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Abstract. Temperature di�erence in the soil and its environments is a common
phenomenon. Soil permeability changes in parallel to temperature, mostly due to water
viscosity variations in di�erent temperatures. A more realistic estimation of the seepage
value through and beneath hydraulic structures leads to their more e�cient design. In this
paper, the heat conduction equation is solved by the least-squares mesh-free method to
calculate the temperature distribution in soil. Distribution of permeability coe�cients can
vary irregularly and may lead to some di�culties in mesh-based methods. In these methods,
soil permeability changes in each mesh, and �ner mesh or some kind of interpolation
is required to contribute to the solution procedure. Since there is no need to form
elements or grids in a mesh-free method, it can handle this irregular variation simply.
Herein, the seepage equation is solved by the same least squares mesh-free method.
The method is integral-free, simple, and e�cient in calculation due to its sparse and
positive de�nite matrices. The scheme is validated by solving a simpli�ed version of the
governing equations. Problems that are more complicated are dealt with to investigate the
phenomenon numerically.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Soil thermal properties are of great importance in
many engineering projects and other situations where
heat transfer takes place in the soil. The problem
of heat transfer in soils is very complicated since
thermal properties of a soil layer depend on many
parameters , which may not be constant through time
cycles [1]. Heat transfer processes were studied through
modelling of soil temperature. The results revealing an
increase in frequency or magnitude of in�ltration events
could mimic simple spring time surface warming [2]. In
general, heating is an e�ective method of soil treatment
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for only �ne-grained (clayey) soils. High temperatures
induce permanent physical reactions in the clay miner-
als, as well as a drying e�ect by water evaporation [3].
High temperatures a�ect particle size distribution,
mass loss, mineralogy, and permeability of the soil. In
sandy soils, the particle size decreases as temperature
increases due to the mobilization of �nes, which is likely
to occur due to the bonding of �nes to sand grains
a�ected by temperature [4]. In clayey soils, the overall
particle size increases as temperature increases due to
aggregation and cementation of the clay fraction [4].
Since the thermal expansion coe�cient of the soil grains
is low (in the order of 10�5 1�C ), changes in the particle
sizes are not signi�cant in the permeability of soils in
natural environmental temperatures. However, particle
size may be considered in the thermal modi�cation of
soils. The value of the seepage discharge through the
foundation of hydraulic structures is of great impor-
tance in a design procedure. This discharge depends
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on the hydraulic gradients, permeability coe�cients,
and geometry of the structure. Distribution of the
temperature in the soil layer a�ects the value of the
permeability coe�cients. Cho et al. reported that
the in
uence of temperature on the permeability of
bentonite is mainly due to the viscosity and density
of water [5]. Towhata et al. showed that any change in
water viscosity with temperature is the most important
mechanism to modify soils' properties [6]. The same re-
sults were obtained by the study of Villar and Lioret [7].
Romero et al. investigated the e�ect of temperature on
the soil permeability in unsaturated clay [8]. Ye et
al. demonstrated that hydraulic conductivity increases
as temperature increases [9]. Stetyukha simulated
changes in the thermal condition of soils under the
e�ect of channel change of a riverbed numerically [10].
The thermal in
uence of the warm oil pipeline on the
permafrost foundation was simulated using a developed
coupled temperature seepage mathematical model and
the �nite-element method [11]. Youse� et al. stud-
ied leakage in embankment dam by applying seep-
age and thermal numerical simulations using a �nite-
element method [12]. Cui et al. presented the coupled
thermo-hydraulic boundary governing formulation as
well as the coupled thermo-hydraulic boundary condi-
tion, which could be implemented in a �nite element
method [13]. Numerical analyses using the Finite
Di�erence Method (FDM) were limited to cases where
the calculation domains are comparatively simple [14].
Fukuchi applied Interpolation FDM (IFDM) to solve
two-dimensional elliptic partial di�erential equations
over complex domains for the steady-state seepage
problem [14].

