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Abstract. In this article, the acoustic radiation responses of the layered composite at
panel in an in�nite rigid ba�e under the inuence of harmonic point load and various
support conditions were investigated numerically. The laminated composite at panel
responses were computed using the ANSYS parametric design language code. The natural
frequencies obtained using the current simulation model matched the earlier published
values as well as in-house experimental results. The eigenvectors corresponding to the
validated eigenvalues were extracted and utilised for the computation of the acoustic
properties numerically by solving through Rayleigh integral scheme. The �rst radiation
mode's amplitudes for the vibrating plate were computed and validated with the results
available in open literature. Further, the self-radiation e�ciency and radiated sound power
were obtained based on the structure-dependent radiation modes, and all the radiation
modes were also included to evaluate the exact radiated sound power. Finally, the e�ects
of di�erent composite (carbon/epoxy and glass/epoxy) properties, constraint conditions,
and location of point load on the displacement and velocity responses, radiation e�ciency,
and radiated acoustic power level of the layered at panel were investigated and discussed
in detail.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The present day high-performance industries are con-
stantly striving for the development of lightweight ma-
terials, which may reduce substantial fuel consumption
without compromising the structural strength and in-
tegrity. In this regard, the laminated composite struc-
tures have created their own space within the modern
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engineering domains, such as aerospace, automotive,
railway, and marine, due to their excellent speci�c
strength and sti�ness properties. However, the weight
reduction strategies may also lead to increased noise
and vibration levels in the structures and/or structural
components speci�cally, when they are exposed to the
intense dynamic loading. In such a situation, the cou-
pling between the vibration and acoustic phenomena
plays a vital role in designing structures of speci�c ap-
plications where the minimization of sound radiation is
the top priority. Thus, the acoustic radiation behavior
of vibrating structures has been an area of extreme
interest to researchers for several years. In general,
the radiation e�ciency and output sound power level
have been investigated to show the acoustic behavior
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of the vibrating structures. However, discretization of
the Helmholtz's wave equation and its solution for the
appropriate boundary conditions form the basis of the
acoustic response analysis of the structures. Cunefare
et al. [1-3] developed and subsequently applied the
modal techniques to investigate the exterior radiation
problems. It was demonstrated that the eigenvalue
decomposition of a discrete representation for the
radiated power (as obtained using Rayleigh's integral)
yields a modal representation known as acoustic ra-
diation modes. These radiation modes depend solely
on the wavenumber and external surface geometry of
a radiating structure [4,5]. However, the location
and size of the mass loading have a signi�cant e�ect
on the acoustic radiation of the structures [6]. It is
also noticed that the far-�eld sound radiation of the
laminated composite at panel is greatly a�ected by
the lamination schemes [7,8]. In general, the structure-
dependent radiation modes are more desirable than
the conventional acoustic radiation modes, because
the former one basically corresponds to the e�ect of
the dynamic properties (boundary conditions, material
properties) of the structures on the acoustic power
radiation [9]. Therefore, the frequency responses
require to be managed properly for structures made
of composite materials, whose physical properties are
signi�cantly dependent on the orientation of �bres
(lamination scheme), and a�ect the vibration and
acoustic responses.

The sound radiation characteristic of the ba�ed
at panel is usually considered the benchmark for
the investigation of sound radiated by the intricate
structures [10]. The numerical and analytical solutions
for the sound radiation resistances have been reported
in the past for the arbitrary wavenumbers instead of the
widely accepted numerical integration technique [11].
However, most of the studies are based on the self-
radiation resistances only. This is because the mutual
radiation resistances resulting from the cross-modal
coupling have an insigni�cant impact on the sound
power radiation. It is also believed that the considera-
tion of the mutual radiation resistances can also result
in an enormous computational burden. However, the
mutual radiation resistances cannot be ignored for esti-
mating sound power in a broad frequency range, espe-
cially when the structures are loaded with masses [12].
Over the last few decades, the Finite-Element Method
(FEM) has proved to be a versatile numerical tool and
widely appreciated by the scienti�c community for its
complex structural analysis. Moreover, with the aim of
accurately modelling the mid-plane kinematics of the
laminated structure mathematically, various classical,
shear deformation, and re�ned theories were employed
in the past [13]. Various advanced (hyperbolic, sinu-
soidal) shear and normal deformation theories were
also used to study the bending and free vibration of

