC are solved by
using a �rst-order �lter. The adaptation laws of inertial parameters are designed directly to
improve the tracking performance according to the Lyapunov stability analysis. Simulation
results of a two-link FJ robot show better tracking accuracy against model parametric
uncertainties. The used method does not need the aid of Neural Network (NN); it is
simpler and calculates faster than the other adaptive methods.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Flexible-Joint (FJ) robots equipped with harmonic
drivers, windup shaft, and force/torque sensors are
used widely in the areas such as aerospace, service
robots, and so on [1-3]. Because of the uncertain
dynamic parameters such as inertia, exibility, and
the external disturbances, the tracking performance of
robots is not ideal generally and, even, the systems are
unstable under basic control methods.

In the last decades, many researchers have pro-
posed and developed the backstepping control tech-
nique because of its advantages such as systematic
and recursive design methodology for nonlinear control.
However, its disadvantage is \explosion of complexity"
or \explosion of derivative" caused by the repeated
di�erentiation of virtual control vectors, resulting in
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heavy computing burden [4,5]. To overcome this com-
plexity, the DSC is investigated by introducing a �rst-
order �lter in the backstepping procedure [6]. Because
of the great approximation capability of nonlinear func-
tions, the Neural Networks (NNs) are widely utilized
in the control systems to compensate the uncertainties
of parameter and are combined with the DSC and
backstepping techniques to design the controller [7-
14]. In [14], NN adaptive backstepping controller
was proposed, and Radial Basic Function (RBF) was
used to approximate the nonlinear unknowns in the
backstepping design. Simulation results showed good
tracking performance.

Due to the adaptiveness of fuzzy, it was em-
ployed too in the control design [15-19]. In [15],
the backstepping control design was suggested, and
the adaptive fuzzy DSC was applied to approximate
unknown nonlinear control system, which was more
general for practical applications in the presence of
input saturation. The prescribed performance of
switched adaptive DSC was investigated for a class
of switched nonlinear systems, and mode-dependent
fuzzy logic systems were used to approximate the
switching nonlinear functions [16]. The adaptive fuzzy
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dynamic surface control was investigated for a class of
nonlinear systems with fuzzy dead zone and unmodeled
dynamics. The Takagi-Sugeno-type fuzzy logic systems
were adopted to approximate the unknown functions
in system [17]. [20] employed the Fuzzy Neural Net-
works (FNNs) to approximate uncertain dynamics
and bounding functions when the active DSC was
developed to suppress regenerative chatter in micro-
milling.

Some disturbance oservers (DOB) are employed
commonly to design nonlinear controllers because of
their distinct physical meaning [21-23]. In [21], a Gain-
Scheduled Dynamic Surface Control (GSDSC) based
on the NN disturbance observer (NNDOB) was pro-
posed for a class of uncertain underactuated mechan-
ical systems, which e�ciently solves the mismatches
and overcomes the problem of \explosion of complex-
ity". In [22], a nonlinear disturbance observer was
constructed to overcome the unknown environmental
disturbances; then, a controller was designed based on
the combination of backstepping and DSC techniques.
An observer-based DSC scheme was developed to over-
come the problems of model uncertainties, unsteady
aerodynamics, and actuator saturation in [23].

Sliding Mode Control (SMC) is one of the e�-
cient control schemes for compensating external distur-
bances and parametric uncertainties. In [24,25], sliding
mode control and adaptive control were introduced into
the backstepping control technique together with DSC.

Further, [26] designed an adaptive backstepping
controller with a dynamic surface method to solve
the problem of parameters of permanent-magnet syn-
chronous motor; the particle swarm optimization algo-
rithm was adopted to adjust and determine the control
parameters.

Although the above approximate control schemes
enjoy a number of advantages, they are susceptible
to certain problems such as heavy calculation burden,
long training time, approximating error, and so on, re-
sulting in the di�culty choosing the control parameters
and guaranteeing system stability.

