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Abstract. This paper presents a new cell formation and cell layout problem considering
multiple process routings and subcontracting using the principles of queuing theory. It
was assumed that each machine operated as an M=M=1 queuing system and a queuing
network was used to obtain in-process inventories and machine utilization. The problem
was formulated as a mixed-integer nonlinear program with the objective of minimizing the
total costs, including the production, subcontracting, material handling, machine idleness,
and holding costs. Due to the computational complexity of the problem, a heuristic method
is suggested to e�ectively solve the problem. A numerical example is given to clarify the
proposed approach, and �nally, further instances are solved to verify the performance of
the solution method and to accomplish comparisons. The computational results show that
the proposed heuristic is both e�ective and e�cient.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Group Technology (GT) is a manufacturing philosophy
that takes advantage of similarities in products design
and manufacturing processes. Cellular Manufacturing
System (CMS), a successful implementation of the GT,
is a hybrid manufacturing system that possesses the
advantages of job shops and 
ow shops. Job shops
are usually designed to achieve maximum 
exibility
and high resource utilization such that a wide variety
of products in low volumes could be manufactured.
In contrast, 
ow shops are designed to produce high
volumes of products with high production rates and
low costs. Job shops and 
ow shops are not capable
of bringing e�ciency and 
exibility, simultaneously [1].
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To deal with such requirements in industries producing
high variety, mid-volume product mixes, CMS is an
e�cient option. In a CMS, the parts requiring similar
production processes are grouped together as part
families. Each part family is processed by a set of
di�erent machines in a manufacturing cell. The main
advantages that can be expected from the implementa-
tion of CMSs involve reduction in the setup times, in-
process inventories, material handling costs, and tool
requirements, and improvement in the product quality
and production control [2,3].

Cell Formation (CF) process is one of the �rst
and most important steps in designing a CMS. It
includes grouping machines into machine cells on the
basis of similarities in the manufacturing processes. An
ideal CMS con�guration involves a set of completely
independent machine cells. However, due to the
economic and practical reasons, it is usually impossible
to process all of the operations of each part family in a
single machine cell. Therefore, a common objective in
the CF problems is the minimization of costs associated
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with the Exceptional Elements (EEs). An EE is a part
that requires to be produced in more than one cell [3].

Although the CF problem is still being studied
in the literature, see for example [4-8], in recent
years, most researchers have focused on the other
important aspects of the CMS design problem, such as
scheduling [9-12], production planning [1,13-15], and
facility layout [16-19]. The material 
ow between the
cells resulting from EEs is one of the main obstacles
to achieving the bene�ts of CMS [20]. On the other
hand, it is estimated that 20-50% of the manufacturing
costs come from the material 
ow [21]. For this reason,
in recent years, continuous research e�orts have been
made towards the facility layout design in CMSs.

Queuing networks consisting of several service
stations are more suitable to represent the structure
of many systems with a large number of resources. In
the manufacturing systems, including CMSs, queuing
networks could be employed to analyze and evaluate
di�erent speci�cations of the production system, such
as the waiting times, the number of jobs waiting in the
system, the utilization level of resources, etc.

Despite the useful characteristics of queuing net-
works in performance evaluation of manufacturing
systems, only a few researchers have applied this
approach to the CMS design problems. One of the
�rst attempts in this area was made by Saidi-Mehrabad
and Ghezavati [22]. They assumed that the process-
ing time of parts on machines and their inter-arrival
times at the cells were exponentially distributed. A
queuing theory-based approach was utilized to analyze
the manufacturing system, where each machine was
considered as an M=M=1 queuing system. To deal with
EEs, they applied a penalty cost objective function
in which the EEs were ignored using outsourcing.
Although this assumption made the problem easier to
solve, it was not realistic in real-life problems. In the
proposed problem, they attempted to minimize the
total cost of machine idleness, EEs sub-contracting,
and resource underutilization. In another research
e�ort, Ghezavati and Saidi-Mehrabad [23] addressed
a similar problem with the objective of maximizing
the average machine utilization. Arghish et al. [24]
formulated a mathematical model using the concepts of
queuing theory for the CF problem. The objective was
the minimization of the total idleness cost of machines
plus the overall waiting cost of parts in the queue of
machines. For the sake of simplicity, they completely
ignored the EEs in the problem formulation. As a
result, the solution produced by this model was very
optimistic, because the impact of EEs was disregarded
in the calculation of the waiting time of parts and
utilization level of machines. Fardis et al. [25] applied
the principles of queuing theory to obtain the waiting
time of parts and utilization level of machines in a
CF problem. They attempted to minimize the total

cost of machine idleness, part holding, EEs subcon-
tracting, and resource underutilization. Fattahi et
al. [26] considered a similar problem in which, instead
of minimizing the waiting cost of parts, the waiting
times were maximized. They argued that this could
decrease the number of EEs and �nally lead to the
formation of optimal cells and part families. However,
for such a CF problem, maximizing the waiting times
is not an appropriate choice, because the number of
EEs could be directed minimized. Ismailnezhad and
Fattahi [27] assumed that each machine operated as
an M=G=1 queuing system, where the inter-arrival
time was exponentially distributed and the service time
had a general distribution. By considering machine
reliability, they presented a CF problem in which the
objective was to minimize the number of EEs.

The recent trend in investigating the CF prob-
lem using the queuing approach suggests a promising
research area that requires further study. Based on
the above survey, the following shortcomings in the
developed models can be investigated further.