laminated composite, Functionally Graded (FG) and
sandwich structures [14-20]. The stretching e�ect was
included for the exural analysis of sandwich composite
plates [21,22]. Wu and Huang [23] used layer-wise
FEM to study the vibration behaviour of the laminated
composite plate and evaluated the acoustic radiation
mode amplitudes via the Rayleigh's integral scheme.
Chandra et al. [24] performed the vibration analysis
of the functionally graded plate using the First-order
Shear Deformation Theory (FSDT) followed by the
acoustic response analysis through Rayleigh's integral.
In addition, it was noted that some coupled FEM-BEM
(boundary element method) approach was employed to
investigate the vibration and acoustic characteristics of
the laminated composite plates [25-28]. In these stud-
ies, FEM was used to obtain free vibration responses,
while the BEM was employed to predict the sound
radiation characteristics. It was observed that the
amplitude of the vibration and the acoustic responses
are signi�cantly a�ected by the changes in the mode
shapes as well as the excitation location. Zhao et
al. [29] obtained analytical solutions for the vibration
and sound radiation characteristics of a laminated
composite at panel subjected to moisture load using
Rayleigh's integral. In addition, they provided numer-
ical solutions for far-�eld sound pressure level using
the FEM-BEM approach. Au et al. [30] investigated
the acoustic responses of the rectangular orthotropic
plate vibrating under the action of transient moving
loads with the help of Rayleigh's integral in the time
domain. Later, an FE model based on the FSDT was
introduced by Arunkumar et al. [31] to study vibro-
acoustic characteristics of sandwich aerospace panels
using Rayleigh's integral.

A brief, yet essential, review of the literature
reveals that although the radiation mode theory is
well developed, it has mostly been applied to study
the acoustic behaviour of isotropic structures. Studies
related to the acoustic radiation behaviour of the
laminated composite structures based on the radiation
mode theory are very limited. It is also understood
that the structure-dependent radiation modes should
be considered for the accurate prediction of the vibro-
acoustic behaviour of any structure as they provide a
far better insight than the acoustic radiation modes
do. However, the structure-dependent radiation modes
are directly a�ected by the choice of the theory used
to analyse the vibration behaviour. In this paper, the
authors attempted to investigate the sound radiation
characteristics of the vibrating laminated composite
plate in an in�nite rigid ba�e by incorporating the
structure-dependent radiation modes. The layered
composite at panel model has been developed in
the framework of the FSDT as in ANSYS. Further,
the eigen-frequencies obtained using the current model
are validated through a comparison with the available
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numerical results as well as the in-house experimental
responses. The �rst radiation mode's amplitudes are
obtained using Rayleigh's integral scheme, compared
with those published in open literature. In this analy-
sis, two di�erent types of materials have been consid-
ered, namely Carbon Fiber Reinforced Plastic (CFRP)
and Glass Fiber Reinforced Plastic (GFRP) composite
plates with various �ber orientation angles and two
support conditions (all sides are simply supported and
clamped). In each case, the central and eccentric har-
monic point loading cases are considered to obtain the
acoustic responses. The numerical results of the self-
radiation e�ciencies corresponding to di�erent modes,
coupled and uncoupled radiated sound powers are
obtained using structure-dependent radiation modes,
and necessary implications are discussed in detail.

2. Mathematical modelling

2.1. Structural modelling
Figure 1 depicts the lamination scheme and geometry
of the layered at panel analysed in this work. The
panel is modelled in ANSYS, and the analysis is carried
out by a simulation model implemented using APDL
code. Shell 181, a four-node quadrilateral element, is
selected from ANSYS element library to discretise the
domain. The element has six degrees of freedom per
node. The following displacement equation based on
the FSDT [13] is adopted:

�u(x; y; z; t) = �0(x; y) + z�x(x; y);

��(x; y; z; t) = 0(x; y) + z�y(x; y);

�w(x; y; z; t) = �0(x; y) + z�z(x; y); (1)

Figure 1. Geometry and lay-up of laminated composite
plate.

where, t is the time, �u, ��, and �w are the displacements
of any point along x, y, and z coordinate axes,
respectively. �0, 0, and �0 are the corresponding
displacements of a point on the mid plane; �x and �y
are the rotations of normal to the mid-surface (z = 0)
about y and x axes, respectively; �z is the higher order
term in the Taylor series expansion which accounts for
the linear variation of displacement function along the
thickness direction.