In [27], the dynamic surface adaptive backstep-
ping control scheme was employed to prevent the uncer-
tainties of nonlinear dynamics of aircraft. By changing
the inertial parameters and positions of aircraft center
of gravity, the simulation showed the e�ectiveness of
the controller. However, the selected parameters were
limited and inexible.

In this paper, a new adaptive DSC technique
for FJ robots is proposed to overcome the problems
of parametric uncertainties, explosion of derivative,
and calculation ine�ciency. First, model uncertainties
of FJ robots are expressed as linear equations of
its inertial parameters; thus, the model uncertainties
are transformed to compute the evaluation of inertial
parameters. The controller is designed by backstepping

and adaptive DSC techniques. Then, the adaptation
laws for these inertial parameters are derived according
to the Lyapunov stability analysis, which reduce the
computing burden e�ciently. Finally, simulations of
the two-link FJ robot show the e�ectiveness of the
adaptive DSC technique.

This paper is organized as follows. In Section 2,
the basic dynamic models and properties of FJ robot
are introduced. In Section 3, the backstepping control
design method is proposed according to the Lyapunov
stability theorem. Simulation results and analysis are
discussed in Section 4. Finally, some conclusions are
given in Section 5.

2. Dynamic model of FJ robots

In general, the dynamic model of n-link FJ robot
consists of robot dynamics and actuator dynamics,
which can be expressed in the following form [28]:

D(q)�q + C(q; _q) _q + G(q) + K(q� qm) = 0; (1)

J�qm + K(qm � q) = u; (2)

where q; _q; �q 2 Rn denote the position, velocity, and
acceleration vectors of the links, respectively, D(q) 2
Rn denotes the inertia matrix, C(q; _q) 2 Rn is the
Coriolis and centripetal matrix, G(q) 2 Rn denotes the
gravity matrix, K 2 Rn represents a positive de�nite
diagonal constant exibility matrix, qm; �qm 2 Rn
denote the position and acceleration vectors for the
actuator, respectively, J 2 Rn is the actuator inertia
matrix, and u 2 Rn is the actual control vector of
the actuator torque. In dynamic equations (Eqs. (1)
and (2)), the joint sti�ness terms are assumed to be
dominant among all of the system parameters, and the
joint damping ones are neglected. As introduced in
literature [9], these equations have a few fundamental
properties to make the control system design simple.
These properties are presented below.

- (P1): The link inertia matrix, D(q), is positive
de�nite, symmetric and bounded:

Dm � jjD(q)jj � DM ;

where Dm and DM denote two di�erent positive
constants, respectively.

- (P2): The Coriolis and centripetal matrix, C(q; _q),
and gravity matrix, G(q), are bounded, respectively:

jjC(q; _q)jj � CM ; jjG(q)jj � GM ;
where Dm and DM denote positive constants.

- (P3): The matrix _D(q) � 2C(q; _q) is skew-
symmetric. For any vector x,

xT ( _D(q)� 2C(q; _q))x = 0: (3)
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- (P4): The system parameters can be linear in the
equation expressed as coe�cients of known functions
of q; _q and �q for a rigid joint robot. Therefore, the
left-hand side of Eq. (1) can be expressed as follows:

D(q)�q + C(q; _q) _q + G(q) = Y(q; _q; �q)�1; (4)

where Y(q; _q; �q) 2 Rn�r denotes the regression
matrix, �1 2 Rr�1 is an r-dimensional vector of pa-
rameters, and r is the number of inertia parameters.

Further, Eq. (4) can be rewritten according to the
literature [29] as follows:

D(q)a1 + C(q; _q)v1 + G(q) = Y(q; _q;v1;a1)�1; (5)

where a1 and v1 are the arbitrary n-dimensional
vectors.

As a preliminary to the control design, x1 = qm
and x2 = _qm are de�ned as the functions of state
space variables, and dynamic systems (1) and (2) are
described as follows:

D(q)�q + C(q; _q) _q + G(q) + Kq = Kx1; (6)

_x1 = x2; (7)

_x2 = J�1u� J�1K(x1 � q): (8)

To develop the controller for systems (6)-(8), some
assumptions [8,22] are proposed:

Assumption 1. All the state space variables can be
achieved by some sensors.

