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Abstract. In this paper, the solution to a system of linear distributed order di�erential
equations in the Riemann-Liouville sense is analytically obtained. The distributed order
relaxation equation is a special case of the system investigated in this paper. The solution
of the mentioned system is introduced on the basis of a function, which can be considered
as the distributed order generalization of the matrix Mittag-Le�er functions. It is shown
that this generalized function in two special cases of the weight function can be expressed
in terms of the multivariate Mittag-Le�er functions and the Wright functions.
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1. Introduction

Fractional order calculus is used to model physical pro-
cesses that exhibit anomalous dynamics, such as frac-
tional order di�usion [1,2] and relaxation [3]. Relax-
ation processes modeled by integer order or fractional
order derivatives could be generalized by the concept
of distributed order derivatives that allows modeling
processes with scaling law change [4]. In addition, this
could be done by utilizing either Riemann-Liouville
or Caputo de�nition to construct a distributed order
di�erentiation operator for modeling distributed order
relaxation. Although the two approaches turn out to be
equivalent in the fractional order case, this is not true
in the distributed order case. Since both approaches
lead to successful models describing the actual physical
phenomena, a further study of both cases is appealing.
The typical approach to obtaining a solution to such
equations in the time domain is based on direct inverse
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Laplace transform using the Fourier-Mellin formula
or Titchmarsh theorem [5]. This approach, which
is considered in most papers [4,6-9] in the literature,
generates a solution expressed by a Laplace-type in-
tegral in both Riemann-Liouville and Caputo cases.
Since the link between this representation and the Fox-
Wright functions used in fractional order di�erential
equations is not clear, an alternative representation of
the solution, which incorporates Fox-Wright functions,
is proposed in [9] in which the Laplace-type integral
still lingers. This problem was also studied by using
Laguerre series to give an approximation of the solution
in [10]. In addition, the asymptotic properties of
the solution is investigated in [6]. This problem is
also treated in the case of triple impulses and double
impulses as special cases of the weight function in [4]
and [11], respectively. It is observed that a coherent
extension of the Mittag-Le�er functions for distributed
order calculus is of interest. In this regard, a new
representation of the solution associated with the
general weight functions is presented, which excludes
the Laplace-type integral. This representation consists
of a series expansion, which exhibits the impact of the
weight function on the distribution of the orders in
the time domain. The reduction of the solution to the
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Mittag-Le�er function is clear in the case of a single
impulse weight function. Moreover, it is shown that
the solution turns into the multivariate Mittag-Le�er
function in the case of several impulses as the weight
function. On the other hand, by choosing a unitary
or exponential weight function, it is possible to express
the solution in terms of the Wright functions.

This paper is organized as follows. In Section 2,
some preliminaries are reviewed, and some useful lem-
mas are presented with regard to the distributed order
calculus. Section 3 is devoted to the main results,
where the solution of a system of linear distributed
order di�erential equations in the Riemann-Liouville
sense is presented in terms of what can be construed as
the distributed order generalization of Mittag-Le�er
functions. Some properties of these functions are
stated, and the problem is investigated further in
two special cases of the weight functions. At the
end, numerical examples are presented to simulate
the solution to a distributed order relaxation equation
and a system of di�erential equations with multiple
fractional order operators as special cases in Section 4.
Finally, the paper is concluded in Section 5.

2. Distributed order calculus

In this section, some de�nitions and lemmas are pre-
sented that are essential to achieving the main results
in the rest of the paper. First o�, some of the notations
used in this paper are introduced as follows:

Notation
w Weight function
W�;� Wright function
E�;� Mittag-Le�er function
E(�1;�2;:::;�n);� Multivariate Mittag-Le�er function

p	q Fox-Wright function
� Dirac delta function
H Heaviside step function
� Complete Gamma function
0I�t Fractional integral
C
0 D

�
t Fractional derivative in the Caputo

sense
RL
0 D�

t Fractional derivative in the Riemann-
Liouville sense

0I
w(�)
t Distributed order integral

RL
0 Dw(�)

t Distributed order derivative in the
Riemann-Liouville sense

� Convolution
f�k k-fold iteration of convolution
Lt!s Laplace transform

The cornerstone of fractional calculus is based on

the extension of integration order to real numbers in
integral operators. This is realized by introducing a
fractional integration operator [12, P. 65].

