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Abstract. This study considers a secure network coding problem in which some secret
keys are shared among legitimate nodes, and there exists an eavesdropper that is able to
hear a subset of links. We show the equivalency of secure network coding under weak and
strong secrecy conditions. For linear network coding, we show a stronger result: equivalency
of \perfect secrecy and zero-error constraints" to \weak secrecy and �-error constraints".
This is a secure version of the result obtained by Langberg and E�ros on the equivalence of
zero-error and �-error regions in the network coding problem with co-located sources. Jalali
and Ho exploited extractor functions to prove the weak and strong rate region equivalency
for this network; however, to prove this equivalency, some tools are developed in random
binning, and the equivalency in a slightly more general setting is proved.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

A reliable and secure communication requires low error
probability and low information leakage. However,
there are di�erent metrics for error probability and
information leakage. Two important reliability metrics
are � or zero probability of error. An �-error criterion
requires the (average or maximal) error probability
to vanish as the blocklength increases, while a zero-
error criterion demands the error to be exactly zero
for every given blocklength. Three important security
metrics include weak, strong, or perfect secrecy. A
weak notion of secrecy requires the percentage of the
message that is leaked to vanish as the code blocklength
increases, while a strong notion of secrecy requires the
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total amount of leaked information (not its percentage)
to vanish as the blocklength increases. Perfect secrecy
requires absolutely zero leakage of information for every
given blocklength.

These reliability and security metrics lead to dif-
ferent notions of capacity, which can be quite di�erent.
For instance, zero-error capacity, which was originally
introduced by Shannon [1], can be zero in a point-
to-point channel, while �-error can be non-zero for
the same channel. One can then ask: \how does
capacity behave under di�erent reliability and security
metrics?" There are some works in the literature that
address this interesting question. In [2,3], the authors
showed that, in the network coding problem with co-
located sources, the rate region did not increase by
relaxing zero-error to the �-error condition. Maurer
and Wolf [4] proved the rate region equivalency of weak
and strong secure conditions in the source-model secret
key agreement problem. The authors in [5] exploited
the same approach as in [4] to prove the rate region
equivalency for a more general network with multiple
sources and sinks. Unlike the model adopted in this
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work, [5] considered an acyclic topology for the network
and, also, assumed that the transmitters had separate
messages, not a common message to send. In [6],
the equivalency of weak and perfect secrecy conditions
(with �-error probability) for the secure index coding
problem was shown. Moreover, it was shown that
zero-error probability could be achieved at a cost of a
multiplicative constant. To the best of our knowledge,
no other work except [6] has concentrated on the
equivalency of weak and perfect secrecy. However,
the setup of this problem, reviewed in Figure 1, is
restricted. For instance, the adversary is assumed
to have full access to the communication links, and
the shared keys are either shared between pairs of
nodes, or all of the nodes (no key is shared between
subsets of size three for instance). Furthermore, the
network topology of index coding is a special case
of wireline networks. While there are many works
addressing the security aspects of wireline networks [7-
18] in various settings, as far as we know, Ref. [5] is
the work that studied how the secrecy region changes
with weak and strong secrecy constraints in the secure
network coding problem. Finally, important aspects
of secure communication such as secure throughput in
the presence of an active adversary who can corrupt
a limited number of links were considered. For more
details about the works on the secure network coding
problem, one can refer to [17].

1.1. The authors contribution

This study considers a general wireline network consist-
ing of sources, intermediate nodes, and sinks, which
are interconnected by error-free links. The links
are directional with given capacities. Thus, wireline
network can be represented by a directed weighted
graph. This graph is allowed to have directed cycles.
The source nodes have messages that are desired by
sink nodes. Moreover, nodes in the network have access
to in�nite private randomness (only available to the
nodes themselves) and, also, a number of rate-limited
shared keys. Each key is shared among a subset of
sources, relays or destination nodes. These secret keys
are helpful in hiding messages from an eavesdropper
who has access to a subset of the links.

Our main result is to show that changing weak to
perfect conditions and �-error to zero-error constraint
does not a�ect the achievable secure rate region of
linear network coding (if nodes are restricted to linear
operations). When the nodes are allowed to perform
non-linear operations, weak and strong secrecy condi-
tions are shown to be equivalent. In order to prove
the rate region equivalency of weak and strong secrecy
conditions, tools from random binning of sources are re-
quired. Output Statistics of Random Binning (OSRB)
is a tool introduced in [19] to describe the joint pmf of
bin indices of multiple random variables. To prove our

Figure 1. The schematic of a perfectly-secure index coding problem. This is a generalization of Shannon's cypher
system [26] to an index coding setup, which was introduced by Birk and Kol [27] in the context of satellite communication
and studied further in [27-36]. In the secure index coding problem, there is a transmitter sending t messages
M1;M2; � � � ;Mt to t legitimate receivers in the presence of an eavesdropper. Each receiver i, i 2 [t] has a side information
set Si which is a subset of messages fM1;M2; � � � ;Mtg except Mi. Furthermore, there is a common key K shared among
all the legitimate parties and private keys K1;K2; � � � ;Kt shared between the transmitter and each of the receivers. The
transmitter applies a (randomized) function to the messages and keys to compute public code C. Then, C is broadcast,
and all the receivers, including the eavesdropper, can hear C. Each receiver, i, applies a function to the information
available to it, namely K, Ki and messages in Si to compute Mi. The goal is to �nd the minimum number of information
bits that should be broadcast by the server so that each client can recover its desired messages with zero-error probability;
further, the eavesdropper could not retrieve any information about the messages by having C (perfect secrecy).
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results, some new versions of the OSRB theorem are
stated and proved.

The rest of this paper is organized as follows.
In Section 2, the system model is de�ned. Section 3
lays out the main results. The proofs are presented in
Section 4. Some results of linear codes are provided in
Section 3.4. Section 5 concludes this paper.