The constitutive equation of generalised stress
tensor for (kth) composite lamina oriented at an
arbitrary angle `�' about any arbitrary axes is given
by (considering plane stress condition):

f�ijg = [ �Qij ]f"ijg; (2)

where f�ijg = f�xx �yy �xy �zx �yzg and f"ijg =
f"xx "yy xy zx yzg are the stress and strain
tensors for the kth layer, respectively;

[ �Qij ] =

26666664
Q11 Q12 Q13 Q14 0 0
Q12 Q22 Q23 Q24 0 0
Q13 Q23 Q33 Q34 0 0
Q14 Q24 Q34 Q44 0 0

0 0 0 0 Q55 Q56
0 0 0 0 Q56 Q66

37777775
is the transferred reduced sti�ness matrix with:

Q11 =
E11

1� �12�21
; Q12 =

�12E22

1� �12�21
;

Q22 =
E22

1� �12�21
; Q66 = G12;

Q44 = G13; Q55 = G23:

Now, by using the present displacement �eld (Eq. (1)),
the strain matrix for the layered composite plate can
be expressed as follows:

f"g =
�
"xx "yy "xy "xz "yz
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=

(�
@�u
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��
@��
@y

��
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+
@��
@x

�
�
@�u
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+
@ �w
@x

��
@��
@z

+
@ �w
@y

�)T
: (3)

The modal analysis is performed using this model,
and the natural frequency and mode shapes speci�ed
are further utilized to obtain the desired acoustic re-
sponses. The in-vacuo modes of the vibrating structure
can be obtained by �nding the solution to the following
eigenvalue equation:�

[K]� !2[M ]
� f�g = 0; (4)

where [K] is the sti�ness matrix, [M ] is the mass



N. Sharma et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2706{2721 2709

matrix, ! is the circular frequency of vibration, and
f�g is the eigenvector corresponding to the mode
shape. The modal analysis is performed, and the
mode shapes are extracted for each natural frequency of
vibration. The nodal displacement vector for a mode, if
normalized to the mass matrix, is regarded as the mode
shape vector for that particular mode. Therefore, the
mode shapes for any ith mode can be obtained using
the following relation:

f�ig =
fUigq

fUigTMfUig
; (5)

where fUig is the nodal displacement vector for the ith
mode.

The layered composite at panel is subjected to
a harmonic point excitation under di�erent support
conditions. The resulting structural vibrations cause
disturbance in the surrounding acoustic medium. The
methods adopted for computing the acoustic radiation
caused by the vibrating plate are discussed in the
following section.

2.2. Acoustic modelling
2.2.1. Conventional acoustic radiation mode theory
A ba�ed vibrating laminated composite plate is con-
sidered for the present analysis. The origin of the
coordinate system (x, y, and z) lies at the centre of
the structure placed in x � y plane, as illustrated in
Figure 2.

Sound pressure p at any point on the plate can
be written as a function of normal surface velocity, �z,
following the Rayleigh's integral formulation as below:

p(rn) =
j!�
2�

x
s

�z(rm)
e�jkjrn�rmj
jrn � rmj dS; (6)

where k is the wavenumber (!=c), c is the speed of
sound in the surrounding uid medium, � is the density
of the uid medium, and ri is the position of any point
in the laminated at panel.

The discretization of the plate into elements
(referred as radiators) and interpolation of the pressure
and velocity over the elements allow the Rayleigh's

Figure 2. Vibrating plate lying in an in�nite rigid ba�e.

integral (Eq. (6)) to be formulated in terms of surface
pressure and nodal normal velocity as follows:

p = [Z]f�zg; (7)

where [Z] is the frequency-speci�c acoustic impedance
matrix, fpg and f�zg are the vectors containing nodal
pressures and nodal normal velocities, respectively.

Sound power, W , radiated into the semi-in�nite
space above the plate is expressed as follows:

W =
1
2
Re

"x
s

p(rn)��z (rn)dS

#
; (8)

where symbol � indicates the complex conjugate.
Now, Eq. (8) can be further simpli�ed as follows:

W =
S
2
Re
�
�zHp

�
; (9)

where S is the surface area of each radiator, and super-
script H indicates the complex conjugate transpose.

Now, by substituting Eq. (7) into Eq. (9), the
sound power radiated by the structure can be rewritten
as follows:

W =
S
2
Re
�f�zgH [ �Z]f�zg

�
; (10)

where [ �Z] =
�R

S [N ]T [N ]dS
�

[Z], [N ] is the matrix of
the interpolating functions. Matrix [ �Z] is symmetric
based on the acoustic reciprocity principle [31].

Eq. (10) can be further simpli�ed as follows:

W = Re
�f�zgH [R]f�zg

�
= f�zgH [R]f�zg: (11)

Matrix [R] = S
2Re([ �Z]) is positive de�nite since the

power output must be positive. Matrix [R] is referred
to as the radiation resistance matrix. Matrix [R] is
a real, symmetric and positive de�nite. Therefore, [R]
can be diagonalised using the eigenvalue decomposition
steps expressed in the following form:

[R] = Q�QT ; (12)

where Q, is the eigenvector matrix of [R], and �
is the diagonal matrix containing the corresponding
eigenvalue (�i).