0I�t f(t) =
Z t

0
((t� �)��1=�(�))f(�)d�: (1)

The Caputo fractional derivative is de�ned based on
this de�nition as follows [12]:

C
0 D

�
t f(t) =

8><>:f(t); � = 0
0I1��
t

_f(t); 0 < � < 1
_f(t); � = 1

: (2)

In this paper, the Riemann-Liouville fractional deriva-
tive is considered, which is de�ned as follows [12]:

RL
0 D�

t f(t) =

8><>:f(t); � = 0
d
dt 0I1��

t f(t); 0 < � < 1
_f(t); � = 1

: (3)

The Riemann-Liouville fractional derivative (3) is
equivalent to the Caputo fractional derivative (2) if
the function subject to the operator has zero initial
conditions [12]. Integrating operator (1) over the order
of integration with a weight function results in the so-
called distributed order integral [13]:

0I
w(�)
t f(t) =

Z 1

0
w(�)0I�t f(t)d�: (4)

In the de�nition above, w : R ! R denotes the
weight function, for which w(�) = 0 holds for � 2
(�1; 0] [ [1;+1). Distributed order derivative can
also be de�ned in a similar way:

RL
0 Dw(�)

t f(t) =
Z 1

0
w(�)RL0 D�

t f(t)d�: (5)

Power functions with real powers tend to appear in
fractional calculus frequently. In addition, the Laplace
transform of these functions is given as follows [14]:

Lt!sftag = �(a+ 1)=sa+1; a 2 (�1;+1): (6)

The Riemann-Liouville fractional derivative of the
power function is given by [12]:

RL
0 D�

t t
� = �(�+ 1)t���=�(�� �+ 1);

t > 0; � > �1: (7)

According to Eq. (6), the representation of fractional
integral of a function in the Laplace domain is given
by [12]:

Lt!sf0I�t f(t)g = F (s)=s�; (8)
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where F (s) = Lt!sff(t)g. In addition, the represen-
tation of the fractional derivative of a function with
zero initial conditions in the Laplace domain is given
by [12]:

Lt!sfRL0 D�
t f(t)g = s�F (s): (9)

Moreover, the following Laplace transformation is re-
quired:

Lt!sf� ln t� 
g = (ln s)=s; (10)

where 
 is the Euler-Mascheroni constant [14]. Before
proceeding, some of the special functions used in
fractional calculus are reviewed. It has been shown that
the solution to linear di�erential equations of fractional
order with constant coe�cients is expressed in terms
of Mittag-Le�er functions [12]. The Mittag-Le�er
function is de�ned by the series [12].

E�;�(z)=
X+1

k=0
z�k=�(�k+�); �; � >0; z 2 C:

(11)

In fact, Function (11) has been generalized in several
ways to �t di�erent problems in fractional calculus.
A generalization of Eq. (11), which appears in the
solution to fractional di�erential equations by the
operational methods, is the multivariate Mittag-Le�er
Function [15]. This function is de�ned by:

E(�1;�2;:::;�n);�(z1; z2; : : : ; zn) =
X+1

k=0

X
l1+l2+���+ln=k

�
k

l1; l2; � � � ; ln
� nQ

i=1
zlii

�(
Pn
i=1 li�i + �)

; (12)

where
�

k
l1; l2; � � � ; ln

�
= k!

l1!l2!���ln! . The Wright func-

tion, which frequently appears in fractional order
di�usion-wave equations, is de�ned by the series [12]:

W�;�(z) =
X+1

k=0

zk

k!�(�k + �)
;

�; � > 0 z 2 C: (13)

Wright functions and Mittag-Le�er functions are both
generalized by the following de�nition:

p	q

�
z; (a1; a01) (a2; a02) � � � (ap; a0p)

(b1; b01) (b2; b02) � � � (bq; b0q)

�
=

+1X
k=0

�(a1+a01k)�(a2+a02k) � � ��(ap+a0pk)zk

�(b1+b01k)�(b2+b02k) � � ��(bq+b0qk)k!
;
(14)

which is called the Fox-Wright function [16].