In the present study, a mesh-free method is used
in the numerical calculation of the seepage problem
considering thermal variations in a soil layer. Since per-
meability coe�cients at any point in the soil will change
in accordance with the temperature, the distribution of
the permeability coe�cient may vary at any point in
the soil. In this situation, it is simpler to use a method
that discretizes the domain of the problem by some
scatter nodes, instead of elements. Mesh-free methods
are rather new approaches to solving partial di�erential
equations. The main feature of these methods is
that they do not require mesh or grid in domain
discretization. These methods need node generation
instead of mesh generation. A detailed review of the
mesh-free methods was provided by Belytschko [15],
Liu [16], and Liu and Gu [17]. Ding et al. [18] presented
the earliest meshless method based on the least squares
technique. Collocated Discrete Least Squares (CDLS)
is a meshless method based on the least squares tech-
nique enjoying symmetric and positive de�nite proper-
ties that make it e�cient in calculation and simple in
formulation. The main idea of the method is adopted
from the least squares technique in a �nite-element

method. Afshar and Lashckarbolok presented CDLS
meshless method along with a posteriori error estimate
and an adaptive re�nement strategy in conjunction
with the method [19]. This method has been used to
simulate the free surface [20], Newtonian [21] and non-
Newtonian [22,23] 
ow problems. In this study, the
CDLS mesh-free method is applied to the numerical
calculation of seepage problem while temperature vari-
ation is taken into account. The solution procedure
of this method comprises some simple matrix algebra.
Since local domains are used, all matrices become
sparse and easy to operate. The values of permeability
coe�cients are stored in a vector and will be considered
in the solution procedure without any complexity. The
CDLS method is integral-free and produces symmetric
and positive de�nite coe�cients matrices that make it
suitable for iterative solvers. In this research, �rst,
the heat conduction equation is solved to obtain the
temperature distribution in the soil layer. Then, by
using the value of the temperature at any point, the
permeability coe�cients are evaluated and applied to
the seepage equation to �nd the hydraulic heads and
velocities. Although all formulations are in a two-
dimensional space in this research, dealing with three-
dimensional problems will be straightforward using
the proposed pattern. Two problems with di�erent
boundary conditions are dealt with to show the ability
of the proposed scheme. Herein, a fully vectorized form
of the CDLS method is used to solve the problems. In
this kind of formulation, the permeability coe�cients
can be stored in a vector, and some simple matrix
algebra is required for the solution procedure.

2. Governing equations

The values of the temperatures (T ) at each point in the
soil (x, z) and at any time (t) must be calculated by
solving the heat conduction equation. The equation in
Cartesian coordinate (x� z) is given by:

@T
@t

= �:
�
@2T
@x2 +

@2T
@z2

�
; (1)

where � is the thermal di�usivity. Typical values of
thermal di�usivity for di�erent kinds of soils are given
in Table 1.

Table 1. Typical values of thermal di�usivity [3].

Soil Thermal di�usivity
(m2.day�1)

Sand (or gravel) 0.039
Silt 0.05
Clay 0.046
Loam 0.042

Saturated sand 0.079
Saturated silt or clay 0.056
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Table 2. Viscosity of water in di�erent temperatures.

Temperature (�C) Viscosity (mPa.s)
10 1.308
20 1.002
30 0.7978
40 0.6531
50 0.5471
60 0.4658
70 0.4044
80 0.355
90 0.315
100 0.2822

Based on Darcy law in the seepage velocity in a
two-dimensional soil domain and considering that the
velocity �eld is divergence-free, the governing equation
of the seepage problem can be stated by the following
equation:

@
@x

�
Kx:

@h
@x

�
+

@
@z

�
Kz:

@h
@z

�
= 0: (2)

Using chain rule, Eq. (1) can be written by:

@Kx

@x
:
@h
@x

+Kx:
@2h
@x2 +

@Kz

@z
:
@h
@z

+Kz:
@2h
@z2 = 0; (3)

where h, Kx, and Kz are the water head, coe�cients of
permeability in x, and the coe�cients of permeability
in z direction, respectively. To relate the values of the
permeability to the temperature, the viscosity of water
(�) is considered to change in parallel to the temper-
ature. As temperature increases, viscosity decreases,
and then the permeability increases. The coe�cient of
permeability (K in general) is standardized at 20�C,
and the permeability at any temperature T is related
to the permeability at 20�C, K20, by the following
equation:

KT = K20
�20

�T
: (4)

Herein, the value of the temperature at any position
in the soil (which is a time-dependent variable) is
calculated by solving Eq. (1). Using these values, the
viscosity of water, at any point, can be obtained by the
existing experimental data. In this paper, Table 2 is
used to interpolate the viscosity of water at di�erent
temperatures. The viscosity comes from the cohesive
forces among water molecules. This cohesive force is
reduced by increasing the temperature, hence reducing
the viscosity.

3. Method formulation

The formulation of the CDLS method is illustrated
comprehensively in the references [19-22]. To solve
a problem, the domain and its boundaries must be
discretized by nodal (with the number of n) and

Figure 1. The domain discretized by �eld nodes (circles)
and collocation points (plus sign) [24].

collocation points (with the number of m) [19]. This
kind of discretization is simpler than using mesh, cell
or grids, especially when the domain of the problem
consists of inhomogeneous materials [19]. To write
up the method formulation of solving the governing
equations in a matrix format, it is required to form
shape functions matrices [22]. The typical form of a
shape function matrix is given by:

' =

26664
'11 '11 ::: '1m
'21 '22 ::: '2m

...
...

...
...

'n1 'n2 ::: 'nm

37775 ;
where 'ij means the value of the ith shape function at
the jth collocation point.

As shown in Figure 1, the problem domain and
its boundaries are discretized using some scattered
�eld nodes and collocation points [19]. Besides the
�eld nodes, the collocation points are used in the
domain of the problem and on its boundaries. In
this methodology, in each �eld node, one collocation
point has to be placed, as shown in Figure 1 [22,24].
The approximated value of unknown function, u, at
a collocation point, k, with coordinate xk can be
obtained through the following interpolation [19]:

u(xk) = uk =
�nX
i=1

'ik :ui; (5)

where ui is the value of the unknown function at the
ith �eld node. �n is the number of �eld nodes that the
kth collocation point with coordinate xk can have in
its domain [22,24]. This idea of compact support is
shown in Figure 2. To set up such a domain for each
collocation point, radius ds is de�ned so that a speci�c
number of �eld nodes can be placed into its support
domain (�n) [22]. In Eq. (1), 'ik is the value of the
shape function of the ith node at the kth collocation
point.

In this study, RPIM is used to calculate the value
of the shape functions. The detailed descriptions of
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Figure 2. Compact support of the kth collocation [22,24].

the procedure are available elsewhere [16,17]. In the
following numerical examples, a multi-quadratic radial
basis function augmented with completed second-order
polynomials is used in the radial point interpola-
tion. Multi-quadratic radial basis function (q) is given
by [16]:

q(r) = (ds2 + r2)1:03; (6)

where ds is the radius of the compact support domain
that is de�ned by the radius associated with each
collocation point so that 20 nodes are placed into the
support domain of that collocation.

Since there are �rst- and second-order operators
in the governing equations, it is required to �nd the �rst
and second derivatives of the shape function matrix,
too. They are represented by @'

@x ;
@'
@x ;

@2'
@x2 , and @2'

@z2

here.
In the presented scheme, �rst, the heat conduc-

tion problem is solved over time. An implicit Euler
method is applied to the time discretization since it is
not required to ful�ll any time step size criterion for the
stability condition. The stability of the implicit Euler
method is proven in many references, such as [25]. It
is given by:

Tn+1 = Tn + �:�t:
�
@2Tn+1

@x2 +
@2Tn+1

@z2

�
; (7)

where Tn is the value of temperature in the nth time
step. The matrix formulation of the proposed method
in calculating the temperature value at any node is
given by:

Lb = '� ��t:
�
@2'
@x2 +

@2'
@z2

�
; (8)

K = Lb� LbT ; (9)

where K is the coe�cient matrix, which is symmetric
and sparse. In this methodology, boundary conditions
are satis�ed by penalty method as described in [22].
Now, the vector of the temperature values at nodes at
(n+ 1)th time step (Tn+1) is written by:

Tn+1 = K�1 � F; (10)

where F is the right-hand side vector, obtained after
enforcing the boundary conditions. After calculating
the temperatures at the desired time, the values of the
permeability coe�cients at any point can be calculated
according to their corresponding temperature using the
given data in Table 1. Then, the hydraulic head can
be obtained by solving Eq. (2) using the following
formulation:

Lb =
@Kx

@x

 @'
@x

+Kx 
 @2'
@x2

+
@Kz

@z

 @'
@z

+Kz 
 @2'
@z2 ; (11)

K = Lb� LbT ; (12)

h = K�1 � F: (13)

It should be noted that all parameters are sparse
matrices, making the calculation e�cient. Operator 

is de�ned in the reference [22].

4. Sample solved problems

To validate the proposed scheme, a problem with
available analytical solution is considered within a
simple domain in Problem 1. In Problem 2, the
variation of the ambient temperature on the seepage
value is investigated at di�erent cases for a typical
concrete dam.

4.1. Problem 1
Consider a rectangular domain with given boundary
conditions in Figure 3. The governing equation in this
domain is de�ned by:

@
@x

(�(x; z):
@

@x

) +
@
@z

(�(x; z):
@

@z

) = 0; (14)

where, �(x; z) is de�ned by:

�(x; z) = x2 + 2xz + z2 � x� z + 0:25: (15)

These equations mimic the equation that was de�ned
in Eq. (2). Therefore, it can be considered as a suitable

Figure 3. The domain and boundary conditions for
Problem 1.
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Figure 4. Domain discretization for Problem 1.

Figure 5. Comparison between numerical and analytical
solutions for Problem 1.

case for the validation of the proposed numerical
scheme. The exact solution to the governing equations
can be obtained analytically by:


(x; z) = �x2 + 4xz � z2 � 2x+ z: (16)

In domain discretization, 355 nodes are used. The
distribution of the nodes is shown in Figure 4. To
compare analytical results with the numerical ones, the
pro�le of 
 at section z = 0:5 is depicted in Figure 5
for both solutions. Although a rather small number of
nodes are used in the domain discretization, numerical
results show good agreement with the exact solution.

4.2. Problem 2
The seepage problem beneath a small concrete dam
is solved by considering two kinds of temperature
boundary conditions. The geometry of the problem
is shown in Figure 6. It is a typical problem in the
soil mechanics discipline that should be considered
carefully in the design procedure of the hydraulic
structures. In this problem, an inclined impermeable
bedrock is considered to show the simple domain
discretization of a mesh-free method. In the �rst case
(Case I), it is assumed that the soil layer is colder than
the environment. In the second case (Case II), the
temperature of the environment is considered colder

Figure 6. Geometry and boundary condition for Case I.

Figure 7. Equipotential lines without considering
temperature e�ect.

than the initial temperature in the soil layer. For
both cases, assume that the given temperatures at
the boundaries do not change in the following 50
days. The permeability coe�cient at 20�C and thermal
di�usivity are chosen to be 0.879 (m/day) and 0.08
(m2.day�1) for the two cases, respectively. The initial
and boundary conditions for the �rst case are shown
in Figure 6. Equipotential lines without considering
the temperature e�ects are shown in Figure 7. As
time passes, temperature distributes through the soil
layer and changes the permeability values of any point
in the soil. The temperature distributions for Case I,
after 5, 10, and 50 days, are shown in Figures 8-10. In
Figure 11, the variation of the permeability coe�cient
after 10 days is shown, which exhibits the relationship
between the permeability coe�cient and the tempera-
ture of each point. Since a mesh-free method is used
in domain discretization, the permeability coe�cient
can be assigned at any point in the domain according
to its calculated temperature. Figures 12-14 show the
resultant equipotential lines after passing 5, 10, and
50 days. To show the e�ect of the temperature on
the value of the seepage, the horizontal velocity pro�le



1912 A. Tabarsa and M. Lashkarbolok/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 1907{1915

Figure 8. Temperature distribution after 5 days for
Case I.