Now, by substituting [R] into Eq. (11), the ex-
pression for W is reduced to the following form [32]:

W =f�zgHQ�QT f�zg = (QT f�zg)H�(QT f�zg)

= yH�y =
NRX
i=1

jyij2�i;
(13)

where NR is the number of radiators. It is clear that
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the number of modes used in determining the acoustic
power is equal to that of radiators on the surface of the
element.

The plausible distribution of velocity over the
surface of the radiator, represented by the eigenvectors,
Qk, is referred to as the radiation mode shape. There-
fore, the radiation modes represent a potential acoustic
radiation pattern on the radiator surface. However, the
radiation modes are frequency and geometry depen-
dent, yet independent of the material characteristics of
the radiator [23].

The kth surface velocity vector of the radiator is
transformed with the corresponding acoustic radiation
mode shape to obtain the radiation mode amplitude
given by:

yk = QTk �z: (14)

The radiation e�ciency is de�ned as the capability of
a structure to radiate sounds that can be expressed as
follows:

� =
W

�cST h��2
z i ; (15)

where ST is the total surface area of the vibrating
structure, and h��2

z i represents the average mean-square
velocity de�ned as [32]:

h��2
z i =

1
2ST

Z �����2
z

����dS: (16)

The formulations of the acoustic response indicators
given by Eqs. (11) and (15) do not incorporate the
vibration characteristics of the structure since matrix
[R] depends only on the wavenumber. Therefore, it is
clear that these radiation modes depend only on the
outer surface geometry of the radiating structure.

2.2.2. Radiation e�ciency and radiated sound power
in terms of structural modes

In order to reect the e�ect of changes in structural
behaviour on the acoustic radiation emitted by the
vibrating structure in the surrounding medium, it
is essential to formulate the radiation e�ciency and
sound power in terms of certain characteristics of the
structure. The nodal surface velocity vector of the
vibrating laminated plate can be represented in terms
of structural modes as follows:

�z = �n
n; (17)

where �n represents the eigenvector corresponding
to the nth structural mode, and 
n represents the
corresponding modal coe�cient vector expressed as [9]:


n =
�n(�e)

mn[!2
n(1 + j�n)� !2

e ]
; (18)

where �e is the excitation location on the vibrating

plate, !n is the nth natural frequency, !e is the
excitation frequency, mn is the modal mass (equal
to 1 if �n is mass normalized), and �n is the modal
damping. It is important to mention that � is the real
orthonormal matrix, i.e., �H = �T .

Now, by using Eq. (17) into Eq. (11), the acoustic
power can be expressed as follows:

W = 
H�H [R]�
 = 
HM
; (19)

where M = �H [R]� and, for any non-zero 
 value, M
is positive de�nite.

The eigenvalue decomposition of M gives:

M = PH�P; (20)

where each column of P contains an eigenvector of
M , and each diagonal element of � contains the
corresponding eigenvalue (zi).

Now, Eq. (19) can be reformulated as follows:

W =
H [PH�P ]
=zH�z =
NsX
n=1

jznj2n=nnjznj2;
(21)

where  = [P
]H , nn is the nth element on the
main diagonal of matrix

P
, and Ns is the number

of structural modes. It is essential to choose an
appropriate value of Ns in order to approximate sound
power accurately. Usually, the number of structural
modes is less than that of acoustic modes (Ns << NR),
demonstrating less computational expense charged for
the sound radiation using structural modes, as com-
pared to acoustic radiation modes.

The nth modal mean square velocity, in terms of
the structural modes, is written as follows:

h��2
z;ni =

1
2ST

Z �����n(x; y)zn
����2dS

=
1

2ST

Z �����n(x; y)
����2dSjznj2 = Dnjznj2; (22)

where Dn = 1
2ST

R j�n(x; y)j2dS.
Now, by substituting Eq. (22) into Eq. (15), the

nth modal radiation e�ciency (also referred to as self-
radiation e�ciency) is given as [32]:

�nn =
Dn

�cST
nn: (23)

The radiated sound power can be obtained by con-
sidering either only the self-radiation e�ciency term
(reduced radiated sound power) or both of the self-
and mutual-radiation e�ciency terms (exact radiated
sound power). Since all of the structural modes
contribute to the acoustic radiation, it is more sensible
to consider both the coupled (mutual) and uncoupled
(self) modes to compute the exact sound power to
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Table 1. Material properties of the laminated composite at panel [33,34].