� Considering single processing route: In the
reviewed papers, it is assumed that each part has a
unique processing route. However, in practice, each
part can be manufactured through di�erent process-
ing routes. Consideration of multiple processing
routes in the CMS design may enhance planning

exibility and throughput rates, and reduce in-
process inventory. Furthermore, it could provide
the designer with more opportunities to reduce the
number of EEs [3,28,29];

� Neglecting production and outsourcing costs:
Due to the economic reasons and limitation in re-
source capacities, internal production is not always
feasible. Under such circumstances, outsourcing a
proportion of demands to external suppliers can be
a better alternative. In the reviewed papers, for
the sake of simplicity in problem formulation, some
researchers considered a subcontracting approach in
which the EEs were eliminated by outsourcing some
operations. Obviously, this approach is not appli-
cable in a real-life manufacturing system. Thus,
addressing a subcontracting approach in which the
operational costs and resource capacities are incor-
porated is necessary;

� Neglecting facility layout: As mentioned earlier,
facility layout is one of the main aspects of the CMS
design problem. According to Tompkins et al. [21],
an e�cient facility layout can reduce the material
handling costs by 10-30%. Nevertheless, this issue
is not incorporated in the reviewed papers;

� Ignoring in-process inventories: Besides the
material 
ow between the cells, in-process inventory
is another obstacle to con�guring an e�cient CMS.
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Reducing in-process inventories can lead to less
holding costs and shorter lead times. Although in
the reviewed papers, the queuing systems have been
used to evaluate the utilization level of machines and
waiting time of parts in the queue of machines, the
minimization of in-process inventories has not been
attempted yet.

With the objective of overcoming all these shortcom-
ings, this paper uses the principles of queuing theory
to present a new CF problem in which the cell layout
problem is also included. A subcontracting approach
is proposed for the situations where the production
of parts is not feasible due to either limited machine
capacity or high operational cost. Multiple process
routings in the production of parts are also taken
into consideration. It is assumed that each machine
operates as an M=M=1 queuing system, and a queuing
network is used to obtain in-process inventories and
machine utilization. The problem is formulated as
a Mixed-Integer Nonlinear Program (MINLP) with
the objective of minimizing the total costs, including
the production, subcontracting, material handling,
machine idleness, and holding costs. Due to the
computational complexity of the problem, a heuristic
method is developed to solve it. Also, a numerical
example is solved for clari�cation, and �nally, further
instances selected from the related literature are solved
to verify the performance of the solution method and
to accomplish comparisons.

2. Open Jackson networks

In this paper, an open Jackson network is used to evalu-
ate the in-process inventories and machine utilization.
In the following, some explanations are given for the
open Jackson network. Then, the description of the
problem under study is given.

An open Jackson network consists of M nodes,
each with one or several servers. In our problem, a
node in the network stands for a machine. Jobs arrive
from outside following a Poisson process with the rate
of � � 0. Each job is independently routed to node
k with probability p0k � 0, and

PM
k=1 p0k = 1. Upon

service completion at node k, a job may go to another
node k0 with probability pkk0 or leave the network with

probability pk0 = 1 �PM
k0=1 pkk0 . The arrival rate for

node k, denoted by �k, is calculated by adding the
arrival rate from outside and arrival rates from all the
other nodes; see Figure 1. Thus, the overall arrival rate
at node k can be written as:

�k = �p0k +
MX
k0=1

�k0pk0k; 8 k = 1; � � � ;M: (1)

Let Nk(t) denote the number of jobs in node k at
time t, and N = (N1; � � � ; NM ). The possible values
are denoted by n = (n1; � � � ; nm). The equilibrium
distribution of N, �(n) = Pr(N = n), is determined
by:

�(n) =
MY
k=1

Pr(Nk = nk) =
MY
k=1

�k(nk)

=
MY
k=1

(1� �k)�nkk ; (2)

where �k = �k=�k is de�ned as the utilization level in
node k [30].

As it can be seen, Eq. (2) is the joint probability
mass function of M independent geometric random
variables. This implies that the network behaves as
if it were composed of M dependent M=M=1 queuing
systems. Therefore, the average number of jobs at node
k, denoted by Lk, is computed by:

Lk =
�k

1� �k ; k = 1; � � � ;M: (3)

In the next section, this useful result is utilized to
obtain the in-process inventory of parts and utilization
level of machines in a CMS design problem.

3. Proposed problem

This research combines and extends the ideas presented
by Mahootchi et al. [31] and Ghezavati and Saidi-
Mehrabad [23] to address a new CF and cell layout
problem. It is assumed that P parts, each having
an uncertain demand with Poisson distribution, are
produced by M machines [23]. Each part is allowed
to be produced through Ri processing routes that are

Figure 1. Node k in an open Jackson network.
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known in advance. In each route, several operations
are done according to a pre-speci�ed sequence of ma-
chines. Besides the production, an outsourcing option
is available to cope with part demand. In other words,
not only each part can be produced, but also it can be
outsourced to an external supplier [31]. Machines are
grouped into a maximum of Cmax cells and no more
than NM machines are allowed in each cell. Similar
to Ghezavati and Saidi-Mehrabad [23], we assume that
the service times are exponentially distributed. Thus,
an open Jackson network composed of M nodes can be
used to analyze the entire system in the steady state.
Each node in this network is equivalent to a speci�c
machine which serves as an M=M=1 queuing system
with a known service rate. The objective function is
to minimize the sum of production costs, outsourcing
costs, material handling costs, machine idleness costs,
and inventory holding costs. Hereafter, the following
notations are used throughout the paper.

Indices:

i Index of parts (i = 1; � � � ; P , where P
is the number of parts);

j Index of processing routes (j =
1; � � � ; Ri, where Ri is the number of
processing routes of part i);

k; k0 Index of machines (k; k0 = 1; � � � ;M ,
where M is the number of machines);

l; l0 Index of cells (l; l0 = 1; � � � ; Cmax,
where Cmax is the maximum
permissible number of cells).