1.2. Notation
Random variables are denoted by capital letters and
their values by lowercase letters. Herein, [k] is used to
denote the set of f1; 2; � � � ; kg. For a given subset S �
[t] and a sequence of random variables M1;M2; � � � ;Mt
are used MS to denote the set fMi : i 2 Sg. When
S = [t] is the full set, instead of M[t], bold font is used
to denote full sets or its vector form, i.e., M is used
to either denote the message set fM1;M2; � � � ;Mtg or
the vector

�
M1;M2; � � � ;Mt

�
. Whether M is a set or

a vector is clari�ed in the context. The total variation
distance between two pmfs, pX and qX , is de�ned as
follows:

jpX � qX j1 =
1
2

X
x

jpX(x)� qX(x)j:

In addition, 1[�] is used to denote the indicator func-
tion; it is equal to one if the condition inside [�] holds;
otherwise, it is zero. f(n) = o(g(n)) means that
limn!1 f(n)=g(n) ! 0. Finally, all the logarithms in
this paper are of base two.

2. System model and de�nitions

2.1. System model
It is assumed here that there are t messages
M1;M2; � � � ;Mt. Let us denote the set of all messages
by M = fM1;M2; � � � ;Mtg. As shown in Figure 2, the

Figure 2. The directed graph representation of a wireline
network. Nodes of the network are connected to each
other via directed links of limited capacity. The directed
graph is allowed to have cycles. In this �gure, there are t
source nodes and u sink nodes. The models allow for
shared secret keys between various subsets of the nodes.
Each node produces its outputs on its ongoing links based
on its inputs, shared keys, and its own private randomness.

wireline network considered in this paper consists of
source nodes, receiver nodes (sink nodes), and some
intermediate relay nodes. The nodes (source, sink,
and intermediate nodes) are interconnected by error-
free point-to-point links. In addition, there exists an
eavesdropper who is able to hear some of the links.
Each source node has access to a subset of messages.
Similarly, each sink node desires to obtain a subset of
messages. The source and sink nodes are part of the
wireline network.

There is also a set of keys K = fK1;K2; � � � ;K�g
of limited rates, each of which is shared among a
subset of the nodes. Hence, every node can use its
available keys for encoding. Moreover, each source
or relay nodes can use a private randomness. Let us
denote the set of all private randomness vectors by
the set W = fW1;W2; � � � ;W�g. Random variables
M1; � � � ;Mt;K1; � � � ;K�;W1; � � � ;W� are mutually in-
dependent and uniform over their alphabet sets.

The edges of the wireline network have limited
capacity. For a code of blocklength n, an edge with
capacity Ce can carry at most n(Ce + �n) bits where
�n converges to zero as n tends to in�nity. Similarly, if
the rate of message Mi is RMi , then Mi is a binary
sequence of length nRMi in a code of blocklength
n. The same holds for the rate of shared keys RKi .
The aim of the nodes of the network is to maximize
communication rates RMi while minimizing key rates
RKi as much as possible in such a way that the desired
reliability (error probability condition at sinks) and
security conditions are met (Private randomness is
commonly considered as a free resource and studying
its rate is not of interest). The resulting fundamental
trade-o� between RMi and RKi describes the capacity
region of the problem.

It is assumed that the adversary can observe a
collection E of the edges in the network. By �xing
a coding strategy by the nodes in the network, the
eavesdropper will end up with a collection of observa-
tions from the network. Random variable C is used
to denote all the information the eavesdropped has
obtained. Random variable C is a function of M, K,
and W:

C = f(M;K;W):

Linear network coding:
In linear network coding, it is assumed that there is
a �nite �eld F. Each of variables Mi, Ki, and Wi
is a string of independent and uniformly distributed
symbols from �eld F. All the coding operations are
restricted to taking weighted linear combinations in F.
Then, eavesdropper's information C can be expressed
as follows:

C = AM +BK +GW; (1)
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for some matrices A, B, and G where:

M =
�
M1;M2; � � � ;Mt

�T ;
K =

�
K1;K2; � � � ;K�

�T ;
W =

�
W1;W2; � � � ;W�

�T :
2.2. Decoding and secrecy metrics
Decoding conditions:
- Zero-error decoding. Each receiver is able to decode

its desired messages with exactly zero-error proba-
bility for every given blocklength;

- �-error decoding. Each receiver is able to recover
its desired message with the vanishing probability of
error as the blocklength grows.

Secrecy conditions:
- Perfect secrecy. Assuming that K1; � � � ;K�;W1;� � � ;W� are mutually independent and uniform over

their alphabet sets, the conditional pmf p(C =
cjM = m) should not depend on the value of m
for any given c. Equivalently, for any distribution
on input message set M, we should have:

I(M; C) = 0; 8pM(m); (2)

as long as message set M, key set K, and private
randomness set W are mutually independent.

- Strong secrecy. In strong secrecy, the independence
between M and C no longer exists. There are two
de�nitions of �-strong secrecy in the literature [19,20,
Lemma 1]: given �1 > 0, the �rst de�nition requires
that:
I(M; C) � �1: (3)

The above equation can be also expressed in terms
of KL divergence:

D(pMCjjpMpC) � �1:
The second de�nition of strong secrecy requires a
bound on the total variation distance (instead of KL
divergence). Given some �2 > 0, we require:

kpMC � pMpCk1 � �2: (4)

Remark 1 (Connection between the two
de�nitions). Let us denote the alphabet set of M
by M. According to [20, Lemma 1], if �1-strong
secrecy of the �rst de�nition and �2-strong secrecy
of the second de�nition hold, then:

log2 e
2

�22 � �1 � �2 log
jMj
�2

;

provided that jMj > 4. Hence, if �1 becomes small,
�2 also becomes small, i.e., strong secrecy in terms of
mutual information implies strong secrecy in terms
of total variation distance. This can also be shown
by Pinsker's inequality as follows:

kpMC � pMpCk1 �
r

1
2
D(pMCjjpMpC) �

r
�1
2
:

For the reverse direction, assume that message Mi
takes values in f1; 2; � � � ; 2nRig where n is the block-
length, and Ri is the rate of the ith message. Then,
log jMj = n

P
iRi. If we can ensure that the

value of �2 decreases in blocklength n exponentially
fast, then n�2 converges to zero as n becomes large,
and �2 log(jMj=�2) will also converge to zero. This
will imply that �1 vanishes as n tends to in�nity.
Thus, if strong secrecy in terms of total variation
distance holds with an exponentially vanishing �2,
one can conclude the strong secrecy in terms of
mutual information.