Proposition 1

The representation of the distributed order integral of
a function in the Laplace domain is given by:

Lt!sf0Iw(�)
t f(t)g = L�!ŝfw(�)g

����
ŝ=ln s

F (s); (15)

where F (s) = Lt!sff(t)g.
Proof
Considering the Laplace transform of Eq. (4) and using
Eq. (8) result in:

Lt!sf0I�t f(t)g =
Z 1

0
w(�)F (s)=s�d�: (16)

Using the relation 1=s� = exp(��Ins) in Eq. (16), we
obtain:

Lt!sf0Iw(�)
t f(t)g

=
�Z +1

0
w(�) exp(�� ln s)d�

�
F (s)

= L�!ŝfw(�)gjŝ=ln sF (s): 2 (17)

Proposition 2

The representation of the distributed order derivative
of a function with zero initial conditions in the Laplace
domain is given by:

Lt!sfRL0 Dw(�)
t f(t)g = L�!ŝfw(�)g

����
ŝ=� ln s

F (s);
(18)

where F (s) = Lt!sff(t)g.
Proof of Proposition 2 is obtained as easily as that
of Proposition 1. We continue this section with an
extension of the fractional power function ta, a 2
(�1;+1) by introducing a distributed power function,
which turns out to be a remarkably general function,
resulting in various well-known functions as its special
cases. This function is de�ned by:

p(t; f) �=
Z +1

0
(t��1=�(�))f(�)d�; (19)

where f : R ! R is a locally integrable function
satisfying f(�) = 0 for � 2 (�1; 0]. It is observed that
p(t; �(�)�(��a�1)) = ta, indicating how the fractional
power function is a special case of this function. It is
shown that this is also true for the more general Fox-
Wright functions in the following proposition.

Proposition 3

It can be shown that:

1: p(t;
X

+1
k=0�(�� k�1 � �2)) =

t�2�1E�1;�2(t�1); �1; �2 > 0;
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2: p(t;
X

+1
k=0�(�� k�1 � �2)=k!)

= t�2�1W�1;�2(t�1); �1; �2 > 0;

3: p
�
t;
X+1

k=0
�(�� k � 1)

�(a1 + a01k)�(a2 + a02k) � � ��(ap + a0pk)
�(b1 + b01k)�(b2 + b02k) � � ��(bq + b0qk)

�
= p	q

�
t; (a1; a01) (a2; a02) � � � (ap; a0p)

(b1; b01) (b2; b02) � � � (bq; b0q)

�
:

Proof
Proof is directly obtained from de�nition (Eq. (19)). 2

The Laplace transform of distributed order power
functions is given in the following lemma.

Lemma 1

Let f : R ! R be a locally integrable function
satisfying f(�) = 0 for � 2 (�1; 0]. Then,
Lt!sfp(t; f(�))g = F (ln s), where F (s) = Lt!sff(t)g.
Proof
Using Eq. (6), Laplace transform of Eq. (19) is given
by:

Lt!sfp(t; f(�))g =
Z +1

0
(f(�)=s�)d�: (20)

Using the relation 1=s� = exp(�� ln s) in Eq. (20), we
obtain:

Lt!sfp(t; f(�))g =
Z +1

0
f(�) exp(�� ln s)d�

= F (ln s); (21)

where F (s) = L�!sff(�)g. 2
Distributed order integrals of distributed power func-
tions can be calculated by the following lemma.

Lemma 2

Let f : R ! R be a locally integrable function
satisfying f(�) = 0 for � 2 (�1; 0]. Then:

0I
w(�)
t p(t; f(�)) = p(t;w(�) � f(�)); (22)

where w(�) � f(�) =
R �

0 w(�� �)f(�)d� .