Figure 9. Temperature distribution after 10 days for
Case I.

Figure 10. Temperature distribution after 50 days for
Case I.

at Section A is calculated 5, 10, and 50 days after
starting the simulation. For Case I, this comparison
is shown in Figure 15. This Figure shows that as the
temperature penetrates into the soil layer, the seepage
value (discharge) reduces.

Now, assume that the soil initial temperature
is higher than its boundaries. The new boundary
conditions are shown in Figure 16. This phenomenon
occurs usually in colder seasons. The temperature

Figure 11. Equipotential lines after 5 days for Case I.

Figure 12. Equipotential lines after 10 days for Case I.

Figure 13. Distribution of the permeability coe�cient
after 10 days for Case I.

Figure 14. Equipotential lines after 50 days for Case I.



A. Tabarsa and M. Lashkarbolok/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 1907{1915 1913

Figure 15. The horizontal velocity distribution at
Section A, for Case I, after 5, 10 and 50 days.

Figure 16. Geometry and boundary condition for
Case II.

distributions after 5, 10, and 50 days are shown in
Figures 17-19. As mentioned before, in the proposed
methodology, the value of the permeability coe�cient
can be assigned to each discrete node and stored in
a vector. The assigned values of this coe�cient at
a region near cut-o� are shown in Figure 20. The
equipotential lines for this case, 50 days after starting
simulation, are shown in Figure 21. The horizontal
velocity at Section A, for Case II, is shown in Figure 22.
The signi�cant di�erences between the top and lower
parts of the velocity pro�le (especially after 50 days)
are related to the gradient of the equipotential lines. A
detailed investigation of Figure 21, reveals the higher
gradient of the equipotential lines (which are closer)
near z = 16 m (Figure 21 - circle (a)) than in
the near area of the bed (Figure 21 - circle (b)).
This di�erence derives from permeability gradient in
x direction resulted from the temperature distribution.
Compared to Case I, in Case II, the seepage discharge
increases as the soil loses its temperature.

Figure 17. Temperature distribution after 5 days for
Case II.

Figure 18. Temperature distribution after 10 days for
Case II.

Figure 19. Temperature distribution after 50 days for
Case II.
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Figure 20. Assigned permeability coe�cient for each
node after 10 days for Case II.

Figure 21. Equipotential lines after 50 days for Case II;
higher gradient at z = 16 m (circle (a)) than lower
gradient at z = 7 m (circle (b)).

Figure 22. The horizontal velocity distribution at
Section A, for Case II, after 5, 10 and 50 days.

5. Conclusion

Distribution of temperature in a soil layer makes it
inhomogeneous since the coe�cient of the permeability
depends on the viscosity of water. This also depends
on the temperature itself. By this interpretation, the
permeability coe�cients at any point in the soil vary
according to temperature. In the collocated discrete
least squares method, the coe�cient of the permeabil-
ity can be assigned to each node of the discretization
point, while conventional numerical methods require
interpolating this value on the surface of an element
in the solution procedure. The variation of the
permeability in the soil domain due to temperature
distribution is calculated using the CDLS method.
The permeability of zones with higher temperature
possesses bigger permeability coe�cient. In this paper,
a simple matrix formulation is presented that makes
the method easy for implementation and e�cient in
calculation. Results showed that the distribution of
the permeability coe�cient due to temperature has
signi�cant e�ects on the seepage problem. It is shown
that the discharge value increases as a soil layer loses
its temperature, and it decreases while the soil layer is
getting warmer.
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