Parameters:

di Demand rate of part i;
�k Service rate of machine k;
aijk Coe�cient for adjusting the arrival

rate of part i on machine k in route j;

cPij Unit production cost of part i through
route j;

cOi Unit outsourcing cost of part i;

cHi Unit holding cost of part i;

cIk Unit idleness cost of machine k;
Ell0 Distance between cells l and l0;
cAikk0 Unit intra-cell material 
ow cost for

transporting part i between machines
k and k0;

cEikk0 Unit inter-cell material 
ow cost for
transporting part i between machines
k and k0 (cEikk0 � cAikk0);

fijkk0 Number of times that part i in route j
is transported between machines k and
k0;

NM Maximum allowable number of
machines in a cell;

TC Total costs.

Decision variables:

zkl Equals 1 if machine k is assigned to
cell l; 0 otherwise;

�ij Arrival rate of part i in route j;
oi Volume of part i which is outsourced

to the external supplier;
�k Average utilization level of machine k

(auxiliary variable);
Li Average number of parts i in the

system (auxiliary variable).

In order to illustrate how �k and Li are calculated,
a small example is given. This example consists
of four parts and eight machines. Figure 2 depicts
the processing routes of parts. In this �gure, each
colored arrow is associated with a part. The dashed
arrows mean that another route is also available for the

Figure 2. Illustration of the proposed problem.
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Table 1. E�ective arrival on machines for the example given in Figure 2.

To E�ective
arrivalNode Outside 1 2 3 4 5 6 7 8

From

Outside 0 0 �1;1 0 �2;1+�4;1 0 �1;2 �2;2+�3;1 0 |
1 �1;1+�4;1 0 0 0 0 0 0 0 �2;1 �1;1+�2;1+�4;1

2 0 0 0 0 0 �1;1+�2;2 0 0 0 �1;1+�2;2

3 0 0 0 0 0 0 0 0 �1;2 �1;2

4 0 �2;1+�4;1 0 0 0 0 �3;1 0 0 �2;1+�3;1+�4;1

5 �2;2 �1;1 0 0 0 0 0 0 0 �1;1+�2;2

6 0 0 0 �1;2 0 0 0 0 �3;1 �1;2+�3;1

7 0 0 �2;2 0 �3;1 0 0 0 0 �2;2+�3;1

8 �1;2+�2;1+�3;1 0 0 0 0 0 0 0 0 �1;2+�2;1+�3;1

production of the corresponding part. For example,
according to Figure 2, the sequences of machines in
the �rst and second routes of part 1 are 2 ! 5 ! 1
and 6 ! 3 ! 8, respectively. Table 1 shows the
e�ective arrival rate on each machine calculated by
Eq. (1). For example, the e�ective arrival rate on
machine 8 equals the sum of arrival rates of parts 1,
2, and 3, i.e., �1;2 +�2;1 +�3;1. The average utilization
level of machine k is obtained by dividing the e�ective
arrival on machine k to its service rate. For example,
suppose that �1;2 = 10, �2;1 = 5, �3;1 = 10 and
�8 = 30; therefore, the utilization level of machine 8 is
�8 = (�1;2 +�2;1 +�3;1)=�8 = (10+5+10)=30 = 0:833.
Also, the average number of parts in the queue of each
machine can be computed by Eq. (3). For instance, the
average number of parts in the queue of machine 8 is
�8=(1 � �8) = 0:833=(1 � 0:833) = 5 parts, where 40%
(�1;2=(�1;2 + �2;1 + �3;1) � 100 = 40) of this number,
which equals 2 parts, are associated with part 1; the
remainder 60% correspond to parts 2 and 3. Finally,
the average in-process inventory of part i equals the
sum of the average numbers of part i in the queue of
all M machines. For example, the average in-process
inventory of part 1 in the system equals the sum of the
average number of part 1 in the queue of machines 2, 5,
and 1, plus that in the queue of machines 6, 3, and 8.

According to the explanations given above, the
mathematical model of the proposed problem, here-
after called original model, is as follows:

min TC =
PX
i=1

RiX
j=1

cPij�ij +
PX
i=1

cOi oi +
PX
i=1

cHi Li

+
MX
k=1

cIk(1� �k)+
PX
i=1

RiX
j=1

M�1X
k=1

MX
k0=k+1

fijkk0

 
cAikk0

CmaxX
l=1

�ijzklzk0l

+cEikk0
Cmax�1X
l=1

CmaxX
l0=l+1

Ell0�ij(zklzk0l0

+zkl0zk0l)

!
; (4)

subject to:

CmaxX
l=1

zkl = 1; 8 k; (5)

MX
k=1

zkl � NM; 8 l; (6)

oi +
RiX
j=1

�ij = di; 8 i; (7)

�k =

PP
i=1

RiP
j=1

aijk�ij

�k
; 8 k; (8)

Li =
MX
k=1

0BBB@
RiP
j=1

aijk�ij

�k � PP
i0=1

Ri0P
j0=1

ai0j0k�i0j0

1CCCA ; 8 i; (9)

0 � �k < 1; 8 k; (10)

�ij ; oi; Li � 0; 8 i; j; (11)

zkl 2 f0; 1g; 8 k; l: (12)

In the model above, objective function (4) minimizes
the sum of the production cost, outsourcing cost,
holding cost, machine idleness cost, and material han-
dling cost. The set of Constraints (5) ensures that
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each machine is assigned to one cell. The set of
Constraints (6) constraints ensures that no more than
NM machines are assigned to each cell. The set of
Constraints (7) represents that the demand for parts
is satis�ed by production and subcontracting. The
set of Constraints (8) calculates the utilization level
of machines. The set of Constraints (9) calculates the
average number of each part type in the system. The
set of Constraints (10) ensures that the utilization level
of machines is a value between 0 and 1. Finally, the
sets of Constraints (11) and (12) indicate the type of
decision variables.

