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Abstract. Flow through a twisted tape (swirler) creates a complicated vortex structure
downstream in the pipe. Detailed velocity measurements with Laser Doppler Velocimetry
(LDV) along horizontal and vertical axes perpendicular to the axial 
ow direction have
shown a strange 
ow pattern at the center of the rotating 
ow{a counter-rotating vortex
seems to be present at the center with periodically varying magnitude in the axial direction.
In highly detailed measurements, it is shown that this behavior results from a pair
of co-rotating secondary vortices that are superimposed on the primary rotating 
ow
in a helical formation. The source of these secondary vortices has remained unclear.
This study presents numerical simulations of the 
ow through 180� twisted tape in a
pipe, complementing the previous experimental results. The simulations reproduce the
characteristics of the helical co-rotating vortices observed in experiments and provide details
of the 
ow �eld. The results provide an insight into the formation of the secondary vortices
inside the twisted tape, thus explaining the experimental observations. The mechanism of
the vortex formation is described, showing that the secondary co-rotating helical vortices
are produced by a pair of single co-rotating vortex formed on each side of the twisted tape.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Swirling 
ows are found in many industrial applica-
tions, such as enhanced mixing of 
uids, increasing heat
transfer in heat exchangers, homogenizing mixtures
in casting and in the chemical industry, or breaking
the fuel droplets, and stabilizing 
ames in combustion.
There are numerous swirl generation systems, most
common of which are vanes, eccentric 
uid injection,
rotating pipes, or twisted-tape inserts.

In this study, we focus on the twisted-tape insert
with the main characteristics presented in Figure 1.
The de�ning parameters include 180� pitch, H, pipe

*. Corresponding author.
E-mail address: cyrus.aidun@me.gatech.edu (C.K. Aidun)

doi: 10.24200/sci.2018.50440.1694

Figure 1. Twisted-tape parameters.

diameter, d, and tape thickness, �. The relevant non-
dimensional parameters include twist ratio, yr = H=d,
and Reynolds number, Re = d � Ub=v, where Ub is the
bulk velocity (based on 
ow rate and cross-sectional
area), and v is the kinematic viscosity of water. Low
values of ratio yr correspond to strong twist and high
swirl numbers.

There are numerous studies dedicated to the
twisted tape; however, most studies investigate only the
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variations of the heat transfer and friction coe�cient
with few attempts to outline a detailed 
ow structure.
A comprehensive list of papers regarding twisted tape
inserts is summarized in the review article of Dewan et
al. [1].

Early investigations of the 
ow �eld in pipes
with full-length twisted-tape inserts were done with
intrusive probes inserted directly into the 
ow [2-4],
limiting the accuracy of the results. Seymour's mea-
surements [3] revealed the existence of a secondary 
ow
with a double vortex structure at Reynolds number as
high as 3� 105.

Date [5] analyzed the 
ow in the laminar regime
using a vorticity-stream function formulation. He
used a rotating coordinate system and assumed fully
developed 
ow with no axial gradients. The contours
of the axial velocity pro�le displayed one peak for two
tapes with a lower twist ratio and two peaks for a tape
with a higher twist ratio. No tangential velocity results
were shown.

Other investigators [6-9] used both numerical
simulations and smoke 
ow visualizations to study the
secondary motion in swirling air 
ow. Their images
show the presence of two structures in the semicir-
cular cross-section, which they identi�ed as counter-
rotating vortices. The experimental photos from these
studies clearly show the spiral of a co-rotating vortex
at the leading corner; however, the rest of the 
ow
does not show a clear counter-rotation, as claimed.
The smoke visualizations at low Reynolds number are
compared to numerical simulations using a vorticity-
stream function formulation. Their simulations show
two counter-rotating vortices similar to those presented
by Seymour [3].

Kazuhisa et al. [10] described another numerical
investigation of the laminar swirling 
ow generated by
a twisted-tape insert in a cylindrical pipe. Their model
employs a non-orthogonal coordinate system rotating
with the tape, while the equations are solved using the

SIMPLEC algorithm [11]. Their velocity vector plots
show either one vortex rotating counter to the twist of
the tape or two counter-rotating vortices.