- Weak secrecy. Similar to strong secrecy, M and C
are not independent; instead of Eqs. (2) and (3), we
say that �-weak secrecy holds if:

I(M; C) � � �H(M): (5)

According to the above de�nitions, perfect secrecy
condition (2) is stronger than strong secrecy condi-
tion (3), which in turn is stronger than weak secrecy
constraint (5).

Remark 2. Consider the weak secrecy condition
I(M; C) � � � H(M) and let M 2 f0; 1gnR be nR
uniform bits. Herein, n is the blocklength and R is the
coding rate. Then, the weak secrecy constraint becomes:

I(M; C) � � �H(M) = �nR;

which shows that normalized leakage 1
nI(M; C) � �0

where �0 = �R. Therefore, the weak secrecy condition
relates to the normalized leakage, while the strong
secrecy condition considers the unnormalized leakage.

2.3. Some de�nitions
To prove the equivalence of the weak and strong
secrecy, random binning concepts, which are de�ned
in the following, should be used:

� Random binning. In random binning, each realiza-
tion of a random variable is randomly mapped to a
bin index. Therefore, random binning is a random
function such as B :M! �M which uniformly and
independently maps each symbol m 2M to symbol
�m 2 �M. In other words, B = B(m) is a uniform
random variable on the set f0; 1; � � � ; j �Mj � 1g; for
any m1 6= m2 2 M, B1 = B(m1) is independent of
B2 = B(m2);

� Linear random binning. In linear random binning,
mapping function B is linear. Each (a�ne) linear
random binning has a matrix representation of the
form �M = AM +V , where A is the random matrix,
and V is the random vector, all with independent
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and uniform entries in F. M is considered as a
sequence of symbols in �nite �eld F with the length
of `m and bin index �M as a sequence of length ` �m
in F. Linear random binning matrix will be of size
A` �m�`m , and V will be of length ` �m;

� Distributed random binning. In distributed random
binning, there are a set of random functions Bi :
Mi ! �Mi, i 2 [t] where each Bi is a random
binning function and Bis are mutually indepen-
dent. Distributed linear random binning can be
characterized by matrices Ai and drift terms Vi,
�Mi = AiMi+Vi where entries of all of Ai and Vi are

mutually independent and uniform over F. It should
be noted that the following facts hold in distributed
linear binning:
(i) Uniformity property: For any values of mi and

�mi, we have:

P (Aimi + Vi = �mi) =
1
j �Mij ; (6)

(ii) Pairwise independence property: For any values
of mi, mj , �mi, and �mj , we have:

P(Aimi+Vi= �mi; Ajmj+Vj= �mj)=
1

j �Mij2 : (7)

3. Main results

3.1. From weak to strong secrecy for linear
and non-linear codes

Consider a collection fE1; E2; E3; � � � ; Erg of subsets
of edges of the communication network. Assume that
the adversary chooses an index i 2 [r] and eavesdrops
on the set of edges Ei of the network for the entire
communication.

Given message rates RMi , i = 1; 2; � � � ; t and key
rates RKi for i = 1; 2; � � � ;�, it is notable that these
message and key rates are achievable as asymptotically
and weakly secure if there is a sequence of codes
Cj whose message and key rates converge to RMi ,
i = 1; 2; � � � ; t and RKi for i = 1; 2; � � � ;� as j tends
to in�nity; furthermore, Cj is �j-weakly secure, i.e.,
satisfying:
I(M; C) � �jH(M);

for some vanishing sequence �j ! 0 as j tends to
in�nity. The mutual information should vanish when
the adversary chooses any set of edges Ei for i 2 [r]. It
is proposed that the given message and key rates are
achievable as asymptotically and weakly secure with
linear codes if one can �nd a sequence of linear codes
Cj with the above properties.

It is stated here that message rates RMi , i =
1; 2; � � � ; t and key rates RKi for i = 1; 2; � � � ;� are
achievable as asymptotically and strongly secure if a
similar condition holds, except that we require Cj to
be �j-strongly secure, i.e.:

I(M; C) � �j ;
for some vanishing sequence �j . Asymptotically,
strongly secure achievable rates with linear codes are
de�ned similarly.

Theorem 1 (From weak secrecy to strong
secrecy for linear and non-linear codes). Any
message and key rates RMi and RKi that are achievable
as asymptotically, weakly secure are also achievable
as asymptotically, strongly secure. In addition, any
message and key rates RMi and RKi that are achievable
as asymptotically, weakly secure with linear codes are
also achievable as asymptotically, strongly secure with
linear codes.

In order to prove the above theorem, tools from
random binning of sources that are given in the follow-
ing are required.

3.2. Output statistics of random binning
Output Statistics of Random Binning (OSRB) is a
tool introduced in [19] to describe the joint pmf of bin
indices of multiple random variables.