Type of material

CFRP GFRP

Material-1
(M1)

Material-2
(M2)

Material-3
(M3)

Material-4
(M4)

Material-5
(M5)

Material-6
(M6)

Lamination
scheme

[45�/{45�] [45�/{45�]s [0�/90�]s [45�/{45�] [45�/{45�]s [0�/90�]s

E1 6.695 GPa 6.469 GPa 12.34 GPa 4.669 GPa 4.408 GPa 5.639 GPa

E2=E3 6.314 GPa 5.626 GPa 10.45 GPa 4.351 GPa 4.081 GPa 4.926 GPa

G12=G13 2.700 GPa 2.050 GPa 6.450 GPa 3.250 GPa 1.100 GPa 0.750 GPa

G23 1.350 GPa 1.025 GPa 3.225 GPa 1.625 GPa 0.550 GPa 0.375 GPa

�12=�23=�13 0.3 0.3 0.3 0.17 0.17 0.17

� 1388 kg/m3 1388 kg/m3 1388 kg/m3 1900 kg/m3 1900 kg/m3 1900 kg/m3

evaluate the sound radiation. However, in the low-
frequency range, the coupling between the radiating
modes is weak, and the �rst radiation mode is the
most dominant. Thus, curbing the �rst radiation
mode in itself will lead to low acoustic radiation. In
addition, the di�erence between the exact sound power
and the sound power obtained by considering only
the uncoupled modes is negligible owing to the weak
coupling between the modes. Therefore, in the low
frequency range, the uncoupled sound power could be
used very well to express the acoustic radiation from a
structure.

3. Results and discussion

The vibro-acoustic characteristics of the layered com-
posite at panels are studied in view of the structure-
dependent radiation modes. The solution to the
eigenvalue problem, posed by Eq. (4), is obtained
via the current simulation (ANSYS) model and is
validated with the numerical results available in the
published literature. The e�cacy of the current
simulation model has been strengthened by matching
the present responses with the results obtained via
new experimentation (modal analysis). In addition
to this, the �rst radiation mode's amplitudes are
computed using Rayleigh's integral and validated with
the available numerical results. An in-house MATLAB
code has been established on the developed acoustic
formulation to compute the desired acoustic responses.
The e�ects of composite material properties, constraint
conditions, and harmonic point load location on the
acoustic radiation responses of the layered composite
at panel are studied in detail by considering the
displacement and velocity responses, radiation e�-

ciencies, and acoustic power as the acoustic response
indicators.

In this study, two ([�45�]) and four (([�45�]s,
[�=90�]s) layers of CFRP and GFRP composite plates
(100 mm�100 mm�2 mm) are considered for the anal-
ysis purpose. The corresponding material properties
considered for the computational purpose are listed
in Table 1 [33,34]. The de�nitions of the constraints
applied at the support in the present analysis are as
follows:

(a) Clamped support condition (C-C-C-C):

�0 =0 =�0 =�x=�y=�z=0 at x = 0 and a;

y = 0 and b:

(b) Simply supported condition (S-S-S-S):

0 = �0 = �y = �z = 0 at x = 0 and a;

�0 = �0 = �x = �z = 0 at y = 0 and b:

(c) Cantilever support condition (C-F-F-F):

�0 =0 =�0 =�x=�y=�z = 0 at x = 0 only:

3.1. Convergence behaviour
Firstly, the convergence behaviour of the current
simulation model has been established. The �rst
eigen-frequencies are obtained for di�erent number of
radiators (mesh divisions) on the panel surface by con-
sidering various material properties of the composite
lamina under two di�erent support conditions (C-C-C-
C and S-S-S-S) presented in Table 2. It is evident that
the present results converge well with the increasing
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Table 2. Convergence study of the �rst natural frequency.

Natural frequency (Hz)

Mesh size CFRP (C-C-C-C) GFRP (S-S-S-S)

[�45�] [�45�]s [0�/90�]s [�45�] [�45�]s [0�/90�]s

3�3 1019.4 948.99 1367.30 314.29 301.57 284.39

6�6 797.59 748.27 1079.40 290.37 280.67 264.86

10�10 765.39 718.85 1036.80 285.55 276.38 260.85

14�14 757.05 711.21 1025.70 284.25 275.21 259.76

18�18 752.71 707.21 1021.30 283.71 274.73 259.31

22�22 751.98 706.55 1020.00 283.55 274.59 259.18

24�24 751.44 706.04 1018.30 283.35 274.40 259.01

Table 3. Validation of natural frequency.