4. Solution method

The model presented in Section 3 is an MINLP, due
to the existence of some nonlinear terms in objective
function (4) and Constraints (9). The term �ijzklzk0l0
in objective function (4) can be linearized using addi-
tional auxiliary variables and constraints. However, the
nonlinear term in Constraints (9) cannot be linearized
using the exact linearization methods. On the other
side, it is well known that both the CF and layout
problems belong to the class of NP-hard problems [32].
Thus, a heuristic method is developed to e�ectively
solve the problem. Also, a mathematical model is
presented to obtain a lower bound on the objective
value of the problem.

4.1. A heuristic method
To develop the heuristic method, the model proposed in
Section 3 is decomposed into two sub-models, Models
I and II, which are easier to optimally solve than the
original model is.

In Model I, binary variable zkl is assumed to be
�xed, denoted by �zkl. Now, by substituting oi, �k,
and Li with their equivalent terms, see Eqs. (7)-(9), in
objective function (4) and Constraint (10), the problem
can be rewritten as follows:

Model I:

min TC1 =
MX
k=1

cIk +
PX
i=1

cOi di

+
PX
i=1

RiX
j=1

0BB@Fij + cPij � cOi

+
MX
k=1

0BBB@ aijkcHi

�k� PP
i0=1

Ri0P
j0=1

ai0j0k�i0j0
� aijkcIk

�k

1CCCA
1CCCA�ij ;

(13)

subject to:

0 �
RiX
j=1

�ij � di; 8 i; (14)

0 �
PP
i=1

RiP
j=1

aijk�ij

�k
< 1; 8 k; (15)

where Fij is calculated by Eq. (16):

Fij =
M�1X
k=1

MX
k0=k+1

fijkk0

 
cAikk0

CmaxX
l=1

�zkl�zk0l

+cEikk0
Cmax�1X
l=1

CmaxX
l0=l+1

Ell0 (�zkl�zk0l0 + �zkl0 �zk0l)

!
;

8 i; j: (16)

In Eq. (16), parameter �zkl is a solution derived by
solving either Model II or approximation model; the
models will be presented later. Although Model I is
a nonlinear program (NLP), a high-performance NLP
solver like CONOPT can optimally solve it in a small
amount of time.

In Model II, positive variable �ij is assumed to
be �xed, denoted by ��ij . Now, in order to linearize
the nonlinear term zklzk0l0 + zkl0zk0l in objective func-
tion (4), auxiliary variable �kk0ll0 is introduced and
sets of Constraints (18)-(20) are added to the model.
Therefore, the resultant model is as follows:

Model II:

min TC2 = TC +
PX
i=1

RiX
j=1

M�1X
k=1

MX
k0=k+1

fijkk0��ij

 
cAikk0

CmaxX
l=1

�kk0ll

+cEikk0
Cmax�1X
l=1

CmaxX
l0=l+1

Ell0�kk0ll0

!
; (17)

subject to Eqs. (5), (6), and (12):

�kk0ll0�zkl�zk0l0+1�0; 8 k0 > k; l0 � l; (18)

�kk0ll0�zkl0�zk0l+1�0; 8 k0 > k; l0 � l; (19)

�kk0ll0 � 0; 8 k0 > k; l0 � l; (20)



K. Forghani and S.M.T. Fatemi Ghomi/Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 1865{1880 1871

where ��ij is a solution derived by solving Model I, and
TC is calculated by Eq. (21):

TC =
MX
k=1

cIk +
PX
i=1

cOi di +
PX
i=1

RiX
j=1

0@cPij � cOi +
MX
k=10BBB@ aijkcHi

�k� PP
i0=1

Ri0P
j0=1

ai0j0k��i0j0
� aijkcIk

�k

1CCCA
1CCCA ��ij :

(21)

Model II is a Mixed-Integer Program (MIP); thus, it
can be solved by a high-performance MIP solver such
as GUROBI.

To �nd a good initial value of �zkl at the beginning
of the solution procedure, an approximation solution of
the original problem is obtained. As it was mentioned
earlier, the nonlinear term in Constraint (9) cannot
be linearized using the exact linearization methods.
However, it can be approximated using some additional
binary variables. Let Lik denote the average number
of parts i in the queue of machine k. Therefore, Eq. (9)
can be rewritten as Li =

PM
k=1 Lik, where:

Lik =
RiX
j=1

aijk�ij=(�k �
PX
i0=1

Ri0X
j0=1

ai0j0k�i0j0):

It is reasonable to assume that Lik is bounded on the
interval [0; di]. Thus, Lik could be approximated using
a new set of binary variables, yik�, as shown in Eq. (22)
(see also Figure 3):

Lik =

RiP
j=1

aijk�ij

�k � PP
i0=1

Ri0P
j0=1

ai0j0k�i0j0

=
di

2N � 1

NX
�=1

2��1yik� � "ik; 8 i; k; (22)

where "ik is the approximation error (0 � "ik �
di=(2N � 1)) and N controls the accuracy of ap-
proximation, that is, the larger N is, the better the
approximation tends to be.

Now, by omitting positive variables "ik from
Eq. (22), the following set of inequalities can be
derived:

NX
�=1

2��1�kyik� �
PX
i0=1

Ri0X
j0=1

NX
�=1

2��1ai0j0k�i0j0yik�

� 2N � 1
di

RiX
j=1

aijk�ij � 0; 8 i; k:
(23)

As it can be seen, Inequality (23) contains the mul-
tiplication of positive variable �i0j0 by binary variable
yik�, which can be linearized using additional auxil-
iary variables and constraints [33]. As a result, by
substituting the non-linear term

PRi
j=1 aijk�ij=(�k �PP

i0=1
PRi0
j0=1 ai0j0k�i0j0) with di

2N�1
PN
�=1 2��1yik�, the

approximation problem can be formulated as the fol-
lowing MIP:

Approximation model:

min TCA =
MX
k=1

cIk +
PX
i=1

cOi di

+
PX
i=1

RiX
j=1

 
cPij�cOi �

MX
k=1

aijkcIk
�k

!
�ij

+
PX
i=1

MX
k=1

NX
�=1

2��1dicHi yik�
2N � 1

+
PX
i=1

RiX
j=1

M�1X
k=1

MX
k0=k+1

fijkk0

 
cAikk0

CmaxX
l=1

'ijkk0ll

+ cEikk0
Cmax�1X
l=1

CmaxX
l0=l+1

'ijkk0ll0

!
; (24)

subject to Eqs. (5), (6), (12), (14), and (15):
'ijkk0ll0 � Ell0�ij + Ell0di(2� zkl � zk0l0) � 0;

8 i; j; k0 > k; l0 > l; (25)

Figure 3. Illustration of approximating Lik via binary variables yik�within the interval [0; di].
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'ijkk0ll0 � Ell0�ij + Ell0di(2� zkl0 � zk0l) � 0;

8 i; j; k0 > k; l0 > l; (26)

'ijkk0ll � �ij + di(2� zkl � zk0l) � 0;

8 i; j; k0 > k; l; (27)

NX
�=1

2��1�kyik� �
PX
i0=1

Ri0X
j0=1

NX
�=1

2��1�ii0j0k�

� 2N � 1
di

PX
i=1

RiX
j=1

aijk�ij � 0; 8 i; k; (28)

�ii0j0k� � ai0j0k(�i0j0 � di0(1� yik�)) � 0;

8 i; i0; j0; k; �; (29)

�ii0j0k� � ai0j0k(�i0j0 + di0(1� yik�)) � 0;

8 i; i0; j0; k; �; (30)

�ii0j0k� � ai0j0kdi0yik� � 0; 8 i; i0; j0; k; �; (31)

'ijkk0l0l; �ii0j0k� � 0; (32)

8 i; i0; j0; k0 > k; l0 � l; �;
yik� 2 f0; 1g; 8 i; k; �: (33)

In the model above, 'ijkk0l0l and �ii0j0k� are new
auxiliary variables used for the linearization purpose.

It should be noted that at optimality, we have
TC�A(n) < TC� and lim

n!1TC
�
A(n) = TC�, where

TC�A(n) is the optimal objective value of approximation
model assuming N = n and TC� is optimal objective
value of the problem. Although it is still di�cult to
optimally solve approximation model for a relatively
large N (e.g., N = 30), for a small N (e.g., N = 5), a
high-performance MIP solver can be employed to solve
it in a speci�ed amount of time so as to �nd a good
starting solution to the heuristic method.

Given the above explanations, the steps of the
heuristic method are summarized as follows:

Step 1. Solve approximation model by an MIP solver
and obtain z�kl. Let TC� = 1 and �zkl = z�kl. Go to
Step 2;
Step 2. Solve Model I by an NLP solver and obtain
��ij and TC�1 . If TC�1 < TC�, let ��ij = ��ij , TC� =
TC�1 , and go to step 3; otherwise, go to Step 4;
Step 3. Solve Model II by an MIP solver and obtain
z�kl and TC�2 . If TC�2 < TC�, let �zkl = z�kl, TC� =
TC�2 , and go to step 2; otherwise, go to Step 4;
Step 4. Report ��ij , �zkl, and TC�. Stop.

Also, a conceptual framework of the methodology
proposed for solving the problem is shown in Figure 4.

It should be noted that the proposed heuristic
method does not necessarily lead to the optimal so-

Figure 4. Conceptual framework of the proposed heuristic.
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lution. This comes from two reasons. The �rst one
is that the initial solution derived from approximation
model might be non-optimal due to the approximation
error or the computational complexity of the problem.
The other reason is that when a non-optimal solution
is improved by solving Models I and II, the �nal result
might be still non-optimal, because in these models,
the decision concerning decision variables �ij and zkl
is made separately.

4.2. A lower bound
Finding a tight lower bound on the objective value of
a minimization problem can provide a useful criterion
to assess a solution in hand. In a real-life CMS design
problem, it is reasonable to assume that cEikk0 � cAikk0 .
Now, to obtain a lower bound on the objective value of
the problem, we let cEikk0 = cAikk0 . By this assumption,
binary variable zkl, as well as sets of Constraints (5)
and (6), in the original model can be dropped from
the model. Thus, the problem reduces to the following
NLP.

Model LB:

min TCL =
MX
k=1

cIk +
PX
i=1

cOi di

+
PX
i=1

RiX
j=1

�
cPij � cOi

+
MX
k=1

�
aijkcHi

�k � PP
i0=1

Ri0P
j0=1

ai0j0k�i0j0
� aijkcIk

�k

+
MX

k0=k+1

cAikk0fijkk0
��

�ij ; (34)

subject to Eqs. (14) and (15).
Obviously, the optimal objective value of Model

LB is a lower bound on the objective value of the
original model, that is, TC�L � TC�.

5. A numerical example

To provide a better understanding of the proposed
approach, a numerical example adopted from [34] is
solved. This problem consists of 14 machines, 20
parts, and 45 processing routes. Table 2 gives the
dataset of the numerical example including the routing
and operation sequences of parts, as well as the other
necessary parameters added to the original dataset.
The service rate of all machines (�k) is assumed to
be 400. The maximum number of machines in each
cell (NM) and the maximum number of cells (Cmax)

are limited to 5 and 3, respectively. The cell layout
is assumed to be a linear single-row layout. As a
result, the distance between each pair of cells l and l0
(l0 > l) can be calculated by subtracting l0 from l (i.e.,
Ell0 = l0 � l, for l0 > l). The material handling costs
are assumed cAikk0 = 0:3 and cEikk0 = 0:45 for i; k0 > k.