Assumption 2. The model parameters of D(q),
C(q; _q), G(q), K in Eq. (6) are unknown. However,
there are positive constants Km;KM ; Jm; JM to make

Km � jjKjj � KM ; Jm � jjJjj � JM :
Assumption 3. The desired trajectories of link po-
sition qd are uniformly bounded, di�erentiable up to
the second order and satisfy the inequality:

jjqdjj2 + jj _qdjj2 + jj�qdjj2 � Q;

where Q is the positive constant.

3. Adaptive DSC system

3.1. Controller design
The system inertia parameters in FJ robots are clas-
si�ed into four vectors: ���1, ���2, ���3, and ���4, which
are composed of the elements in the link dynamic
parametric matrix, the inverse of joint sti�ness matrix,
the joint sti�ness matrix, and the actuator inertia
matrix, respectively.

Thus, the parametric uncertainties regarding the
robot model that include D(q), C(q; _q), G(q), K�1,
K, and J can be expressed and solved by using the
vectors ���i (i = 1; 2; 3; 4).

Here, the adaptive DSC algorithm is proposed
according to the backstepping control design [4], and
the design procedure includes three phases:

1. Designing the virtual control vector, ������1, for actua-
tor position x1;

2. Designing the virtual control vector, ������2, for actua-
tor velocity x2;

3. Designing the actual control vector, u. Details are
shown as follows:

Phase 1

Choose a virtual control vector ������1 for x1 as follows:

������1 = q + K̂
�1

ur; (9)

where (�̂) is the estimated value of (�), and the
auxiliary control vector, ur, is de�ned as follows:

ur = D̂(q)a1 + Ĉ(q; _q)v1 + Ĝ(q)��2r1; (10)

where v1 = _qd � �1~q, a1 = _v1, r1 = _q� v1 =
_~q + �1~q, ~q = q� qd, �1 2 Rn�n and �2 2 Rn�n
are diagonal positive de�nite matrices [16], qd is the
desired trajectory of link position.

Eq. (10) can be rewritten by using (P4) as follows:

ur = Y(q; _q;v1;a1)�̂̂�̂�1 ��2r1: (11)

To avoid the problem of \explosion of derivative", the
estimated value of derivative of ��1 is derived by using
the �rst-order �lter in the DSC. That is:
� 1 _�1 +�1 = ��1; �1(0) = ��1(0); (12)

where � 1 denotes a diagonal positive de�ne matrix, and
�1 is the �ltering control vector.

De�ne:
z1 = x1 ��1: (13)

By substituting Eq. (13) into Eq. (6), it can be obtained
as follows:

D(q)�q+C(q; _q) _q+G(q)+Kq = K���1 + Kz1: (14)

From Eqs. (9), (12), and (14), the following is yielded:

D(q)�q + C(q; _q) _q + G(q) + Kq

= Kq + KK̂
�1

ur + Kz1 �K���1 _�_�_�1

= Kq + ur + K(K̂
�1 �K�1)ur

+ Kz1 �K���1 _�_�_�1: (15)

To get the estimated value of K̂�1, the de�nition is
given by:
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K̂�1ur = diag(ur)�̂̂�̂�2; (16)

where diag(�) denotes the diagonal matrix composed
of all the elements of (�).

Then, substituting Eq. (16) and (P4) into Eq. (15)
yields:

D(q)_r1 + C(q; _q)r1 + ���2r1 = ~D(q)a1 + ~C(q; _q)v1

+ ~G(q) + Kdiag(ur)~�~�~�2 + Kz1 �K���1 _�_�_�1

= Y(q; _q;v1;a1)~�~�~�1 + Kdiag(ur)~�~�~�2 + Kz1

�K���1 _�_�_�1; (17)

where (~�) = (�)� (�̂).
From Eqs. (9) and (16), the equation can be

described as follows:

������1 = q + diag(ur)�̂̂�̂�2: (18)

Phase 2

Di�erentiating Eq. (13) yields:

_z1 = _x1 � _�_�_�1 = x2 � _�_�_�1: (19)

Design the second virtual control vector ��2 as in the
following:

��2 = _�1 ��3z1; (20)

where ���3 2 Rn�n denotes the diagonal positive de�nite
matrix.