Through detailed Laser Doppler Velocimetry
(LDV) measurements, Cazan and Aidun [12] showed
that the unexpected counter-rotating 
ow found in the
LDV measurements near the pipe centerline in not the
continuation of counter-rotating vortices formed inside
the insert, as elucidated in previous studies [3,6,9]. In
fact, the LDV measurements of Cazan and Aidun [12]
did not indicate the presence of a counter-rotating
vortex immediately downstream at the trailing edge
of the twisted tape. The LDV measurements and air
bubble visualizations [12] show two stable co-rotating
helical vortices downstream of 180� twisted tapes for
Re > 104 (Figure 2). The helical secondary vortices
are rotating in the same direction with the main

ow; in addition, the helix winding is in the same
direction{the co-rotating vortices, the helix formed
by the vortices, and the main 
ow all have positive
or clockwise rotation, as shown in Figure 2. The
pitch of the helix formed by the co-rotating vortices
is found to be independent of Re. Near the pipe
centerline, the two co-rotating helical vortices create
an apparent counter-rotating non-axisymmetric 
ow
region. It is, therefore, the interaction of the two co-
rotating vortices that induces the apparent counter-
rotating 
ow at the pipe centerline observed in the
LDV measurements [12]. This is con�rmed by high-
speed visualizations of air bubbles injected upstream,
showing the 
ow �eld induced by the interaction
of two co-rotating helical vortices. The stationary
and stable character of the co-rotating vortices (also
observed in previous studies [13,14]) allowed a detailed
investigation of the 
ow �eld.

The details of the secondary 
ow generated inside
the twisted tape have remained unclear. Experimental
investigations inside the twisted tape are di�cult and
unreliable as probes inserted into the swirling 
ow alter

Figure 2. Co-rotating helical vortices induced by a 180� twisted-tape with a twist ratio of yr = 2:36 (60 mm pitch) at
Re = 7:7� 104 (bulk velocity of Ub = 3 m/s) in a pipe with a diameter of d = 25:4 mm: (a) Air bubble visualization (the

ow is from right to left), (b) average tangential velocity contours of the co-rotating secondary vortices after subtracting
the main vortex background. The circles show the approximate boundary of the vortices, while the arrows show their
rotation (from LDV measurements [12]).
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the 
ow. LDV measurements around the twisted tape
are also challenging. The present article describes a
numerical study complementing the previous experi-
ments [12], focusing on the formation of the secondary
helical vortices.

2. Numerical model

The majority of the numerical studies investigate the

ow inside the twisted tape at low Re, while the helical
vortices are observed experimentally downstream of the
twisted tape at Re greater than 104. This explains
the absence of any previous reports of helical vortices
induced by twisted tapes. In the present study,
the secondary 
ow is investigated by simulating the
swirling 
ow through a 180� twisted tape with a simple
straight pipe section upstream of the twisted tape and
another straight pipe section downstream of the twisted
tape. The 
ow is calculated using the commercial CFD
software FLUENT (ANSYS Fluent, ANSYS Inc.).
There are previous reports of successful numerical
simulations using FLUENT for 
ows through static
mixers, which consist of a series of left and right helical
elements placed at right angles to each other [15,16].
Each helical element in a static mixer is basically a 180�
twisted tape; however, the alternating helical elements
destroy the secondary structures.

2.1. Governing equations
The stability of the helical vortices observed during the
experiments (visible in the movies accompanying the
on-line version of Cazan and Aidun [12]) suggests that
the mean (Reynolds averaged) 
ow is in a quasi-steady
state. The working 
uid in the model is liquid water
(incompressible) at room temperature. The 
ow �eld
is obtained solving the governing integral equations
for the conservation of mass and momentum using a
pressure-based solver, in which the pressure �eld is
extracted by solving a pressure correction equation.