Proof
According to Proposition 1,

Lt!sf0Iw(�)
t p(t; f(�))g

= L�!ŝfw(�)gjŝ=ln sLt!sfp(t; f(�))g: (23)

By using Lemma 1, Eq. (23) yields

Lt!sf0Iw(�)
t p(t; f(�))g = L�!ŝfw(�)gjŝ=ln sF (ln s)

= Lt!sfp(t;w � f(�))g; (24)

which results in Eq. (22). 2
The following lemma is used to determine the

distributed order derivatives of distributed power func-
tions.

Lemma 3

Let f : R! R be a locally integrable function f(�) = 0
for � 2 (�1; 1]. Then:

RL
0 Dw(�)

t p(t; f(�)) = p(t;w(��) � f(�)); (25)

where w(��) � f(�) =
R 1+�

0 w(� � �)f(�)d� .

Proof
Considering the Laplace transform of the left side of
Eq. (25) and using Proposition 2 give:

Lt!sfRL0 Dw(�)
t p(t; f(�))g

= L�!ŝfw(�)gjŝ=� ln sLt!sfp(t; f(�))g: (26)

Using Lemma 1 yields:

Lt!sfRL0 Dw(�)
t p(t; f(�))g

= L�!ŝfw(�)gjŝ=� ln sF (ln s): (27)

With respect to the relation L�!sfw(��) � f(�)g =
L�!ŝfw(�)gjŝ=�sF (s) and using Lemma 1, it is con-
cluded that:

L�!ŝfw(�)gjŝ=� ln sF (ln s)

= Lt!sfp(t;w(��) � f(�))g; (28)

which is the Laplace transform of the right side of
Eq. (25). 2
3. Distributed order system of linear

di�erential equations

The distributed order system of linear di�erential equa-
tions is supposed to be a generalization of a fractional
order system of linear di�erential equations. This
generalization may be done in two ways such that ex-
tending the fractional order system to distributed order
one is possible by using Caputo or Riemann-Liouville
operators. In fact, the actual physical processes of
interest, such as di�usion phenomena and relaxation
patterns, can be modeled by either of the operators
successfully [6,17]. The distributed order system of
linear di�erential equations in the Riemann-Liouville
sense is introduced as follows:
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_x(t) = A
Z 1

0
w(�)RL0 D1��

t x(t)d�+Bg(t);

x(0) = x0; (29)

where x(t) 2 Rn is the pseudo state, and g : R ! R
is a locally integrable function satisfying g(t) = 0 for
t 2 (�1; 0). In addition, A 2 Rn�n and B 2 Rn�1.
Likewise, the distributed order system described in the
Caputo sense is de�ned by:Z 1

0
w(�)C0 D

�
t x(t)d� = Ax(t) +Bu(t);

x(0) = x0; (30)

which was comprehensively studied in [18]. This study
is concerned with the Riemann-Liouville-based system
(Eq. (29)), and it aims to present the analytical solution
for such a system. It is obvious that in the case
of scalar negative A and g(t) � 0, this system is
reduced to a distributed order relaxation equation [6].
We recall that Riemann-Liouville derivative (Eq. (3))
is the left inverse of the fractional integral operator
(Eq. (1)). It is interesting that this relationship does
not hold for distributed order operators (Eqs. (4)
and (5)) in general. This is the fundamental reason
why modeling distributed order relaxation patterns by
means of Caputo and Riemann-Liouville operators does
not produce identical solutions.

This section is followed by de�nition below, which
speci�es the iterated self-convolution of a function:

f�k(t) =
Z t

0
f(�)f�k�1(t� �)d�; k 2 N: (31)

In Eq. (31), f : R ! R is a locally integrable function
satisfying f(t) = 0 for t 2 (�1; 0]; for the initial
function, we de�ne f�0(t) = �(t). Eq. (31) is sometimes
called the convolution power of function f(t), which has
some applications in stochastic di�erential equations
[19]. Based on this de�nition, a function that can
be considered as the distributed order version of the
Mittag-Le�er function is introduced. This function,
like the Fox Wright function, is also a special case of
the distributed power function (Eq. (19)) and is de�ned
by:

E(t;Aw(�)) �= p(t; v(�)); (32)

where:

v(�+ 1) =
X+1

k=0
Akw�k(�): (33)

According to this de�nition and noting the fact that
w�k(�) is zero outside the range (0; k), this function
can be represented by:

E(t;Aw(�)) =
X+1

k=0

Z k

0
Akw�k(�)

(t�=�(�+ 1))d�: (34)

Lemma 4

The exact solution to the homogeneous system of
di�erential equations:

_x(t) = A
Z 1

0
w(�)RL0 D1��

t x(t)d�; x(0) = x0; (35)

is given by:

x(t) = E(t;Aw(�))x0; t � 0; (36)

where E(t;Aw(�)) is de�ned by Eq. (32).