In addition, ������2 is obtained using the �rst-order
�lter again as follows:

� 2 _�2 +�2 = ��2; �2(0) = ��2(0); (21)

where � 2 is the diagonal positive de�nite vector, and
�2 is the �ltering control vector.

De�ne:

z2 = x2 ��2: (22)

Substituting Eqs. (20) to (22) into Eq. (19) yields the
following:

_z1 = z2 � � 2 _�2 ��3z1: (23)

Phase 3

Di�erentiating Eq. (22) and substituting it into Eq. (8)
yields:

_z2 = _x2 � _�2 = J�1u� J�1K(x1 � q)� _�2: (24)

Multiply both sides of Eq. (24) by J,

J_z2 = u�K(x1 � q)� J _�2: (25)

Thus, the actual control vector is designed as follows:

u = K̂(x1 � q) + Ĵ _�2 ��4z2; (26)

where �4 2 Rn�n denotes a diagonal positive de�nite
matrix.

By simply considering K̂ and Ĵ, such similar
expressions as Eq. (16) are given below:

K̂(x1 � q) = diag(x1 � q)�̂3;

Ĵ _�2 = diag( _�2)�̂4: (27)

From Eqs. (27) and (26), it follows that:

u = diag(x1 � q)�̂3 + diag( _�2)�̂4 ��4z2: (28)

By substituting Eqs. (28) and (27) into Eq. (25), it
follows that:

J_z2 = (K̂�K)(x1 � q) + (Ĵ� J) _�2 ��4z2

= diag(x1 � q)~�3 + diag( _�2)~�4 ��4z2: (29)

3.2. Stability analysis
De�ne the error-surface vectors as follows:

si = �i � ������i; i = 1; 2: (30)

By using Eqs. (12) and (21), Eq. (30) can be rewritten
as follows:

si = ��i _�i; i = 1; 2: (31)

After taking the �rst-order di�erential of Eq. (30) with
respect to time and considering Eqs. (9), (20), and (31),
the equations can be obtained as follows:

_s1 = _�1 � _��1 = ���1
1 s1 + �1; (32)

_s2 = _�2 � _��2 = ���1
2 s2 + �2; (33)

where �1 = d(q1 +diag(ur)�̂2)=dt and �2 = �3 _z1� ��1
are the continuous bounded vectors.

Choose the global Lyapunov function:

V = V1 + V2 + V3; (34)

where,

V1 =
1
2
rT1 D(q)r1 +

1
2
zT1 z1 +

1
2
zT2 Jz2; (35)

V2 =
1
2
sT1 s1 +

1
2
sT2 s2; (36)

V3 =
1
2

~�~�~�
T
1 ����1

1
~�~�~�1 +

1
2

~�~�~�
T
2 K����1

2
~�~�~�2

+
1
2

~�~�~�
T
3 ����1

3
~�~�~�3 +

1
2

~�~�~�
T
4 ����1

4
~�~�~�4; (37)

and �i is the diagonal positive de�nite matrix, i =
1; 2; 3; 4.
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Theorem. By considering the FJ robot descripted as
Eqs. (1) and (2) with parametric uncertainties and the
initial condition of the Lyapunov function V (0) � p (p
denotes the arbitrary positive constant), the adaptive
laws can be determined using the control law (Eq. (26))
as follows:8>>>>><>>>>>:

_̂�1 = _~�1 = ��1YT r1 � �1�1�̂1
_̂�2 = _~�2 = ��2diag(ur)r1 � �2�2�̂2
_̂�3 = _~�3 = ��3diag(x1 � q)z2 � �3�3�̂3
_̂�4 = _~�4 = ��4diag( _�2)z2 � �4���4�̂4

(38)

where �i represents the scalar coe�cients, �i > 0, and
i = 1; 2; 3; 4.