For a steady incompressible 
ow, the mass con-
servation equation in Cartesian coordinates expressed
in index notation (where repeated indices imply sum-
mation) is:

@ui
@xi

= 0; (1)

where ui represents the velocity component in direction
xi. The momentum conservation equation is given by:

�
@(uiuj)
@xj

= � @p
@xi

+
@�ij
@xj

+ �gi; (2)

where � is the density, p is the pressure, and g is gravity.
The stress tensor, �ij , is given by:

�ij = �
�
@ui
@xj

+
@uj
@xi

�
; (3)

where � is the dynamic viscosity.
In the experimental data reported by Cazan and

Aidun [12], a honeycomb and a 9:1 contraction are
located immediately upstream of the twisted tape to
reduce turbulent 
uctuations. Both Direct Numerical
Simulations (DNS), based on Eqs. (1)-(3), and simu-
lations based on the Reynolds Averaged Navier-Stokes
(RANS) equation are presented which are given by
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���u0iu0j� ; (4)

where �u0iu0j is the Reynolds stress based on cross-
correlation of the velocity 
uctuations, u0i. The large
gradients in the 
ow and the 3D nature associated
with the helical vortices require a �ne grid with a
large number of computational cells on the Kolmogorov
length scale. DNS on the required scale to resolve the
dissipative scale is prohibitively expensive. However,
we use coarser scale DNS of 
ow in addition to solving
the RANS equation, where the Reynolds stresses �u0iu0j
are modeled. For swirling 
ows where turbulence
is anisotropic, the \Reynolds Stress Model" (RSM),
which solves the transport equation for each component
of the Reynolds stress tensor, provides reasonable
results (for details of RSM, see Pope [17]).

The 
ow length scale is the pipe diameter, d =
25:4 mm; the velocities are normalized with the bulk
velocity, Ub = v�Re

d ; and the kinematic viscosity is set
to v = 10�6 m2/s for water.

2.2. Computational domain
The 
ow is three-dimensional and non-axisymmetric.
The numerical model simulates a cylindrical pipe of
1 inch (25.4 mm) diameter with a twisted-tape insert
using the �nite volume method. The computational
domain employs a 3D Cartesian coordinate system
XY Z centered on the pipe axis at the downstream edge
of the twisted tape with Z-axis orientated along the
pipe axial direction (Figure 3).

The mesh is an unstructured tetrahedral cell
selected for their capacity to accommodate the complex
3D shape of the twisted tape. Grid independence
tests for grids with 0.039, 0.027, and 0.021 average
side-length cells indicate that 0.027 cells represent the
optimum for these simulations. Grids with 0.039 cells
underestimate the pitch of the secondary vortices, while
those with 0.027 and 0.021 provide similar results.

The mesh with 0.027 cells contains approximately
4 million tetrahedral cells. The 17:72d long computa-
tional domain (equivalent to 450 mm for the pipe with
d = 25:4 mm) has three sections: a 1:57d long straight
pipe inlet section followed by a pipe section containing
the 180� twisted-tape insert with twist ratios 1.77, 2.36
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Figure 3. Computational domain for the twisted tape: (a) Inlet cross-section, (b) cross-section showing the inlet of the
twisted-tape, and (c) side view of the 17:72d long computational domain.

or 3.54 (45, 60 or 90 mm long) and ending with a
straight pipe section corresponding to the experimental
test section. The thickness of the twisted tape is
uniform and equal to 0:059d (1.5 mm). Figure 3 shows
the grid cross-section at the pipe inlet, the cross-section
at the twisted-tape inlet, and a side view of the entire
domain.

2.3. Numerical solver
The equations are solved using the commercial CFD
software FLUENT. The solver is 3D, pressure-based,
segregated, and implicit. The gradients are evaluated
using the node-based Green-Gauss method, which
provides second-order spatial accuracy and improved
results for unstructured tetrahedral meshes compared
with the cell-based scheme [18,19]. The momentum
equation is discretized using a MUSCLE scheme [20]
(Monotone Upstream-Centered Schemes for Conser-
vation Laws). The pressure velocity coupling is
implemented using the PISO (Pressure-Implicit with
Splitting of Operators) method with skewness correc-
tion, which is part of the SIMPLE family of algo-
rithms [11]. The PISO coupling scheme provides faster
convergence on meshes with a high degree of distor-
tion [21]. The pressure discretization is implemented
using the PRESTO method (PREssure STaggering
Option), which provides improved accuracy for 
ows
with high swirl numbers, high-speed rotating 
ows, and

ows in strongly curved domains compared to the other
models available [22].