Proof
De�ning:

v1(�+ 1) =
X+1

k=1
Akw�k(�); (37)

allows us to write v(�+ 1) = �(�) + v1(�+ 1).
Thereby:

E(t;Aw(�)) = p(t; �(�� 1) + v1(�)): (38)

Accordingly, following Eq. (19), the distributed power
function is linear with respect to its second argu-
ment. In addition, it is deduced from Eq. (19) that
p(t; �(�� 1)) = 1. Therefore:

E(t;Aw(�)) = 1 + p(t; v1(�)): (39)

To show that x(t) = E(t;Aw(�))x0 is the solution of
Eq. (35), we need to prove:

d
dt
E(t;Aw(�))x0

= A
Z 1

0
w(�)RL0 D1��

t E(t;Aw(�))x0d�: (40)

The right side of Eq. (40) equals:

A
Z 1

0
w(�)RL0 D1��

t E(t;Aw(�))d�x0

= A
Z 1

0
w(�)RL0 D1��

t (1)d�x0

+A
Z 1

0
w(�)RL0 D1��

t p(t; v1(�))d�x0: (41)

Using Eq. (7) for the calculation of the �rst term in the
second line of Eq. (41), we obtain:



H. Taghavian and M.S. Tavazoei/Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1384{1397 1389

A
Z 1

0
w(�)RL0 D1��

t (1)d�x0 = A
Z 1

0
w(�)

t��1=�(�)d�x0 = p (t;Aw (�))x0: (42)

For the second term in the second line of Eq. (41), the
variable change, � = 1� �, is considered, which gives:

A
Z 1

0
w(1� �)RL0 D�

t p(t; v1(�))d�x0

= ARL0 Dw(1��)
t p(t; v1(�))x0: (43)

Note that v1(�) = 0 for 0 � � � 1. Therefore,
Lemma 3 is used to calculate ARL0 Dw(1��)

t p(t; v1(�))x0
as in the following:

ARL0 Dw(1��)
t p(t; v1(�))x0

= Ap(t;w(1 + �) � v1(�))x0: (44)

Applying the time shift to the other function involved
in the convolution, we obtain:

ARL0 Dw(1��)
t p(t; v1(�))x0

= Ap(t;w(�) � v1(�+ 1))x0: (45)

Thereby, using Eq. (33) gives:

ARL0 Dw(1��)
t p

�
t; v1(�)

�
x0

= Ap
�
t;w(�) �X+1

k=1
Akw�k(�)

�
x0

= Ap
�
t;
X+1

k=1
Akw�k+1(�)

�
x0

= p
�
t;
X+1

k=1
Ak+1w�k+1(�)

�
x0

= p
�
t;
X+1

k=2
Akw�k(�)

�
x0: (46)

By using Eqs. (42) and (46), the right side of Eq. (40)
can be written as follows:

A
Z 1

0
w(�)RL0 D1��

t E(t;Aw(�))d�x0 =p(t;Aw(�))x0

+p
�
t;
X+1

k=2
Akw�k(�)

�
x0

= p
�
t;
X+1

k=1
Akw�k(�)

�
x0: (47)

On the other hand, for the left side of Eq. (40), one
has:

d
dt
E (t;Aw (�))x0 =

d
dt
p (t; v1 (�))x0: (48)

Due to the equality:

d
dt
p (t; v1 (�)) = RL

0 D�(��1)
t p (t; v1 (�)) ;

Lemma 3 is used to write the left side of Eq. (40) as
follows:
d
dt
E (t;Aw (�))x0 =p (t; � (��� 1) � v1 (�))x0: (49)