If �i;�i; �i (i = 1; 2; 3; 4) and �i(i = 1; 2) are
selected properly, it is easy to guarantee the uniformly
semi-globally boundedness of all closed-loop signals,
and the tracking errors will converge to a compact set
whose size can be adjusted to be arbitrarily small.

Proof. Di�erentiate V1 with respect to time and
simplify it based on (P3), Eqs. (17), (23), (29), and
(31). Thus:

_V1 =rT1 Y~�~�~�1 + rT1 Kdiag(ur)~�2 � rT1 �2r1

+ rT1 Kz1 + rT1 Ks1 � zT1 �3z1 � zT2 �4z2

+ zT1 z2 + zT1 s2: (39)

Di�erentiate V2 and consider Eqs. (32) and (33):

_V2 = �sT1 ���
�1
1 s1 � sT2 ���

�1
2 s2 + sT1 ���1 + sT2 ���2: (40)

Similar to di�erentiating V3 as above:

_V3 = ~�~�~�
T
1 ����1

1
_~�_~�_~�1+~�~�~�

T
2 K����1

2
_~�_~�_~�2+~�~�~�

T
3 ����1

3
_~�_~�_~�3+~�~�~�

T
4 ����1

4
_~�_~�_~�4: (41)

Therefore:

_V = _V1 + _V2 + _V3 =

� rT1 ���2r1 � zT1 ���3z1 � zT2 ���4z2 � sT1 ���
�1
1 s1

� sT2 ���
�1
2 s2 + rT1 Kz1 + rT1 Ks1 + zT1 s2 + zT1 z2

+ sT1 ���1 + sT2 ���2 �
4X

i=1;i 6=2

�i~�~�~�
T
i �̂̂�̂�i � �2~�~�~�

T
2 K�̂̂�̂�2: (42)

By Young inequality, for arbitrary vector a 2
Rn�1;b 2 Rn�1 and diagonal positive de�nite matrix
H 2 Rn�n, the inequality exists as follows:

aTHb � 1
4
aTHa + bTHb: (43)

Moreover, the set of inertia parameters ���i, the esti-
mated set �̂̂�̂�i, and the set of estimated errors �̂̂�̂�i satisfy
the following inequality:

2~�~�~�
T
i �̂̂�̂�i � ~�~�~�

T
i

~�~�~�i � ���Ti ���i: (44)

By using Eqs. (42), (43) to (44), the derivative of
Lyapunov function can be rewritten as follows:

_V �� rT1 ���2r1 � zT1 ���3z1

� zT2 ���4z2 � sT1 ���
�1
1 s1 � sT2 ���

�1
2 s2 +

1
4
rT1 Kr1

+ zT1 Kz1 +
1
4
rT1 Kr1 + sT1 Ks1 + zT1 z1

+
1
4
zT2 z2 + zT1 z1 +

1
4
sT2 s2 + sT1 s1 +

1
4
���T1 ���1

+ sT2 s2 +
1
4
���T2 ���2 +

1
2

4X
i=1;i6=2

�i���Ti ���i � 1
2

4X
i=1;i 6=2

�i~�~�~�
T
i

~�~�~�i +
1
2
�2���T2 K���2 � 1

2
�2~�~�~�

T
2 K~�~�~�2: (45)

According to (P1) and Assumption 2, Eq. (45) is
derived as follows:

_V �� rT1
D(q)
DM

�
���2 � 1

2
KMI

�
r1 � zT1 (���3 �KMI

� 2I)z1 � zT2
J
JM

�
���4 � 1

4
I
�

z2 � sT1 (����1
1

�KMI� I)s1 � sT2

�
����1

2 � 5
4
I
�

s2 � 1
2

4X
i=1;i 6=2

�i~�~�~�
T
i ����1

i ���i~�~�~�i � 1
2
�2~�~�~�

T
2 K����1

2 ���2~�~�~�2 +
1
2

4X
i=1;i 6=2

�i���Ti ���i +
1
4
���T1 ���1 +

1
4
���T2 ���2 +

1
2
�2���T2 K���2: (46)