Natural frequency (Hz)
Lay-up Mode 1 2 3 4 5 6 7 8

[�15�]8
Present 93.75 209.99 258.53 376.62 407.11 538.78 574.41 656.58
Ref. [23] 96.30 187 278 327 383 520 538 557
Di�. (%) -2.723 10.948 -7.531 13.175 5.922 3.486 6.339 15.166

[�30�]8
Present 121.59 273.99 296.57 487.77 512.11 577 758.26 795.21
Ref. [23] 127 291 301 507 544 571 790 806
Di�. (%) -4.449 -6.208 -1.494 -3.942 -6.227 1.040 -4.186 -1.357

[�45�]8
Present 143.31 272.78 402.45 457.99 574.36 709.08 810.48 830.17
Ref. [23] 152 288 427 480 604 735 844 876
Di�. (%) -6.064 -5.580 -6.100 -4.806 -5.161 -3.655 -4.136 -5.521

[0=90�]8
Present 121.90 215.58 418.02 441.23 489.69 624.82 725.81 879.37
Ref. [23] 130 230 442 470 522 661 756 793
Di�. (%) -6.645 -6.689 -5.737 -6.520 -6.598 -5.790 -4.159 9.822

number of radiators on the surface (mesh re�nement).
In accordance with the rule of thumb for the acoustic
analysis of structures [6,28], six elements per unit wave-
length must be used to predict the responses accurately.
Therefore, based on the results of the convergence test,
a (16�16) mesh is utilized to compute the vibration
responses throughout the present analysis.

3.2. Validation studies
The e�cacy of the present scheme is established
through di�erent comparison studies presented in this
section. For the validation of the structural and
acoustic models, the natural frequencies of di�erent
modes and the �rst radiation mode's amplitude of the

vibrating plate are obtained and compared with the
benchmark results available in the published literature.
In order to strengthen the con�dence in the present
simulation model, the responses obtained from the
modal analysis are additionally compared with the
speci�c results obtained through lab scale in-house
experimentations.

3.2.1. Validation of natural frequency
Table 3 demonstrates the natural frequencies of the
�rst eight modes for the 16-layered simply supported
laminated composite plate with four di�erent lami-
nation schemes and the results of Wu and Huang
[23]. The geometrical parameters (a = 0:40 m, b =
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0:25 m), material properties (E1 = 181 GPa, E2 =
10:3 GPa, G12 = 7:17 GPa, �12 = 0:28), and the
excitation loading (harmonic point load of 10 N at
(a=2, b=2)) are taken to be the same as those [23]. It
is evident that the results of the present simulation
are closely in agreement with the published numerical
results.

3.2.2. Experimental validation of natural frequency
In this section, the natural frequencies of the cantilever
laminated composite plate are determined experimen-
tally, and the results are compared with those obtained
using the present simulation (ANSYS) model. The
material properties of glass/epoxy composite plate are
evaluated experimentally on three di�erent specimens
using the unidirectional tensile test through Universal
Testing Machine (UTM) (INSTRON 1195) at National
Institute of Technology (NIT), Rourkela, and listed in
Table 4. For the experimental purpose, composite plate
specimens with their corresponding lamination schemes

are prepared by following the ASTM standard (D
3039/D 3039M). The experimental setup used for ob-
taining the free vibration responses of the plate (modal
analysis) is depicted in Figure 3(a). The plate (3)
subjected to cantilever (C-F-F-F) support condition
through the support �xture (5) is excited by an impact
hammer (6). The accelerometer (4) mounted on the
plate captures the acceleration response of the plate.
The PXIe (1) connects the accelerometer to LABVIEW
and converts the acquired analog signal form into the
digital signal form using an ingrained Analog to Digital
(AD) converter. Subsequently, the output from the
AD converter is processed in LABVIEW in accordance
with the block diagram depicted in Figure 3(b). The
values of the frequencies from the experiment and
the corresponding values obtained from the present
simulation model are listed in Table 5. It is clearly seen
that the responses obtained using simulation model are
as good as the experimental values. It is worth noting
that the present values of the frequencies are higher for

Figure 3. (a) Experimental setup. (b) Block diagram designed in LABVIEW for experimental data recording.

Table 4. Experimental material properties of the glass/epoxy composite lamina.

Type of material Material: ME1 Material: ME2

Dimensions 0.15 m�0.15 m �0:0016 m 0.15 m�0.15 m �0:002 m

Lamination scheme [0�/90�/90�/0�]2 [0�/9�0/90�/0�/0�/90�]

E1 6.125 GPa 7.205 GPa

E2=E3 5.421 GPa 6.327 GPa

G12=G13 2.790 GPa 2.800 GPa

G23 1.395 GPa 1.400 GPa

�12=�23=�13 0.17 0.17

� 1400 kg/m3 1420.05 kg/m3
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Table 5. Comparison of natural frequencies of
glass/epoxy laminated composite cantilever (C-F-F-F)
plates with the experimental results.

Natural frequency (Hz)

Material: ME1 Material: ME2

Mode Present Experimental Present Experimental

1 23.696 21 31.643 26

2 63.809 61 80.804 60

3 148.99 140 198.75 174

4 192.44 193.5 252.56 255

5 228.93 228 295.55 290

6 403.5 497 516.09 515

material ME2, as compared to the material ME1, owing
to the reduction in sti�ness due to the less number of
layers in ME2.