The 
ow is solved with both coarse-mesh DNS
and RANS modeling simulations. With the RANS

equations, the Reynolds stress is modeled using the
well-known Reynolds Stress Model (RSM) [23], which
is recommended for swirling 
ows and 
ows with sec-
ondary motion where the turbulence is anisotropic [17].

At the walls, the near-wall Reynolds stresses and
the dissipation rate are calculated with the standard
wall functions, as proposed by Launder and Spald-
ing [24]. The stresses are speci�ed explicitly assuming
that equilibrium and the log-law are valid near the
walls, while convection and di�usion are neglected in
the stress transport equations.

No-slip boundary conditions are applied on solid
surfaces (on the wall and twisted tape). The in-

ow velocity pro�le was determined experimentally
by running a test with a simple pipe, without the
twisted tape. The experiments showed that, despite
the large Reynolds number used, the honeycomb 
ow
straightener and the 9:1 contraction maintained the

ow at close to low turbulent 
uctuation at the twisted-
tape inlet for the entire velocity range investigated.
The experimental inlet pro�le used in the simulations
is 
at with speci�ed axial inlet velocities Vz=Ub = 1
(Figure 4) for all Re investigated. The turbulent
intensity at the inlet determined from experiments is
about 1% for the turbulent simulations [12].

The solution is considered satisfactory when con-
vergence criterion "i < 10�3 is satis�ed, where "i
represents the relative errors for the three momentum
equations along each coordinate axis and the mass
conservation. For RANS simulations, the residuals
of the six components of the Reynolds stress tensor
are monitored in addition to the residuals of mass
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Figure 4. Normalized average axial velocity Vz=Ub (a)
and normalized rms 
uctuations of the axial velocity
v0z=Ub (b) at Re = 7:7� 104 (Ub = 3 m/s) in the absence
of the twisted tape at two axial locations, z = 40 mm
(1:57d) and z = 300 mm (11:81d) downstream of the
contraction end (from LDV measurements [12]).

and momentum. Comparisons with experimental data
are also used to assess the accuracy of the numerical
results.

3. Results and comments

3.1. Model validation
The numerical model is validated by comparing the
pitch of the helical vortices (qualitative) and the tan-
gential velocity pro�le (quantitative) with 
ow visual-
ization and LDV measurements, respectively. Figure 5
shows numerical results obtained through the coarse-
mesh DNS simulation for the twisted tape with twist
ratio yr = 2:36 (60 mm pitch tape) at Re = 7:7 � 104

(bulk velocity 3 m/s) side by side with a photo recorded
during experimental tests. The helical vortices are

identi�ed from the numerical simulation results by
isobar surfaces of low-pressure region, corresponding to
the location of the air bubble accumulation observed in
the experiments.

By comparing the pitch of the helical vortices and
their axial and radial positions inside the pipe, the
results of the coarse-mesh DNS match the experimental
images both in the developing region inside the twisted
tape and in the stable region inside the straight
pipe. Inside the straight pipe, the pitch of the helical
vortices is approximately 3.15d (80 mm) both in the
experiments and in the numerical simulations.

The reference value of p = 1 for the isobar surfaces
used for this case to identify the helical vortices is
selected to match approximately the thickness of the
bubble streams observed in experiments. The pathlines
calculated numerically (Figure 5(b)) also match well
with the few short pathlines of small air bubbles visible
in the experimental visualization, as a result of the
fast 
ow motion relative to the exposure time of 4
milliseconds (Figure 5(a)).

Similar comparisons showing the entire experi-
mental test section for the 
ows induced by all the
twisted tapes available (yr = 1:77, 2.36 and 3.54) at
Re = 7:7 � 104 are shown in Figures 6 to 8. The
pitch and position of the helical vortices predicted by
the coarse-mesh DNS are in good agreement with the
experiments.