Theorem 2 (OSRB Theorem - Theorem 1 in
[19]). Consider dependent random variables (M1;M2;� � � ;Mt; C) with joint pmf p(m1;m2; � � � ;mt; c) on the
�nite alphabet set

Qt
i=1Mi�C. Let Mn, Cn be n i.i.d.

repetitions of (M; C) where M = (M1;M2; � � � ;Mt),
i.e.:

p(mn; cn) =
nY
i=1

p(mi; ci):

Moreover, it is assumed that distributed random bin-
ning function Bi : Mn

i ! �Mi = [2nRi ], i 2 [t] maps
each sequence of Mn

i independently and uniformly to
the bin index set [2nRi ] that induces the following pmf:

P (mn; cn; �m) = p(mn; cn) �
tY
i=1

1 [Bi(mn
i ) = �mi] ;

where mn = fmn
i ; i 2 [t]g and �m = f �mi 2 [2nRi ]; i 2

[t]g. Note that P (mn; cn; �m) shown by capital letter is
a random pmf, which is equal to pmn;cnjB1;B2;��� ;Bt for
each �xed binning.

According to the OSRB theorem, for each S � [t],
if the binning rate vector (R1; R2; � � � ; Rt) satis�es the
inequality,X
i2S

Ri < H(MS jC);

the expected value of the total variation of the joint pmf
P (cn; �m) from the pcn

Qt
i=1 p

U
[2nRi ] tends to zero as n

approaches in�nity:
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lim
n!1EB

P (cn; �m)� pcn
tY
i=1

pU[2nRi ]


1

! 0: (8)

In the above equation, B = fBi; i 2 [t]g is the set of
all random functions, and pU[2nRi ] refers to the uniform
distribution on the bin index set [2nRi ]. The expectation
in Relation (8) is to take over the random realization
of the binning mappings.

To prove our results, we state and prove the fol-
lowing improved version of the OSRB theorem, which
states that the average of the total variation distance in
Relation (8) converges to zero and exponentially fast.

Proposition 1. Assuming that all the random vari-
ables in the statement of Theorem 2 take values in �nite
sets, the expected value of the total variation of the joint
pmf P (cn; �m) from pcn

Qt
i=1 p

U
[2nRi ] tends to zero and

exponentially fast as 2��n for some constant �, as n
approaches in�nity.

A linear version of the OSRB theorem is also
required. Assume that Mis are vectors of symbols in a
�nite �eld F. Then, n, i.i.d. repetitions of Mi, namely
Mn
i , can be also understood as a (longer) sequence of

symbols in F. Thus, a linear random binning of rate Ri,
namely Bi : Mn

i ! �Mi = F nRi
log jFj , can be constructed

as �Mi = AiMn
i + Vi for some random matrices such

as Ai and vector Vi with mutually independent and
uniform entries. We can now state the linear version of
the OSRB theorem.

Theorem 3 (Linear OSRB). Assume that Mis
are the vectors of symbols in a �nite �eld. Theorem 2
holds if the general random binning is replaced with
linear random binning.

3.3. Simulation from a bin index
In a wireline network, a message M may be available
at multiple source nodes. In the proof of Theorem 1,
a type of coordination among the source nodes with
access to M is required. To ensure this coordination,
it is assumed that an additional common key is shared
among these source nodes. The rate of this extra key
is computed by the tool provided in this section.

Assume that X is distributed uniformly on some
alphabet set and letXn be an i.i.d. repetition ofX. Let
B = B(xn) 2 f0; 1; � � � ; 2nR � 1g be a random binning
of Xn at rate R. Given any particular realization of
the binning, we end up with some joint distribution
pBXn where B is a function of Xn. According to
this joint distribution, the conditional pmf pXnjB is
considered. Observe that multiple Xn may be mapped
to B = b; hence, pXnjB is not a deterministic channel.
We now ask for the minimum random bit rate required
to simulate channel pXnjB as de�ned by Steinberg
and Verdu in [21]. In other words, given input B of

the channel pXnjB , we ask for the minimum number
of uniformly random bits (independent of input B)
that we need to simulate channel pXnjB accurately.
In particular, if the simulated channel is denoted by
~pXnjB , the total variation distance:

kpBpXnjB � pB ~pXnjBk1;
is de�ned as a measure of the accuracy of channel
simulation [21].

Observe that H(XnjB) = H(Xn) � H(B) =
n log jX j�H(B) � n log jX j�nR. Intuitively speaking,
to simulate conditional pmf pXnjB , a random source
of average rate log jX j � R is required. The following
theorem shows that the rate log jX j � R + � (for any
� > 0) is su�cient with high probability.

Theorem 4. Consider some R < log jX j and � > 0.
Let T be a source of randomness, uniformly distributed
over an alphabet T satisfying 1

n log jT j � ~R = log jX j�
R + �. Given any realization of the binning, a deter-
ministic simulation function �(T;B) is imposed on the
channel:

~pXnjB(xnjb) =
1
jT j

X
t

1[�(t; b) = xn]:

Then, it can be claimed that one can �nd a determin-
istic simulation function � for any realization of the
binning such that:

EBkPBPXnjB � PB ~PXnjBk1 � 2��n;
converges to zero exponentially fast in n for some � >
0. Herein, the expectation is taken over all realizations
of the binning. Furthermore, if the binning from
Xn to B is linear, then one can �nd a deterministic
linear simulation function �(T;B) to satisfy the desired
property.

3.4. Results for linear codes
For linear codes, a stronger result is shown. More
precisely, in Theorem 5, it is shown that, for the linear
case, the rate region with a strongly-secure condition
is equivalent to one with a perfectly-secure constraint.
Theorem 6 states the equivalency of �-error to zero-
error rate region for the linear case.

Theorem 5 (From strong secrecy to perfect
secrecy for linear codes). Take an arbitrary linear
code C with adversary observing:

C = AM +BK +GW;

as de�ned in Eq. (1). If the strong secrecy constraint
I(M; C) � � holds for some � < 1, or the strong secrecy
constraint kpMC�pMpCk1 � � holds for some � < 1=2,
then code C is also perfectly secure, i.e., I(M; C) = 0.

Theorem 6 (From �-error to zero-error for
linear codes). Take an arbitrary linear code C over a
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�nite �eld F. If the average error probability of a sink
node is less than 1�1=jFj, then the error probability of
the sink node has to be zero.