De�ne:

���2 =
1
2
KMI + ����2; ���3 = 2I +KMI + ����3;

���4 =
1
4
I + ����4; ����1

1 = KMI + I + ����1;

����1
2 =

5
4
I + ����2;

where ����i > 0 (i = 2; 3; 4), ����i > 0 (i = 1; 2). Therefore:
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_V �� rT1
D(q)
DM

����2r1 � zT1 ����3z1 � zT2
J
JM

����4z2

� sT1 ���
�
1s1 � sT2 ���

�
2s2 � 1

2

4X
i=1;i 6=2

�i~�~�~�
T
i

����1
i ���mi~�~�~�i � 1

2
�2~�~�~�

T
2 K����1

2 ���m2~�~�~�2

+
1
2

4X
i=1;i6=2

�i���Ti ���i +
1
4
���T1 ���1

+
1
4
���T2 ���2 +

1
2
�2���T2 K���2; (47)

where �mi is the minimum eigenvalue of ���i.
Select the real number � to satisfy the inequality

as follows:

0 < � �min
� jj����2jj
DM

; jj����3jj; jj���
�
4jj

JM
; jj����1jj; jj����2jj;

�m1

2
;
�m2

2
;
�m3

2
�m4

2

�
: (48)

Because �1; �2; �1; �2; �3, and �4 are bounded, the in-
equality can be written as follows:

1
4

2X
i=1

���Ti ���i +
1
2

4X
i=1;i6=2

�i���Ti ���i +
1
2
�i���Ti K���i � �; (49)

where � is the constant.
Eq. (47) can be written according to Eqs. (48) and

(49) as follows:
_V � �2�V + �: (50)

Consider the following compact set:


1 :=
�

(qd; _qd; �qd) : jjqdjj2 + jj _qdj2 + jj�qdjj2 � �
�
;


2 := fV � pg ;
where p is an arbitrary positive constant.

Select � � �=2p. If V = p, _V � 0. Thus, V � p
presents an invariant set, i.e., if V (0) � p, then V (t) �
p for all t > 0.

Solving the Inequality Eq. (50) yields:

V � �
2�

+
�
V (0)� �

2�

�
e�2�t: (51)

Obviously, all closed-loop signals are uniformly semi-
globally bounded, and:

lim
t!1V (t) � �

2�
: (52)

Therefore, by adjusting parameters ���i (i = 1; 2; 3; 4),
��� i (i = 1; 2), ���i (i = 1; 2; 3; 4), and �i (i = 1; 2; 3; 4) to
make � bigger, the tracking error will be smaller.

4. Simulation results and analysis

The two-link FJ robot shown in Figure 1 with para-
metric uncertainties is used to test the feasibility of
the proposed control method. The dynamic equations
are derived based on Kane method, and numerical
calculation is �nished in Simulink of MATLAB.

The robot dynamic parameters are given as fol-
lows:

m1 = 6:07; m2 = 5:76;

pc1 = (0:169; 0; 0:0026)T ; pc2 = (0:162; 0; 0)T ;

p01 = (0; 0; 0:055)T ; p12 = (0:3; 0; 0:06)T :

Here, mi (i = 1; 2) is the i-th link mass, and pci (i =
1; 2) is the mass center of the i-th link relative to the
i-th link coordinate. pi�1;i (i = 1; 2) is the relative
position between the i-th joint and i � 1-th joint. In
addition,

Ic1 =

" 0:0074 0 �0:002
0 0:0718 0

�0:002 0 0:0742

#
;

Ic2 =

" 0:0065 0 0
0 0:0654 0
0 0 0:0685

#
;

J = diag(0:0197; 0:0197);

g = (0;�9:8; 0)T ;

K1 = K2 = 100:

Now, the minimum inertial parameters can be solved
as follows:

���1 = (2:84; 0; 0:766; 0:9331; 0; 0:2197)T ;

���2 = (0:01; 0:01)T ;