The pitch of the helical vortices is approximately
2.36 (60 mm) for the twisted tape with yr = 1:77, 3.15
(80 mm) for the twisted tape with yr = 2:36 and 4.72

Figure 6. Helical vortices generated by a twisted tape
with twist ratio of yr = 1:77 (45 mm pitch) at
Re = 7:7� 104 from (a) high speed visualization and (b)
numerical results.

Figure 5. Experimental and numerical visualizations of the development of the helical vortices for the twisted tape with
yr = 2:36 at Re = 7:7� 104: (a) Side-view photo of air bubble streams, and (b) side view plot of isobar surfaces (p = 1)
and pathlines calculated from DNS results.
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Figure 7. Helical vortices generated by a twisted tape
with a twist ratio of yr = 2:36 (60 mm pitch) at
Re = 7:7� 104 with (a) high speed visualization, and (b)
numerical results.

Figure 8. Helical vortices generated by a twisted-tape
with a twist ratio of yr = 3:54 (90 mm pitch) at
Re = 7:7� 104 with (a) high speed visualization and (b)
numerical results.

Figure 9. Helical vortices induced by a twisted tape with
yr = 1:77 at Re = 7:7� 104: (a) Isobar surfaces of p = 1
for the DNS simulations, and (b) isobar surfaces of p = 1
for the RANS simulation.

Figure 10. Helical vortices induced by a twisted-tape
with yr = 2:36 at Re = 7:7� 104: (a) Isobar surfaces of
p = 1 for the DNS simulation, and (b) isobar surfaces of
p = 1 for the RANS simulation.

(120 mm) for the twisted tape with yr = 3:54, both in
the experiments and in the numerical simulations. The
reference values for the isobar surfaces, which identify
the vortex cores, are at p = 1 for all twisted tapes.

Figures 9 and 10 allow a comparison between the
pitch of the helical vortices induced by the twisted tape
with yr = 1:77 and yr = 2:36 calculated with both
DNS and RANS simulations. As shown before, the
DNS predicts the characteristic pitch of the co-rotating
vortices observed in the experiments. The RANS
simulation, however, shows signi�cant discrepancies
with the experiments.

The pitch determined using the turbulent simula-
tion is approximately 25% longer for both the twisted
tape with yr = 1:77 (75 mm pitch instead of 60 mm
measured in experiments) and the twisted tape with
yr = 2:36 (100 mm instead of 80 mm measured

in experiments). Once the vortices are out of the
twisted tape, the pitch seems to be preserved to a
relatively constant value inside the straight pipe for
both the laminar and turbulent models. As such,
the error in the turbulent model is likely due to a
slower vortex development inside the twisted tape in
the turbulent model, not due to excessive dissipation
inside the straight pipe. The 
ow entering the twisted
tape is laminar, while the 
ow inside the straight pipe
is turbulent; thus, the vortices are generated in a
transitional 
ow inside the twisted tape.

The fact that the pitch does not vary with Re
observed in the experiments suggests that turbulence
does not have a signi�cant e�ect on the helical vortices
for the 14d test section starting from the downstream
end of the twisted tape. These results show that
the DNS provides a more accurate description of the
transitional 
ow involved in the vortex generation, or
in other words, the RANS simulations overpredict the
e�ect of turbulent 
uctuations.

In addition to the qualitative comparison with
the experimental visualization, the numerical models
are also validated quantitatively against the LDV mea-
surements. Figure 11 shows a comparison between the
experimental measurements of the average tangential
velocity pro�les and tangential velocity pro�les calcu-
lated with DNS across the horizontal diameter at two
axial locations. The comparison between experimental

Figure 11. Comparison between experimental average
tangential velocity pro�les and calculated tangential
velocity pro�les from the numerical simulation for the
tape with yr = 2:36 at Re = 7:7� 104 (Ub = 3 m/s): (a)
Between the helical co-rotating vortices and (b) through
the helical co-rotating vortices.
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and numerical results is shown at two axial locations{
one location where the co-rotating helical vortices are
in a vertical position (i.e., on top of each other),
and the second location where the co-rotating helical
vortices are in a horizontal position (i.e., side-by-side
of each other). When the helical vortices are in a
vertical position (or on top of each other), the velocities
are measured between the helical vortices (Figure 2),
since the line of LDV measurement is along the x-
axis (horizontal). When the helical vortices are in a
horizontal position, the velocities are measured through
the helical vortices (Figure 2). Since the pitch is not
exactly the same in all cases, the axial location for each
case could vary as much as 10%.