4. Proofs

4.1. Proof of Theorem 1
We begin by assuming that r = 1, i.e., there is only
one set of edges E1 that the adversary can observe.
We show in Remark 3 how the result can be extended
to arbitrary r.

4.1.1. Assumptions and de�nitions
Some de�nitions: Assume that there are u sink
nodes and message Mi is desired by sinks Ti � [u].
Let us consider M̂ij to be the reconstruction of Mi by
sink j 2 Ti. Since the error probability of code C is �b,
By Fano's inequality, we have:

H(MijM̂ij) � h(�b) + �b log jMij; 8j 2 Ti: (9)

Let �i = h(�b) + �b log jMij, and:

� = max
i2[t]

�i: (10)

If we �x the coding operations at all nodes, the output
reconstructions and eavesdropper's information will be
the functions of message M, secret key K, and private
randomness W:�

M̂;C
�

= g(M;K;W):

Independent repetitions of code C : Assume that
the above code is independently run n times. In other
words, instead of considering one copy of message Mi,
assume that n i.i.d. copies Mi(1);Mi(2); � � � ;Mi(n)
exist for i 2 [t]. For each of n copies of the messages,
the given code is run, and the sinks produce recon-
structions M̂ij(1); M̂ij(2); � � � ; M̂ij(n) for i 2 [t]; j 2
Ti. We call expansion n i.i.d. repetitions of the
code and denote it by C n. Observe that the rate
of expanded code C n is equal to the rate of original
code C , because even though the links in the network
use n times a single code, the message communicated
over the network is also multiplied by n. Similarly,
the rates of secret keys shared among the network
nodes remain unchanged. By summing up the weak
secrecy conditions I(M(i); C(i)) � �a � H(M(i)) for
each repetition of the code, we obtain that:

I(M([n]); C([n])) � �a �H(M([n]));

where M([n]) = fM(1);M(2); � � � ;M(n)g is a collec-
tion of all messages of C n. It is observed that the weak
secrecy condition holds with the same parameter �a for
C n. However, the error probability of expanded code
C n is higher, because C n will be in error if an error

occurs in any of n iterations of the code. Nonetheless,
by properly appending the expanded space provided by
C n, we not only bring down the error probability, but
also go from weak secrecy to strong secrecy at a cost
of sacri�cing an asymptotically vanishing reduction in
message rates.

We can represent expanded code C n by i.i.d.
variables (M̂(i);C(i);M(i);K(i);W(i)) for i 2 [n] and
follow that:

(M̂(i);C(i)) = g(M(i);K(i);W(i)):

4.1.2. High-level structure of the proof
Suppose that there is a code C that satis�es the weak
secrecy condition with parameter �a, i.e.,

I(M; C) � �a �H(M); (11)

where C is the eavesdropper's side information from
observing edges in E1. In addition, assume that
the error probability of the code is �b. Then, a
sequence of strongly-secure codes C 0n is presented whose
information leakage vanishes as n tends to in�nity.
The message rates of C 0n converge to a number that
is at least RMi � �, and the key rates of C 0n converge
to a number that is at most RKi + �, where � is a
constant that depends only on �a and �b. Further-
more, � converges to zero as �a and �b converge to
zero. Constructing this sequence of strongly secure
codes completes the proof. This sequence of codes is
constructed by repeating original code C and properly
appending the repeated code.

4.1.3. Formal proof
Step 1: Construction of fMi and Fi for i 2 [t]:
Let Ri = log jMij. This quantity is proportional to
RMi of code C . In fact, if code C consists of k uses of
the network, then RMi = Ri=k is the message sent per
network use. Let:

~Ri = Ri � 2�a �H(M)� 2�; (12)

RFi = 2�; (13)

where � was de�ned in Eq. (10).
Observe that the repetitions of message Mi, i.e.,

Mi([n]), has alphabet set Mn
i . Two independent

binnings of Mn
i are considered: one into 2n ~Ri bins

and another into 2nRFi bins. These binnings are
done randomly and independently. By applying the
(random) binning mapping to Mi([n]), let us denote
the bin indices by fMi and Fi, respectively. The binning
mappings can be linear or non-linear depending on
whether we are proving the theorem for linear or non-
linear case.

According to Proposition 1, for any S � [t], if the
binning rate vector:�

~R1; RF1 ; ~R2; RF2 ; � � � ; ~Rt; RFt
�
;
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satis�es the following inequality:X
i2S

~Ri +RFi < H(MS jC) = H(MS)� I(MS ; C)

=
X
i2S

Ri � I(MS ; C); (14)

then one can �nd � > 0 such that for su�ciently large
enough n:

E
PfMFC([n]) � pUfMpUFpC([n])


1
� 2��n; (15)

where the expected value is over all of the random
binning mappings and pU is the uniform distribution.
Consider that Eq. (14) holds by the choice of ~Ri and
RFi given in Eqs. (12) and (13). The reason is that:X
i2S

~Ri +RFi =

 X
i2S

Ri

!
� 2�ajSj �H(M)

(a)�
 X
i2S

Ri

!
� �ajSj �H(M)� jSj � I(M; C)

�
 X
i2S

Ri

!
� �ajSj �H(M)� I(MS ; C)

<

 X
i2S

Ri

!
� I(MS ; C);

where (a) follows the weak secrecy condition.
Next, some Slepian-Wolf decoders should be de-

�ned here. Csisz�ar in [22, Theorems 1 and 3] proved
the existence of error exponents for the Slepian-Wolf
theorem [23] for random non-linear and linear binning.
This result implies that Mi([n]) can be recovered from
bin index Fi and side information M̂ij([n]) for any
j 2 Ti with an error probability of at most 2�n�i for
some �i > 0 if:

RFi > H
�
MijM̂ij

�
;

and n is su�ciently large. Note that the probability
of success of the Slepian-Wolf decoder is with respect
to random binning (computed by taking the statistical
average over all random binnings). Observe that RFi
given in Eq. (13) satis�es this inequality because of
Eqs. (9) and (10). Let:

RGi = 2�a �H(M) + 3�: (16)

As RGi+ ~Ri > H(Mi), by Theorem 4, one can simulate
the channel pMi([n])jfMi

using randomness of rate RGi
within an average total variation distance of at most
2�n�i for some �i > 0.