Figure 5 illustrates the solution obtained by the
heuristic method. Based on this solution, it can be
observed that the demand for parts 4, 9, and 19 is
totally ful�lled by subcontracting; the demand for parts
3, 5, 6, 8, 10-13, 15-18, and 20 is totally ful�lled by
production; and the demand for parts 1, 2, 7, and 14 is
satis�ed by a combination of both. Also, it can be seen
that each of the parts 8 and 20 is produced through two
distinct routes. The average utilization level of each
machine is given in percentage in Figure 5. Machine 11
is the busiest one with �11 = 0:967, whereas machines 1
and 9 jointly have the lowest utilization level. On the
other hand, part 13 has the highest level of in-process
inventory with L13 = 23:5.

6. Computational results

To verify the performance of the heuristic method
and to demonstrate the advantage of the proposed
approach, 12 instances collected from the literature are
solved and the results are presented. As our problem is
di�erent from those in the literature, some parameters
may not be available in the original datasets. Thus,
these parameters are generated according to Table 3
and added to the original dataset. Table 4 gives the
sizes of instances as well as their sources. In this table,
the numbers declared in column `

P
iRi' indicate the

total number of processing routes in each instance.
Also, the values given in columns `A', `B', and `C'
are the parameters required in Table 3 for dataset
generation. Problem 1 is the smallest instance with
7 machines and 10 parts, and problem 12 is the largest
one with 30 machines and 40 parts. Also, problem
7 has the greatest number of total processing routes,
with 402 processing routes. All the mathematical
models, including the original model, Model I, Model
II, approximation model, and Model LB were coded
in GAMS 24.5 IDE and implemented on a PC with
Intel® Core� i7-4790K@4.00 GHz processor, 16 GB
of memory, and Windows 10 operating system. In the
GAMS software, BARON 15.9/LINDOGLOBAL 9.0,
CONOPT 3, and GUROBI 6.0 were selected as the
default MINLP, NLP, and MIP solvers, respectively;
also, the thread option was set to 0 in order to use
all cores of the processor, 4 cores with 8 threads, if
possible.

6.1. Performance evaluation
The solution of the heuristic method for the selected
instances is compared to the best solution derived
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Table 2. Dataset of the numerical example.

Part Route di cHi cOi cPij Operation sequence (machine (aijk))

1 1 117 0.54 10.86 7.34 6(0.9)!5(0.5)!3(0.7)!12(0.7)!8(0.5)!11(0.9)
2 8.69 6(0.1)!14(0.3)!3(0.7)!12(0.2) !8(0.6)!11(0.9)

2 1 184 0.44 8.88 7.10 10(0.3)!11(0.4)!6(0.9)!5(0.5)!7 (0.1)
2 6.60 10(0.7)!11(0.6)!6(0.9)!14(0.4) !7(0.4)

3

1

155 0.54 10.89

7.58 10(0.2)!2(0.8)!4(0.9)!1(0.6)! 5(0.1)!11(0.5)
2 7.45 10(0.1)!13(0.5)!4(0.2)!1(0.3) !5(0.8)!11(0.2)
3 7.70 10(0.3)!2(0.8)!4(0.2)!1(0.1) !14(0.8)!11(0.6)
4 8.71 10(0.2)!13(0.6)!4(0.9)!1(0.2) !14(0.6)!11(0.6)

4 1 130 0.38 7.67 6.13 4(0.8)!1(0.7)!10(0.6) !3(0.8)!6(0.1)

5 1 129 0.37 7.50 5.00 12(0.9)!2(0.8)!6(0.1)
2 6.00 12(0.8)!13(0.3)!6(0.2)

6

1

122 0.44 8.73

6.16 8(0.4)!5(0.1)!2(0.8)!6(0.8)
2 6.98 8(0.1)!5(0.2)!13(0.1)!6(0.5)
3 6.53 8(0.9)!14(0.4)!2(0.3)!6(0.4)
4 5.26 8(0.2)!14(0.9)!13(0.6)!6(0.3)

7 1 135 0.27 5.35 4.28 12(0.9)!8(0.8)

8 1 186 0.28 5.63 4.32 9(0.4)!2(0.3)!4(0.6)
2 4.50 9(0.5)!13(0.7)!4(0.9)

9 1 107 0.46 9.17 7.34 2(0.1)!7(0.3)!3(0.3)!11(0.7)! 12(0.4)
2 6.87 13(0.7)!7(0.5)!3(0.6)!11(0.8)!12(0.5)

10 1 150 0.42 8.40 6.72 1(0.1)!7(0.9)!4(0.4)!2(0.7)! 9(0.7)
2 6.70 1(0.4)!7(0.2)!4(0.3)!13(0.5)!9(0.2)

11

1

200 0.54 10.83

7.26 12(0.4)!3(0.1)!2(0.9) !11(0.2)!8(0.7)!5(0.2)
2 7.30 12(0.8)!3(0.9)!13(0.1)!11(0.2)!8(0.2)! 5(0.3)
3 8.18 12(0.4)!3(0.1)!2(0.9)!11(0.5) !8(0.8)!14(0.3)
4 8.66 12(0.1)!3(0.2)!13(0.8)!11(0.4) !8(0.9)!14(0.3)

12 1 158 0.40 7.91 5.46 11(0.4)!10(0.8)!5(0.5)!8(0.4)
2 6.33 11(0.9)!10(0.9)!14(0.5)!8(0.3)

13 1 199 0.41 8.19 6.55 10(0.8)!7(0.9)!11(0.4)!5(0.1)
2 5.61 10(0.9)!7(0.9)!11(0.1)!14(0.3)

14 1 176 0.33 6.53 5.22 3(0.4)!4(0.9)!10(0.1)!7(0.7)

by solving the original model by both BARON and
LINDOGLOBAL solvers. As some problems might not
be optimally solvable in a reasonable computational
time, the time limit for solving the original model and
approximation model was set to 7200 and 1000 seconds,
respectively. Table 5 reports the computational results.

In this table, the values declared in column `Di�.'
indicate the relative di�erences in percentage between
the objective value gained from the heuristic method
and that obtained from the original model, where
Di�. = 100� (TCS � TCH)=TCS .