The tangential velocity pro�les from DNS results
match the trends and the maximum values observed ex-
perimentally, yet with a small 0.6d axial displacement,
while the average tangential velocity pro�les calculated
with the RANS model capture the trends from the ex-
perimental measurements and, yet, show more di�used
and weaker co-rotating vortices. The underestimate
of the vortex strength and the overprediction of the
pitch result from the underestimation of the vortex
strength inside the twisted tape by the RANS model.
The characteristic of the helical vortices downstream of
the twisted tape is sensitive to the early development
of the vortices inside the twisted tape.

The variation of the normalized tangential veloc-
ity with Re for the entire range of Re from 104 to
105 by the experimental measurements and DNS is
presented in Figure 12. The tangential velocities are
normalized with the bulk velocity corresponding to Re.
The pro�les collected through the co-rotating helical
vortices display the counter-rotating 
ow at the center.
The numerical results at z=d = 8:03 (Figure 12(b))
match well with the experimental pro�les measured at
z=d = 7:48 (Figure 12(a)). The DNS captures the
change in the velocity pro�le at Re = 104, but not
its magnitude.

3.2. Vortex identi�cation
Previously, the helical vortices have been identi�ed in
the numerical simulation results by isobar surfaces of
low pressure [25] which correspond to the region of air
bubble accumulation in the experimental 
ow visual-
izations. That method is con�rmed in this section by
the closed streamline [25,26] and �2 method [27].

Figure 13 shows the velocity vectors and the
streamlines in the cross-section plane at z=d = 6:57
for the 
ow induced by a twisted tape with yr = 2:36
at Re = 7:7 � 104. The closed streamlines indicate
the presence of the helical vortices and, also, the main
rotation around the pipe centerline, all in clockwise
(positive) rotation. The primary vortex (or main swirl)
is not identi�ed by the low-pressure method, as the

Figure 12. Variation of the normalized tangential
velocity with Re: (a) Experimental pro�les at z=d = 7:48,
and (b) numerical results at z=d = 8:03. In both cases, the
pro�les collected through the co-rotating helical vortices
display counter-rotating 
ow, as reported in previous
studies [12,28].

Figure 13. Stream lines visualization of the velocity �eld
in the cross-section plane z=d = 6:57 in the 
ow induced
by a twisted-tape with yr = 2:36 at Re = 7:7� 104.

pressure is the lowest in the cores of the two co-rotating
vortices.

In Figure 14, the cores of the secondary vortices
are identi�ed by �2 method in addition to the isobar
surfaces of low pressure, as done in the previous
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Figure 14. Comparison between vortex identi�cation
with isobar surfaces and �2 lines for (a) full domain and
(b) close-up view of the twisted-tape.

section. This �gure shows the entire domain, as
well as a twisted-tape close-up, where the centers of
the connected regions with �2 < 0 are marked by
line segments. The isobar surfaces have been made
transparent, which allows �2 lines to be visible at the
centers of the low-pressure isobar surfaces.

The plots con�rm that the isobar surfaces are
reliable in identifying the vortex cores at high Re,
where the pressure gradients generated by the swirling
motion are larger than viscous e�ects. All the identi-
�cation methods used con�rm that the large, stable
structures that intuitively were considered vortices
based on the velocity vectors in the cross-section are
actually vortices according to generally accepted vortex
identi�cation criteria. These results con�rm that the
air bubbles visualized in the experiments are indeed
showing co-rotating helical vortices in the swirling 
ow
induced by short twisted tapes. The isobar surface
remains the most convenient method for this investi-
gation as it allows a direct comparison between the
numerical results and the experimental visualizations.