We claim that there is a deterministic binning
such that for some � > 0:

(i) We have:

pfMFC([n]) � pUfMpUFpC([n])


1
� 2��n: (17)

(ii) For any i, with probability 1 � 2��n, one can
recover Mi([n]) from bin index Fi and side in-
formation M̂ij([n]) for any j 2 Ti.

(iii) For any i, one can simulate the channel pMi([n])jfMi

using randomness of rate RGi within a total
variation distance of at most 2��n.

The reason is that we determine that the average
of the sum of the total variation distance of Rela-
tion (17) plus the error probabilities of the Slepian-Wolf
decoders plus the total variation distance of the channel
simulator converges to zero (exponentially fast) over all
random instances.

Hence, there must exist a deterministic binning (a
�xing of binnings) that makes this total sum converge
to zero (exponentially fast).

Step 2: Completing the proof using fMi and Fi
for i 2 [t]: A new code eC is constructed as follows:
the ith message is denoted by fMi and is uniformly
distributed over a set of size 2n ~Ri . The nodes of the
network also have shared keys of the same length as
they have in C n. Additionally, the source nodes that
obtain the ith message fMi are assumed to share a
common secret key of rate RGi . This secret key is
used by them to simulate the same channel pMi([n])jfMi

.

The source nodes pass their messages fMi through this
channel to produce Mi([n]). Having produced Mi([n]),
the nodes can �nd Fi (which is a function of Mi([n])).
Furthermore, with their simulated Mi([n]), we can use
the encoding and decoding operations of C n. This gives
the adversary random variable C([n]). Furthermore,
the source nodes send variables Fi through the network
links. This comes at a negligible additional cost since
RFi can be made arbitrarily small. This gives the
adversary random variables C([n]) and F.

Secrecy and reliability analysis: Observe that the
induced pmf on fMi, Mi([n]) and Fi is as follows:

pUfM � ~pM([n])jfM � pF;C([n])jM([n]):

By Relation (17):

kpUfM � pfMk1 � 2��n;

and by (iii) in Step 1:

kpfM ~pM([n])jfM � pfMpM([n])jfMk1 � 2��n:

Referring to [19, Lemma 3, part 3], we obtain that:

kpUfM � ~pM([n])jfM � pF;C([n])jM([n]) � pfM
� pM([n])jfM � pF;C([n])jM([n])k1 � 2� 2��n:
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Hence, the induced pmf of the code eC is very close
to the induced pmf of C n with fMi and Fi created
as deterministic bin indices of Mi([n]). According to
Relation (17), it can be concluded that the strong
secrecy condition (total variation distance de�nition)
holds with the total variations in the new code eC ,
message vector fM is almost independent of F, C([n]).
Since the distance dropping exponentially fast in n,
based on Remark 1, the strong secrecy condition is
obtained in the sense of vanishing mutual information
between fM and F, C([n]).

The sink nodes use the encoding and decoding
operations of C n. This allows the sinks to produce
reconstructions M̂ij(1); M̂ij(2); � � � ; M̂ij(n). Since Fis
are also sent from source nodes to sink nodes via the
network links, based on the property (ii) given above,
the sinks can decode their intended messages with
vanishing error probability. This completes the proof.

Remark 3. An eavesdropper who can choose to
eavesdrop on anyone of Eis for some i 2 [r] can be
thought of as r eavesdroppers with the ith eavesdropper
gaining access to the messages on the set of edges in
Ei. It is also assumed that Ci is the information
obtained by eavesdropper i from the set Ei of edges in
the network. We proved above that if the weak secrecy
condition I(M; Ci) � �i �H(M) holds, then there exists
a �i > 0 by random binning, such that for su�ciently
large enough n.

E
PfMFCi([n]) � pUfMpUFpCi([n])


1
� 2��in:

Accordingly, there exist �1; �2; � � � ; �r > 0 such that:

rX
i=1

E
PfMFCi([n]) � pUfMpUFpCi([n])


1
�

rX
i=1

2��in:

Additionally, by the linear property of the expectation,
one can write:

E
rX
i=1

PfMFCi([n]) � pUfMpUFpCi([n])


1

�
rX
i=1

2��in � r � 2�mini �in:

Because there are �nitely many subsets Ei of edges in
the network, r is bounded from above by a constant that
does not depend on n. Thus, there exists � > 0 such
that:

E
rX
i=1

PfMFCi([n]) � pUfMpUFpCi([n])


1
� 2��n:

Therefore, for each and every i, we have:

E
PfMFCi([n]) � pUfMpUFpCi([n])


1
� 2��n:

Accordingly, there exists a deterministic binning satis-
fying strong secrecy condition for each i.
kPfMFCi([n]) � pUfMpUFpCi([n])k1 � 2��n; 8i 2 [r]:

4.2. Proof of Proposition 1
This follows the proof of the OSRB theorem (Theorem
1 in [19]) with minor modi�cations. Herein, we only
mention how the proof should be modi�ed without
repeating the entire proof. In our re-statement of
the OSRB theorem above, a notation that is suitable
for our purposes here is used, which is di�erent from
the one used in [19]. However, just for the purpose
of writing the modi�cation that needs to be made in
the proof given in [19], the notation and de�nitions
of [19] are adopted. We refer the reader to [19] for the
de�nition of variables that we use below.