The computational results suggest that in all the
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Table 2. Dataset of the numerical example (continued).

Part Route di cHi cOi cPij Operation sequence (machine (aijk))

15

1

113 0.36 7.18

5.01 5(0.4)!2(0.8)!4(0.6)
2 4.32 5(0.5)!13(0.7)!4(0.1)
3 5.75 14(0.8)!2(0.9)!4(0.5)
4 4.53 14(0.3)!13(0.3)!4(0.7)

16 1 164 0.45 8.99 6.57 6(0.5)!7(0.3)!11(0.4)!3(0.1)! 2(0.9)
2 7.19 6(0.8)!7(0.4)!11(0.5)!3(0.9)!13(0.8)

17 1 116 0.40 8.06 6.45 2(0.8)!3(0.4)!11(0.4)!6(0.4)
2 6.26 13(0.1)!3(0.8)!11(0.9)!6(0.6)

18 1 125 0.31 6.16 4.93 4(0.1)!8(0.8)!5(0.9)
2 4.83 4(0.8)!8(0.3)!14(0.9)

19 1 167 0.41 8.29 6.24 3(0.9)!2(0.2)!10(0.6)!9(0.3)! 12(0.9)
2 6.63 3(0.4)!13(0.7)!10(0.9)!9(0.1) !12(0.7)

20 1 144 0.29 5.85 4.09 6(0.7)!7(0.7)!2(0.9)
2 4.68 6(0.2)!7(0.2)!13(0.5)

Figure 5. Detailed solution of the numerical example.

problems, the objective value obtained by the heuristic
method is better than or at least equal to that obtained
for the original model using MINLP solver; see column
`Di�.' in Table 5. Also, it can be seen that the CPU
time of the heuristic method is reasonable even for
a large-scale instance like problem 11 or problem 12.
On the other side, it can be observed that Model LB
can provide good lower bounds in a short amount of
computational time. For problems 2, 3, and 4, which
are small-scale problems, Model LB does not gain a
better lower bound than the solvers do. Nevertheless,

as the problem size increases, Model LB gives better
lower bounds than the solvers so. To examine the null
hypothesis H0 : LB � LBS � 0 against alternative
hypothesis H1 : LB � LBS > 0, the paired t-test
was carried out. The p-value associated with this test
is 0.0067. Therefore, it is concluded that the null
hypothesis is rejected at the 0.01 signi�cance level, that
is, for the proposed set of the problems, the average
LB is larger than the average LBS . The relative
optimality gap derived by each method is also plotted
in Figure 6. For instance, in problem 12, the relative
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Table 3. Parameter generation for incomplete datasets in
the literature�.

Parameter Value

di 100, for i
cpij No. of operations+uniform (1,3), for i; j
coi A�max

j

�
cPij
	

, for i

cAikk0 B � uniform(0:5; 1), for i; k; k0

�k C, for k
cHi 0:5� coi , for i
cIk 100, for k
cEikk0 1:5� cAikk0 , for i; k; k0

Ell0 l0 � l, for l0 > l
�ijk Uniform(0.1,0.9), for i; j; k

�: Constants A, B, and C are chosen according to Table 4.

optimality gap based on lower bound of the solver is
(32337:813� 25428:937)=32337:813 = 0:214, while this
value reduces to (32337:813� 31854:792)=32337:813 =
0:015 when using Model LB.

6.2. Comparison results
Traditionally, the CF problems are investigated under
an assumption in which for each part type, only one
route is allowed to be selected from multiple routes. In
other words, the possibility of simultaneous production
through multiple routes is not considered. In order
to perform a fair comparison between these two ap-
proaches, Model I is modi�ed so as to make it capable
of obtaining the total costs based on the CF and routing
results reported in the literature. Table 6 contains the
summary of results. In this table, the values declared
in columns `TCP ' and `TCO' show the total costs
based on the proposed approach and approaches in

Figure 6. Relative optimality gaps obtained for the
selected problems.

the literature, respectively. Also, the improvement per-
centages achieved in the total costs are given in column
`Imp.', where Imp. = 100 � (TCO � TCP )=TCO. The
comparison demonstrates that the proposed approach
gives a better solution in terms of the total costs than
the conventional approaches in the literature do; see
column `Imp.' in Table 6. For instance, based on the
solution in the literature, the total costs calculated for
problem 11 are $22749.4. However, when the parts
are allowed to be simultaneously produced in multiple
routes, this cost reduces to $20420.9 by 10.2%. To
examine the null hypothesis H0 : TCO � TCP � 0
against the alternative hypothesis H : TCO � TCP >
0, the paired t-test was carried out. The p-value
associated with this test is 0.0006. Therefore, it is
concluded that the null hypothesis is rejected at the

Table 4. Characteristics of the instances selected from the literature�.

Problem #
Size

M � P
P
iRi Cmax NM Solution

source
A B C

1 7�10 23 4 3 [35] 1.25 1 |
2 8�13 26 3 3 [36] 1.25 1 40
3 10�10 24 3 4 [17] 1.25 0.75 250
4 12�20 26 3 5 [17] 1.5 0.75 400
5 14�20 45 3 5 [17] 1.25 0.5 400
6 15�15 27 3 6 [37] 1.5 0.5 70
7 17�16 402 2 10 [38] 1.25 1 300
8 17�30 61 4 5 [17] 1.25 0.5 500
9 18�30 59 3 7 [17] 1.25 0.75 300
10 20�20 51 5 5 [16] 1.25 0.75 300
11 26�28 71 6 7 [39] 1.25 0.5 300
12 30�40 89 6 7 [36] 1.25 0.75 400

�: Constants A, B, and C are used in Table 3 to generate additional data.
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Table 5. Summary of computational results.