4. Flow �eld analysis

As the helical vortices behind twisted tapes have never
been observed before, the numerical simulation results
will be used next to provide an in-depth analysis of
their behavior and their interaction with the main
swirl. The advantage o�ered by the numerical simu-
lation compared to the experimental investigation is
that it provides entire the 
ow variables throughout
the domain.

Figure 15 shows a perspective view of the 
ow
�eld induced by a twisted-tape with yr = 2:36 inside a
straight pipe at Re = 7:7 � 104 calculated with DNS.
The cross-sectional plane shows the velocity vectors,
while the pathline of particles originating along a
horizontal line (x-axis) at inlet of the pipe reveals the
complex 3D motion created by the interaction of the
two co-rotating vortices and the main swirl. The isobar
surfaces of p = 1 mark the cores of the helical vortices.

The presence of the helical vortices downstream
of twisted tape was �rst indicated by the presence of
counter-rotating 
ow in LDV measurements [28,29].
Later, the velocity �eld was recreated from the ex-
perimental velocity plots by Cazan and Aidun [12].

Figure 15. Isobar surfaces, pathlines, and velocity
vectors identifying helical co-rotating vortices in the 
ow
�eld induced by a twisted tape with yr = 2:36 at
Re = 7:7� 104 calculated with DNS (perspective view).

Figure 16(a) shows that the velocity �eld reconstruc-
tion [12] is correct, as the velocity �eld calculated with
the laminar simulation is qualitatively similar to the
one reconstructed from the LDV measurements.

Figures 16(b) shows the tangential (azimuthal)
velocity distribution along the horizontal (x) and verti-
cal (y) axes. The velocity pro�le measured through the
co-rotating vortices displays a distinct counter-rotating

ow at the center of the pipe. The azimuthal (positive)
component of velocity induced by the main swirl is
small near the pipe centerline. However, the tangential
velocity component induced by the co-rotating helical
vortices in the opposite direction (negative) near the
centerline is much stronger compared to the main swirl.
The net e�ect is a counter-rotation to the main swirl at
the central core of the pipe. The counter-rotating re-
gion is not axisymmetric, that is, the azimuthal velocity
along the (horizontal) x-axis increases to a minimum
(negative) when the co-rotating helical vortices are
placed side by side along the x-axis, and it increases
to a maximum (positive) when they are on top of each
other.

Figure 16(c) shows the pressure distribution
where the e�ect of the co-rotating vortices is clearly
visible. Large pressure drop inside the cores of the
helical vortices is responsible for the air bubble ac-
cumulations in the experimental visualizations. The
pressure distribution shows that the two vortices have
slightly di�erent strengths, possible as an e�ect of the
twisted-tape wake at the exit of the twisted tape. The
presence of the helical vortices also reduces the axial
velocity, which has maxima between the vortices and
minima inside the co-rotating vortices (Figure 16(d)).

4.1. Vortex inception and development
The main goal of the numerical simulations presented
here is to verify the hypothesis proposed in our previ-
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Figure 16. Variation of the 
ow parameters between and through the helical vortices (along the horizontal and vertical
diameters, respectively) for the 
ow induced by a twisted tape with yr = 2:36 at Re = 7:7� 104 (Ub = 3 m/s) in the
cross-section plane at z=d = 6:57 downstream of the twisted-tape showing (a) cross-sectional velocity vector plot, (b)
azimuthal velocity, (c) pressure, and (d) axial velocity.

ous article [12] that the helical vortices evolve from
pairs of counter-rotating vortices, formed inside the
twisted tape. That hypothesis attempted to match
the experimental LDV measurements showing only
co-rotating vortices immediately downstream of the
twisted tape with results published by others presented
in the Introduction. The high resolution of the velocity
�eld calculated with the numerical model allows a
detailed investigation of the 
ow behavior leading to
the vortex formation and of the 
ow characteristics
of the helical co-rotating vortices downstream of the
twisted tape. As the 
ow behavior downstream of the
twisted tape matches very well with the experimental
observations, it is assumed here that the description of
the vortex formation inside the twisted tape is equally
accurate.