The proof begins by bounding the total variation
distance between two distributions with their �delity
(Lemma 7 of [19]). The paper then states that the
expected total variation distance goes to zero, it su�ces
to show that the corresponding expected �delity term
goes to one as n goes to in�nity. Now, to show that
the total variation distance goes to zero exponentially
fast as 2��n, it su�ces to show that the \one minus
the expected �delity term" goes to zero exponentially
fast. This follows the fact that if an arbitrary sequence
1 � fn tends to zero at least exponentially fast, thenp

1� f2
n =

p
(1� fn)(1 + fn) also tends to zero

exponentially fast.
This �delity term is bounded from Eqs. (104)-

(106) as follows:

E �F (P (zn; b[1:T ]); p(zn)pU (b[1:T ]))
�

� p(An� )

s
1

1 +
P
;6=S�V 2n(RS�H(XsjZ)+�) ; (18)

where � is an arbitrary positive number and An� is the
weak typical set de�ned as follows:

An� :=
�

(xn[1:T ]; z
n) :

1
n
h(xn[1:T ]jzn)�H(X[1:T ]jZ)��

�
:
(19)

Now, since � is �xed, we know that the probability of
i.i.d. Xn

[1:T ], Z
n being typical not only converges to one,

but also converges exponentially fast. Accordingly:s
1

1 +
P
;6=S�V 2n(RS�H(XS jZ)+�)

�
s

1� X
;6=S�V

2n(RS�H(XS jZ)+�)

� 1� X
;6=S�V

2n(RS�H(XS jZ)+�); (20)
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which converges to one exponentially fast if, for each
S � [1 : T ], we have RS < H(XS jZ) � �. Therefore,
both terms on the right-hand side of Relation (18)
converge to one exponentially fast. Thus, their product
also converges to one exponentially fast.

4.3. Proof of Theorem 3
Eqs. (94) and (98) in [19] represent the only space
where random binning enters a calculation in the proof
of the OSRB theorem in [19]. However, Eq. (94) in [19]
only uses the uniformity condition which is valid for
linear binning (Eqs. (6), and (98) in [19] only uses the
pairwise independence property that is also valid for
linear binning (Eq. (7)).

4.4. Proof of Theorem 4
Fix a realization of the binning mapping B. Since Xn

is uniformly distributed, the conditional distribution of
Xn givenB = b is also uniform over the set of sequences
xn that are mapped to B = b, i.e., fxn : B(xn) =
bg. We can successfully simulate pXnjB=b if we can
choose a sequence xn uniformly at random from the set
fxn : B(xn) = bg. This is possible if jfxn : B(xn) =
bgj � 2n ~R. Hence, the total variation distance can be
bounded from above as follows:pBpXnjB � pB ~pXnjB


1

�X
b

pB(b)1
hjfxn : B(xn) = bgj > 2n ~R

i
;

where we used the fact that when b is such that jfxn :
B(xn) = bgj is large, the total variation distance can be
at most one. Thus, by taking average over all random
binnings, we have:

EB
PBPXnjB � PB ~PXnjB


1

� PB;B
hjfxn : B(xn) = Bgj > 2n ~R

i
(a)
= PB

hjfxn : B(xn) = 1gj > 2n ~R
i
:

where (a) follows symmetry. Now, in a random
binning, the number of sequences xn that are mapped
to bin index 1 has a Binomial distribution; we throw
jX jn sequences, and each falls into the �rst bin with
probability 2�nR. By Markov's inequality, we obtain:

PB
hjfxn : B(xn) = 1gj>2n ~R

i� jX jn2�nR
2n ~R

=2�n�:

Finally, assume that the binning is linear, i.e., B =
AXn + V for some matrices A and V . Let bin index
B be a vector of symbols in F of length nR0 where
R0 = R

log jFj . The set fxn : B(xn) = bg = fxn : Axn =
b � V g is an a�ne linear subspace with dimension
Null(A) = n � Rank(A). This set can be written as

Q(b � V ) + NT for some matrices Q and N and a
uniformly distributed vector T whose length is equal to
the dimension of Null(A). If the rank of A is at least
n(R0 � �

log jFj ), the dimension of the null space will be
at most n(1 � R0 + �

log jFj ), and a randomness of size
n(1�R0) log jFj = n(log jX j � R + �) would su�ce for
channel simulation. Hence, the total variation distance
can be bounded from above as follows:

EB
PBPXnjB � PB ~PXnjB


1

� PB
�
Rank(A) < n

�
R0 � �

log jFj
��

: (21)

However, for any R0 < 1, as is known, the probability
that a random matrix AnR0�n with uniform entries
from F is not full rank vanishes exponentially fast in n;
in fact, this probability is lower than jFj�n(1�R0)(jFj �
1)�1 [24, p. 4]. This completes the proof for the linear
case.

4.5. Proof of Theorem 5
Assume that I(M; C) > 0 where C = AM+BK+GW.
We will show that I(M; C) � 1 and kpMC�pMpCk1 �
1=2. This will conclude the proof.

Assume that C is a column vector of size k. We
claim that one can �nd a non-zero column vector z of
size k such that zyB = zyG = 0 are the zero vectors;
however, zyA 6= 0, where y is the transpose operator. If
this is not the case, equation zy[B;G] = 0 implies that
zy[A;B;G] = 0, showing that the null space [B;G]y is
the same as the null space of [A;B;G]y. Hence, the
rank of the matrix [A;B;G] is equal to that of [B;G].
Thus, the image of matrix A is a subset of the image
of [B;G]. Let us call the image of [B;G] by I , which
is a linear subspace of Fk. Since elements of vectors
K and W are independently and uniformly distributed
over F, BK + GW will be uniformly distributed over
I . Similar to Shannon's one-time-pad strategy, this
will imply that C = AM + (BK + GW) will be
independent of AM and masked by BK + GW. To
see this, note that for any value of M = m, we have
Am 2 I , and vector C = Am + BK + GW will be
uniformly distributed over I , too. This is because
I = Am+I since I is a linear subspace. As a result,
the conditional distribution p(Cjm) does not depend
on the value of m. Hence, perfect secrecy condition
holds. However, this contradicts our assumption of
I(M; C) > 0. Thus, we can conclude that there is
a non-zero column vector z of size k such that zyB =
zyG = 0 are the zero vectors; however, zyA 6= 0. This
implies that zyC = zyAM 6= 0 . Now, observe that:

I(M; C) � I �M; zyC
�

= I
�
M; zyAM

�
= H

�
zyAM

� (a)
= log jFj � 1;
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where in (a), we used the fact that M has uniform
distribution; hence, (zyA)M is a uniformly distributed
symbol in F.