Problem
#

Model LB
Heuristic
method

Approximation model
Original
modela

Di�.h

(%)LBb
CPU
time
(s)

TCHc
CPU
time
(s)

Nd TCAe Opt.
gap

CPU
time
(s)

TCS f
CPU
time
(s)

LBSg

1 1651.136 0.002 1688.101 0.220 5 1688.415 1.070 1000 1688.101 7200 1632.218 0.000
2 8470.147 0.015 8537.246 0.182 5 8538.067 0.000 814 8537.246 7200 8476.187 0.000
3 7390.532 0.031 7651.321 0.185 5 7652.506 0.000 696 7663.994 7200 7596.617 0.165
4 17700.702 0.094 18385.992 0.405 5 18391.185 0.365 1000 18385.992 7200 18252.510 0.000
5 21960.713 0.094 22613.390 0.306 5 22622.804 8.324 1000 22613.390 7200 21424.609 0.000
6 31199.559 0.007 32565.505 0.623 5 32581.804 13.941 1000 32565.505 7200 28752.625 0.000
7 3802.007 0.515 3836.540 0.854 5 3903.211 25.125 1000 3836.540 7200 2921.443 0.000
8 23768.901 0.063 24203.459 3.313 4 24391.435 15.082 1000 24203.459 7200 20820.573 0.000
9 21767.314 0.109 22331.198 0.894 5 22337.825 13.483 1000 22436.274 7200 19413.923 0.468
10 13495.159 0.054 13690.4225 11.793 6 13713.457 16.151 1000 13761.017 7200 10982.973 0.513
11 19412.713 0.094 20459.704 604.105 6 20539.437 18.658 1000 20599.072 7200 16578.213 0.677
12 31854.792 0.059 32337.813 588.744 6 33041.323 0.000 1000 33535.972 7200 25428.937 3.573

a: The best solution derived from BARON and LINDOGLOBAL solvers;
bLB: Lower bound obtained by solving Model LB;
cTCH : Objective value of the solution obtained by the heuristic method;
dN : Accuracy level; eTCA: Objective value of the solution obtained by Approximation Model;
fTCS : Objective value of the solution obtained by the original model;
gLBS : Lower bound obtained by the solver for the original model;
hDi�. = 100� (TCS � TCH)=TCS .

Table 6. Summary of comparison results.

Problem
#

Proposed approach Other approaches Imp.h

(%)TCP a TP b TSc TId THe TM f TCg
O TP TS T1I TH TM

1 1688.1 1223.4 73.9 54.0 33.2 303.6 1902.8 897.0 578.4 226.2 17.2 184.0 11.3

2 8537.3 5065.6 1900.5 95.2 32.7 1443.3 8694.7 4543.8 2651.6 174.0 31.6 1293.9 1.8

3 7651.3 4535.2 1299.6 386.3 26.3 1404.0 8073.8 5670.2 714.9 350.4 16.9 1321.4 5.2

4 18386.0 11812.6 2333.1 227.8 75.1 3937.5 19212.3 9229.9 6582.0 420.9 40.5 2939.0 4.3

5 15270.5 10303.4 1698.1 367.1 45.7 2856.3 16093.5 10213.7 2561.8 442.4 40.2 2835.4 5.1

6 32565.5 18627.9 7649.5 120.3 202.7 5965.1 34059.2 18295.1 9548.3 235.6 146.5 5833.8 4.4

7 3836.5 1851.6 845.6 255.2 90.7 793.5 4360.7 1776.3 1222.3 443.5 60.9 857.7 12.0

8 24203.5 17145.1 2897.8 465.9 68.8 3625.9 24914.8 14645.2 6815.4 587.7 51.7 2814.8 2.9

9 22331.2 10015.8 8460.1 672.9 36.5 3145.9 23080.4 9207.3 10309.6 907.4 27.0 2629.1 3.3

10 13690.4 10136.6 0.0 800.0 20.5 2733.3 14004.67 10095.69 459.17 459.17 27.91 2613.10 2.24

11 20420.9 14796.9 948.1 1066.6 52.4 3556.9 22749.4 12991.7 5835.3 1200.0 18.1 2704.3 10.2

12 32339.3 20465.1 4663.8 1382.0 63.0 5765.4 34161.8 20624.4 6728.8 1304.3 64.1 5440.2 5.3
aTCP : Total costs in the proposed approach; bTP : Total production costs;
cTS: Total subcontracting costs; dTI: Total idleness costs;
eTH: Total holding costs; fTM : Total material handling costs;
gTCO: Total costs calculated for the solutions reported in the literature;
hImp. = 100� (TCO � TCP )=TCO.
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0.001 signi�cance level, that is, for the proposed set
of the problems, the average improvement in the total
costs is positive.

7. Conclusions

In this paper, a new approach was presented to de-
signing a cellular manufacturing system based on the
principles of queuing theory with the consideration of
subcontracting. For the sake of e�ective utilization
of resources, parts were allowed to be simultaneously
produced through multiple routes. It was assumed
that each machine operated as an M=M=1 queuing
system, and a Jackson network was utilized to obtain
the in-process inventory of parts in the system and
utilization level of machines. The objective was to
�nd the cell formation, cell layout, and production
volume of parts such that the sum of production,
outsourcing, material handling, machine idleness, and
holding costs would be minimized. The computational
complexity of the problem motivated us to develop
a heuristic-based solution method. A mathematical
model, called Model LB, was proposed to obtain a
lower bound on the objective value of the original
problem. To verify the performance of the heuristic
method, and to accomplish a comparison against ex-
isting approaches in the literature, several instances
were selected from the related literature and solved.
The computational results indicated that the solution
gained by the proposed heuristic method was better
than or equal to that derived by solving the original
problem using BARON and LINDOGLOBAL solvers.
The results also indicated that Model LB gave better
lower bounds than the solvers did, especially for large-
sized instances. Finally, the comparison demonstrated
that the proposed approach was able to generate better
solutions in terms of the total costs than the existing
approaches in the literature were.
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