Velocity vector plots in cross-section planes in
Figure 17 show the 
ow development inside the twisted

tape from the inlet to downstream of the swirling inside
the straight pipe. In this case, the twisted tape has a
twist ratio, yr = 2:36, (60 mm pitch) at Re = 7:7� 104

(bulk velocity of 3 m/s). The plots show that the
helical vortices actually evolve from single co-rotating
vortices and not from pairs of counter-rotating vortices,
as hypothesized before.

In order to make the �gures clear, the positions of
the cross-section planes are expressed both as angle of
twist and as the corresponding physical distance from
inlet plane.

As the 
uid enters the twisted tape, the no-slip at
the tape surface (Figure 17(a) and (b)) creates vorticity
and pressure gradient within each section. As the
tape continues to twist, the 
ow along the tape creates
large centrifugal forces near the axis projecting the 
ow
toward the pipe wall (Figure 17(e) and (f)). The low-
pressure region at the corner with the rotation increases
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Figure 17. Vortex formation of a twisted tape with yr = 2:36 (60 mm pitch) at Re = 7:7� 104. The cross-section planes
inside the twisted tape (b to j) and downstream of the twisted tape (k and l) progress from the far end of the twisted tape.

in size. The centrifugal force contours in Figure 17(f)
are contours of �V 2

� =r. After 75� twist (25 mm inside
the twisted tape), the centrifugal force on one side and
the curved pipe wall on the other side push the stream-
lines closer together, creating a converging channel and
accelerating the 
ow. The 
ow acceleration near the
pipe wall and the centrifugal ejection move the low-
pressure region from the corner of the channel toward
the pipe axis, and the 
ow streamlines are pulled by
the low-pressure region until they close into a vortex
(Figure 17(g) and (h)). As the vortex co-rotates with
the main 
ow, it also grows in strength as the swirl
increases. As it grows, the secondary vortex changes its
position inside the semicircular channel in an apparent
move against the 
ow (Figure 17(i) and (j)). This
motion against the 
ow is likely due to conservation
of angular momentum as the vortex tends to preserve
its rotation axis direction and oppose the change forced
by the tape. Downstream of the twisted tape, the two
co-rotating vortices maintain their helical formation
by rotating with the main 
ow into the straight pipe

(Figure 17(k) and (l)). The relative position of the
vortex at the exit determines the pitch of the helical
vortices inside the straight pipe.

5. Conclusions

One of the reasons that previous authors proposed a
pair of counter-rotating vortex structures inside the
twisted tape was based on the fact that measured [3]
or simulated [5] axial velocity contours displayed two
peaks. Figure 18(a) shows that the axial pro�le indeed
has two peaks; however, these are created by a single
co-rotating vortex as shown by the velocity vectors in
Figure 18(b).

The smoke visualization of Manglik and Ran-
ganathan [8] at low Re showed one vortex in the
direction of rotation; however, the rest of the �eld did
not show the same distinct spiral. The measurements
of Seymour were done with a probe inserted in the

ow, which could have altered the 
ow �eld. Given
the perfect match between experiments and the sim-
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Figure 18. Axial velocity contours (a) and velocity
vectors (b) at, the exit of the twisted tape with yr = 2:36
at Re = 7:7� 104.

ulations presented in this study, the vortex formation
mechanism described here appeared to be reliable.

The numerical simulations presented here recov-
ered the characteristics of the helical co-rotating vor-
tices observed in previous experiments [12] and added
further details of the 
ow �eld. At the same time, the
results provided an insight into the formation of the
secondary vortices inside the twisted tape, modifying
previous hypotheses. The numerical results did not
agree with previous studies, reporting the presence of
two counter-rotating vortices inside the twisted tape.

A detailed mechanism of the vortex formation
was described, showing that the secondary motion was
a result of single co-rotating vortices formed on each
side of the twisted tape. These vortices result from
vortex generation and pressure imbalance created near
the inlet of the twisted tape. Moreover, it was shown
that the vortex formation was described by DNS better
than by the RSM turbulent model.
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