���3 = (100; 100)T ;

���4 = (0:0197; 0:0197)T :

The ideal trajectories are given as q1d = sin(2�t) and

Figure 1. 3D model of two-link FJ robot.
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q2d = sin(2�t); the initial positions are speci�ed as
q1(0) = q2(0) = 0, qm1(0) = qm2(0) = 0, and the
controller parameters are chosen by Eq. (46) as follows:

�1 = �2 = �3 = �4 = 0:0005;

���1 = ���2 = diag(0:001; 0:001);

���1 = ���2 = ���3 = ���4 = diag(0:00005; 0:00005);

���1 = diag(60; 60); ���2 = diag(60; 60);

���3 = diag(150; 150); ���4 = diag(5; 5):

The initial estimated conditions of the inertia param-
eters are set as: �̂̂�̂�1(0) = (0; 0; 0; 0; 0; 0)T , �̂̂�̂�2(0) =
(0; 0)T , �̂̂�̂�3(0) = (0; 0)T , and �̂̂�̂�4(0) = (0; 0)T .

The tracking trajectories of Links 1 and 2 are
placed in Figure 2(a) and (b) together with their
ideal trajectories. The simulation results are shown
in Figure 2(c) and (d). These �gures show that the
proposed control method results in the very small link
tracking errors (e1 and e2 are both about 5% of the
ideal trajectories) and ensures the global boundedness
of all closed-loop signals with uncertainties.

1. Uncertainties of the initial values: The initial
values of �̂̂�̂�i are not restrained theoretically, that
is, they can be selected arbitrarily. For verifying
their e�ect, the other parameters should be kept
unchanged and the initial values of �̂̂�̂�i are set to 0%,
50%, and 80%, respectively, of the nominal value ���i
as follows:

(1) �̂̂�̂�1 = (0; 0; 0; 0; 0; 0)T , �̂̂�̂�2 = (0; 0)T ,
�̂̂�̂�3 = (0; 0)T , �̂̂�̂�4 = (0; 0)T ,

(2) �̂̂�̂�1 = (1:42; 0; 0:38; 0:47; 0; 0:11)T ,
�̂̂�̂�2 = (0:005; 0:005)T , �̂̂�̂�3 = (50; 50)T ,
�̂̂�̂�4 = (0:01; 0:01)T ,

(3) �̂̂�̂�1 = (2:27; 0; 0:61; 0:75; 0; 0:18)T ,
�̂̂�̂�2 = (0:008; 0:008)T , �̂̂�̂�3 = (80; 80)T ,
�̂̂�̂�4 = (0:016; 0:016)T .
The tracking errors in the simulation are

shown in Figure 3(a) and (b). They reveal that
the tracking errors of Links 1 and 2 respectively
decrease as the estimated values are closer to
the nominal value of ���i, and the their simulation
computing times are equal almost. Further, the
tracking errors can be lower if the estimated values
of inertia parameters are closer to the nominal
values.

2. Uncertainties of parameters of the control laws: For
verifying the e�ectiveness of the proposed adaptive
laws, we change these parameters continuously as:

�1 = �2 = �3 = �4= diag(0:00005; 0:00005) � sin(t)

�1 = �2 = �3 = �4 = 0:0005 � sin(t):

The tracking errors are shown in Figure 4(a) and
(b), in which e1 and e2 represent the tracking errors
of Links 1 and 2, respectively, with the original
adaptive laws parameters; e11 and e22 represent the
errors with the changed parameters.

Figure 2. The trajectories and tracking errors of Links 1 and 2 with the designed parameters: (a) Ideal and tracking
trajectory of Link 1, (b) ideal and tracking trajectory of Link 1, (c) errors of Link 1, and (d) errors of Link 2.
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Figure 3. The tracking errors of Links 1 and 2 with the di�erent initial values of �̂̂�̂�i (i = 1; 4): (a) Errors of Link 1 and (b)
errors of Link 2.