Next, de�ning functions m̂ = f(m) = zyAm and
ĉ = g(c) = zyc = f(m), observe that M̂ = Ĉ is a
uniform symbol in F. Then, we can write:

kpM;C � pM � pCk1
(a)�
pM̂;Ĉ � pM̂ � pĈ


1

=
1
2

X
a;b2F

j1[a = b]� 1
jFj �

1
jFj2 j

=
jFj(jFj � 1)
jFj2 =

�
1� 1
jFj
�
� 1

2
;

where 1[�] is the indicator function, and step (a) follows
the data processing property of the total variation
distance (see e.g., [25]), which states that, for any
channel p(yjx), we have:

kp(x)� q(x)k1 � kp(y)� q(y)k1;
where p(y) =

P
x p(x)p(yjx) and q(y) =

P
x q(x)p

(yjx). The desired inequality is achieved if the alphabet
X to be the alphabet of (M;C), p(x) = p(m; c),
q(x) = p(m)p(c), and p(yjx) is set to be the application
of functions f and g applied to M and C parts of X,
respectively.

4.6. Proof of Theorem 6
Consider a sink node. The sink node receives a vector
Y, which is a linear combination of messages, keys, and
private randomness symbols. In other words, we have:

Y = AM +BK +GW;

for some matrices A, B, and G. Message vector M can
be split into two parts (M1;M2) where M1 is the set of
messages that the sink nodes seek to decode, and M2
is the collection of other messages. Similarly, K can
be split into two parts (K1;K2) where K1 is the set of
secret keys that the sink nodes have, and K2 is the set
of secret keys that are not shared with the sink node.
Then, we can write:

Y = A1M1 +A2M2 +B1K1 +B2K2 +GW:

Since the sink has vector Y and key K1, its task is to
recover M1 from:

Y �B1K1 = A1M1 +A2M2 +B2K2 +GW:

Note that the sink node does not know any of M2,
K2, or W. These three variables M2, K2, or W are
mutually independent and uniform over their alphabet
sets. Let Z = Y � B1K1. Given a value for Z = z for
some m1, we say that (z;m1) is a compatible pair if
the equation:

A2m2 +B2k2 +Gw = z�A1m1; (22)

has a solution in variables m2, k2, w.
Given a pair (z;m1), two possibilities might

occur:

1. The pair (z;m1) is not compatible. In this case,
p(m1jz) = 0 and the sink is certain that its intended
message is not equal to m1;

2. The pair (z;m1) is compatible, and the equation

A2m2 +B2k2 +Gw = z�A1m1; (23)

has at least one solution for m2, k2, w. Then,
note that the number of solutions (m2,k2,w) that
satisfy Eq. (23) is �xed and determined by the
dimension of the null space of matrix [A2; B2; G].
Since M2, K2, and W are mutually independent
and uniform, p(m1jz) is equal to the number of
solutions (m2;k2;w) of Eq. (23), divided by the
total number of triples (m2;k2;w). This implies
that from the perspective of the sink that has vector
z, all messages m1 that are compatible with z are
equally likely to have been the transmitted message.

Assume that the sink's error probability is positive.
It is shown that for any vector z that the sink may
end up with, there are at least jFj sequences m1 that
are compatible with z. Thus, the chance of correct
decoding will be at most 1=jFj. This would complete
the proof.

Now, if the sink's error probability is positive,
there exist some vector z and two distinct compatible
sequences m01 6= m�1 with it, i.e., the following two
equations have solutions (m2;k2;w) and (m02;k02;w0):

A2m�2 +B2k�2 +Gw� = z�A1m�1; (24)

A2m02 +B2k02 +Gw0 = z�A1m01: (25)

By subtracting these two equations, we get that for
m001 = m�1 �m01 6= 0, the equation:

A2m002 +B2k002 +Gw00 = �A1m001 ; (26)

has a solution:

(m002 ;k002 ;w00) = (m�2;k�2;w�)� (m02;k02;w0):

Now, consider any vector z that the sink may end
up with and let m1 be the true message sequence that is
compatible with z. We claim that z is also compatible
with m1+�m001 for any � 2 F. This follows multiplying
both sides of Eq. (26) by � and, then, adding it up with
Eq. (22). Since m001 6= 0, the sequences m1 + �m001 for
di�erent values of � are distinct vectors. Since � has
jFj possibilities, this shows that there are at least jFj
sequences m1 that are compatible with z.
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5. Conclusion

In this paper, a setup was considered that contained t
transmitter, u receivers, and some intermediate nodes
being connected with directed error-free point-to-point
links. It was also assumed that there existed an
eavesdropper able to hear a certain subset of links.
In order to provide secrecy, each node had access to
some keys and private randomness. De�ning di�erent
conditions associated with decoding error and secrecy,
i.e., zero and �-error decoding, as well as weak, strong,
and perfect secrecy constraints, this study sought
to �nd a relation between rate regions considering
di�erent conditions. In Theorem 5, it was shown that,
for the linear case, the rate region with a strongly-
secure condition was equivalent to one with a perfectly-
secure constraint. Theorem 6 states the equivalency
of �-error to zero-error rate region for the linear case.
Moreover, it was shown in Theorem 1 for the general
case (both linear and non-linear regimes) that relaxing
the secrecy condition from strong to weak secrecy does
not change the rate region when there is an �-error
decoding condition. Our conjecture is that the �-error
weakly-secure rate region is equivalent to zero-error
perfectly-secure one in the general case.
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