3.2.3. Validation of acoustic properties: First
radiation mode's amplitude

The �rst radiation mode's amplitudes for a 16-layered
anti-symmetric angle-ply ([�45�]8) at panel subjected
to S-S-S-S support condition have been computed
for two di�erent damping ratios (0.1 and 0.2) and
compared with those available in Wu and Huang [23].
Figure 4(a) shows the comparison of the �rst radiation
mode's amplitude for damping coe�cient 0.1. It is
evident that the present results are in close agreement
with the reference values. The small di�erences exist
between the present and reference results due to the
di�erent theories employed for the estimation of surface
velocities of the vibrating structure. It should be
noted that the layer-wise FEM has been used in [23]
(resemblance to the 3D elasticity solution), whereas

the FSDT kinematic model has been adopted in the
present case to compute the desired responses. The
agreement between the results is excellent for damping
ratio 0.2, which is evident from Figure 4(b).

3.3. Additional illustrations
The convergence and validation studies demonstrate
the pro�ciency of the present scheme in easily obtaining
vibro-acoustic responses of the layered composite at
panel with adequate accuracy. Some new illustra-
tions are presented in this section to bring out the
quantitative understanding of the acoustic responses
of the layered composite at panels. The displace-
ment and velocity responses, radiation e�ciencies, and
sound power are considered as the acoustic parameter
indicators. To compute the acoustic responses, two-
layered and four-layered CFRP and GFRP composite
at panels are considered under C-C-C-C and S-S-S-S
boundary conditions, respectively, and the plates are
excited with a harmonic point load of 1 N. In each
illustration, two di�erent loading cases are considered:
Case 1 and Case 2. In Case 1, the load is applied
at the central node (a=2; b=2) where an anti-node is
formed usually (Figure 5(a)), while, in Case 2, the load
is applied at an eccentric node located at (3a=4; b=4)
on the square plate to avoid any anti-node (Figure
5(b)).

Figure 5. Di�erent load cases: (a) Load Case 1, and (b)
load Case 2.

Figure 4. Comparison of the �rst radiation mode's amplitude: (a) Damping coe�cient = 0.1, and (b) damping
coe�cient = 0.2.
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Figure 6. Displacement and velocity responses of clamped CFRP plates under di�erent loading conditions.

3.3.1. Displacement and velocity response
It is well known that the radiated sound power depends
on the displacement, velocity, and acceleration of the
vibrating structure. The displacement and velocity
responses of the point of excitation under di�erent
boundary and loading conditions for CFRP and GFRP
at panels are obtained using the present scheme and
are shown in Figures 6 and 7, respectively. It is
evident from Figure 6(a) and (c) that the displacement
and velocity are maximum for CFRP symmetric angle-
ply laminate and minimum for the symmetric cross-
ply laminate for all the frequencies in the range of
operation. Based on Figure 6(b) and (d), a similar
trend is observed for the second load case in the
frequency range from 0-710 Hz to 790-1000 Hz. For
load Case 1, the velocity and displacement response of
GFRP symmetric cross-ply laminate are more domi-
nant in the frequency range of 0-510 Hz, whereas the
response of the angle-ply laminate is more dominant in
720-1000 Hz range; the same can be observed in Figure
7(a) and (c). On the other hand, for load Case 2, it
is noted that the two-layered GFRP angle-ply laminate
[45�/-45�] is the most suppressed one in 0-710 Hz range,

as portrayed in Figure 7(b) and (d). The frequency-
dependent uctuation in the behaviour of the vibrating
plates can be attributed to the excitation of multiple
modes when the load is placed at a node with zero
displacement (which may occur in load Case 2), as
compared to the excitation of a fewer modes or mostly
a single mode when it is placed at an anti-node (as in
load Case 1).

3.3.2. Radiation e�ciency
It is clearly understood from Eq. (23) that the radiation
e�ciency de�ned in terms of structural modes solely
depends on the frequency and mode shapes of the
vibrating structure. The mode shapes are further
dependent on the geometry and the number of con-
straints at the end support. Therefore, the radiation
e�ciency of a vibrating structure is independent of
the location of the harmonic load. In this section,
the self-radiation e�ciencies of di�erent modes are
computed for the �rst type of loading (Case 1) only.
The radiation e�ciencies of clamped CFRP and simply
supported GFRP composite at panels are obtained
using the present model, as shown in Figure 8. In
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Figure 7. Displacement and velocity response of simply supported GFRP plates under di�erent loading conditions.