Figure 4. The tracking errors of Link 1 with di�erent parameters of the control laws: (a) Errors of Link 1 with the
original and changed parameters and (b) errors of Link 2 with the original and changed parameters.

Figure 5. The tracking errors of Link 1 with di�erent external disturbances: (a) Errors of Link 1 without and with
external disturbance and (b) errors of Link 2 without and with external disturbance.

It is evident that the tracking errors of Links 1
and 2 are kept small, even though the parameters
of adaptive laws are changed.

3. Uncertainties of external disturbances: Add the
external disturbances on the joints of Links 1
and 2 with functions 50 sin(2���t) and 35 sin(4���t),
respectively.

The tracking errors are shown in Figure 5(a) and
(b), in which e1 and e2 represent the tracking errors
of Links 1 and 2, respectively, without the external
disturbances; e11 and e22 represent the errors with the
external disturbances.

It is clear that the external disturbances cause the

tracking errors of the links slightly, and tracking errors
become weak quickly in 0.1 sec.

In addition, the errors of links are less than 15% of
desired amplitude in the beginning phase whether the
inertia parameters, control laws parameters or external
disturbance are changed or not. In literature [14], we
investigated an adaptive backstepping control method
based on NN; the maximum tracking errors of links
are more than 20% of input amplitude, and time-
consumption is at least twice what this paper suggests.

Conclusions

In this paper, the uncertainties associated with the
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robot model were estimated by using the inertia pa-
rameters of FJ robots. The adaptive DSC for FJ robot
was proposed based on backstepping control method, in
which the virtual control vectors were derived by using
the �rst-order �lter in order to avoid the \explosion
of derivative". The control vectors and adaptive laws
in the DSC were expressed as the functions of inertia
parameters in FJ robots. In addition, the joint tracking
errors could be very insigni�cant, even though the
initial estimated conditions of the inertia parameters
were set to be far away from the real ones, the
parameters of the control laws were changed, or the
external disturbances were added in the system.

The simulations of the two-link FJ robot showed
that the proposed control system achieved:

1. Less tracking error, better tracking performance
and robustness against model uncertainties;

2. Simpler calculation to avoid high-order derivative
and iterative regression matrix;

3. Shorter computation time to respond;
4. Easier selection of control parameters.

Moreover, the tracking performance in a short period of
time can be better if the inertia parameters are selected
precisely.
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Nomenclature

q; _q; �q Position, velocity, and acceleration
vectors of the links

D(q) Inertia matrix
C(q; _q) Coriolis and centripetal matrix;
G(q) Gravity matrix
K Positive de�nite diagonal constant

exibility matrix
qm; �qm Position and acceleration vectors for

the actuator

J Actuator inertia matrix
u Actual control vector
Dm; DM Positive constants
CM ; GM Positive constants
Y(q; _q; �q) Regression matrix
�1 r-dimensional vector of parameters
r Number of inertia parameters
a1;v1 Arbitrary n-dimensional vectors
x1;x2 Functions of state space variables
Km;KM Positive constants
Jm; JM Positive constants
qd Desired trajectory of link position
Q Positive constant
��1; ��2 Virtual control vectors
�1;�2 Filtering virtual control vectors
ur Auxiliary control vector
�1;�2; � 1 Diagonal positive de�nite matrices
�3;�4; � 2;H Diagonal positive de�nite matrices
�1; ���2 Continuous bounded vectors
���i Diagonal positive de�nite matrix,

i = 1; 2; 3; 4
�i Scalar coe�cients, �i > 0, i = 1; 2; 3; 4
a;b Arbitrary vectors

���i; �̂̂�̂�i; ~�~�~�i Inertia parameters set, estimated
values set, and estimated errors set

�mi Minimum eigenvalue of ���i
� Real number
� Constant
p Arbitrary positive constant
mi(i = 1; 2) i-th link mass
pci(i = 1; 2) Mass centers of the i-th link relative to

the i-th link coordinate
pi�1;i(i = 1; 2)Relative position between the i-th joint

and the i-1-th joint
q1d; q2d Ideal trajectories
e1; e2 Link tracking errors
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