order to observe the e�ect of coincidence frequency,
the results are plotted for higher excitation frequency
range (up to 25 kHz). It is observed that the radiation
e�ciencies of all the modes increase monotonically with
increasing excitation frequency, and the �rst radiation
mode (1, 1) has the highest e�ciency for all the
cases, irrespective of the type of material and support
conditions. The radiation e�ciency of the modes
crosses unity after the �rst coincidence frequency of
the plates and, thereafter, converges to unity for all
higher frequencies. In addition to this, it is also noted
that the radiation e�ciency of odd modes is larger
than that of any other modes for the low-frequency
range. It is worth noting that the radiation e�ciencies
tend to converge towards a single value for the higher
frequencies, implying that all the modes have a signif-
icant contribution towards the acoustic radiation for
higher frequencies. However, the convergence rate of
less e�cient modes, such as (1, 4) and (2, 2), is higher
than that of the relatively more e�cient modes. This
is an indication of the tendency of the weakly radiating
modes to develop into strongly radiating modes at
a faster rate corresponding to the higher excitation
frequency. In addition, it is noted that the radiation

patterns of the most e�cient radiating modes (1, 1)
and (1, 3) do not vary signi�cantly with a lamination
scheme.

3.3.3. Radiated sound power
The sound power (dB, reference = 10�12 W) radiated
by the vibrating clamped CFRP and simply supported
GFRP composite plates is computed for two types of
loading using the structural modes, shown in Figures 9
and 10, respectively. In each case, the responses are
obtained by including both the un-coupled or self-
radiation modes (reduced sound power) and all the
radiation modes (exact sound power). It is obvious
from Figure 9 that the location of the harmonic
point load does not have much e�ect on the radiation
pattern of the clamped CFRP plates. However, the
magnitude of radiated power is less for load Case 2
than that for load Case 1. Further, the location
of excitation force has a signi�cant inuence on the
radiation pattern of the simply supported GFRP plate,
as presented in Figure 10. It can be seen clearly
that the di�erences between the exact and reduced
sound powers are insigni�cant in particular for the
clamped CFRP plates. This is attributed to the fact
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Figure 8. Self-radiation e�ciencies of di�erent modes for clamped CFRP ((a), (b) and (c)) and simply supported GFRP
((d), (e) and (f)) composite at panel.

that the �rst structural radiation mode is the only
dominant mode contributing to the sound power. The
same is also evident from the analysis of radiation
e�ciencies of di�erent modes, as presented in the
previous section. However, it is worth noting that
there exists an appreciable di�erence between the exact
and reduced sound powers for the case of the simply
supported GFRP plate corresponding to the higher
excitation frequencies. It is also interesting to observe
that, in the considered excitation frequency range and
for each type of loading cases, the maximum radiated
sound power is lower for cross-ply laminations and
higher for angle-ply laminations in the case of CFRP

composite plates. However, a reverse trend is noticed
in the case of GFRP laminates.

4. Conclusion

The vibration frequency and acoustic radiation char-
acteristics of the layered at panel in an in�nite rigid
ba�e under the harmonic point load were investigated
in this article. Initially, the free vibration responses
of the CFRP and GFRP laminated composite plates
were obtained using the simulation model developed
in ANSYS and compared with the available numerical
and presented experimental results. In addition, the
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Figure 9. Radiated sound power for clamped CFRP composite at panel under di�erent loading conditions.

�rst radiation mode's amplitudes of the vibrating at
panels are computed (using an explicit relation between
pressure and velocity) with the help of a computer code
developed in MATLAB in conjunction with Rayleigh's
integral formulation and compared with that of the
benchmark results available in the published literature.
Further, the velocity and displacement behaviour of the
plate due to a point harmonic excitation were analysed
to show the e�ect of the location of the point load,
number of constraints at the support, and composite
material properties on the acoustic radiation responses
of the layered composite at panel. The structural
radiation modes (in contrast to the acoustic radiation

modes) were utilized to evaluate the sound radiation
from the vibrating plate. Based on the numerical
illustration, it was observed that the location of the
excitation force has no e�ect on the radiation e�ciency.
However, the �rst radiation mode's contribution to the
acoustic radiation is the most signi�cant and the other
modes radiate weakly, thus not contributing much
to the acoustic radiation in the considered frequency
range. The exact acoustic power radiated by the
vibrating plate was evaluated by all the terms used and
compared with the reduced radiated acoustic power by
considering the self-radiation terms only. Based on this
analysis, it was observed that the di�erence between
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Figure 10. Radiated sound power for simply supported GFRP composite at panel under di�erent loading conditions.

the exact and reduced sound powers is insigni�cant for
low excitation frequency ranges.
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