Since �(�) is an even function, we can write:

d
dt
E (t;Aw (�))x0 = p (t; � (�+ 1) � v1 (�))x0

= p (t; v1 (�+ 1))x0

= p
�
t;
X+1

k=1
Akw�k(�)

�
x0; (50)

which is equal to the right side of Eq. (47). 2
Lemma 5

The exact solution to the system of di�erential equa-
tions characterized by input function g(t) and zero
initial conditions,

_x (t) = A
Z 1

0
w(�)RL0 D1��

t x(t)d�+Bg (t) ;

x (0) = 0; (51)

is given by:

x (t) = E (t;Aw (�)) �Bg (t) ; t � 0; (52)

in which E (t;Aw (�)) is de�ned by Eq. (32).

Proof
Proof of this lemma follows a procedure quite similar
to that of Lemma 4. We simply show that Eq. (52)
satis�es Eq. (51). According to Eq. (39), the proposed
solution can be written as follows:

x (t) = (1 + p (t; v1 (�))) �Bg (t) : (53)

At �rst, the left side of Eq. (51) is calculated as follows:

_x(t) = Bg(t) +
d
dt
p(t; v1(�)) �Bg(t)

=Bg(t)+
d
dt

Z +1

0
p(t�� ; v1(�))H(t��)Bg(�)d�

= Bg(t)+
Z +1

0
_p(t� � ; v1(�))H(t��)Bg(�)d�

+
Z +1

0
p(t� � ; v1(�))�(t� �)Bg(�)d�
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= Bg(t) +
Z +1

0
_p(t� � ; v1(�))H(t� �)

Bg(�)d� + p(0; v1(�))Bg(t): (54)

Since v1(�) = 0 for 0 � � � 1, it is observed from
Eq. (19) that p (0; v1 (�)) = 0. Therefore:

_x (t) = Bg (t) + _p (t; v1 (�)) �Bg (�) : (55)

The term _p (t; v1 (�)) has already been calculated in
Eq. (50). Hence, for the left side of Eq. (51), we have:

_x (t) = Bg (t) + p (t; v1 (�+ 1)) �Bg (�)

= Bg (t)+p
�
t;
X+1

k=1
Akw�k (�)

��Bg (t) : (56)

To calculate the right side of Eq. (51) using Eq. (39),
we could write:

A
Z 1

0
w(�)RL0 D1��

t x(t)d�+Bg (t)

= A
Z 1

0
w(�)RL0 D1��

t 0I1
tBg (t) d�

+A
Z 1

0
w(�)RL0 D1��

t (p(t; v1(�))

�Bg(t))d�+Bg(t): (57)

Since the relation RL
0 D1��

t 0I1
t = 0I�t [12] holds for the

Riemann-Liouville derivative and fractional integral,
we can write the following by expanding convolution
integrals:

A
Z 1

0
w(�)RL0 D1��

t x(t)d�+Bg(t)

= A
Z 1

0
w(�)

Z t

0
((t� �)��1=�(�))Bg(�)d�d�

+A
Z 1

0
w(�)RL0 D1��

t

�Z +1

0
p(t� � ; v1(�))

H(t� �)Bg(�)d�
�
d�+Bg(t): (58)

By changing the order of integrations on the assump-
tion that they exist, we obtain:

A
Z 1

0
w(�)RL0 D1��

t x(t)d�+Bg(t)

= A
Z t

0

Z 1

0
w(�)((t� �)��1=�(�))d�Bg(�)d�

+A
Z +1

0

Z 1

0
w(�)RL0 D1��

t (p(t� � ; v1(�))

H(t� �))d�Bg(�)d� +Bg(t): (59)

Eq. (59) can be written in a distributed order derivative
form as follows:

A
Z 1

0
w(�)RL0 D1��

t x(t)d�+Bg(t)

= Ap(t;w(�)) �Bg(t)

+A
�
RL
0 Dw(1��)

t p(t; v1(�))
�

�Bg(t) +Bg(t): (60)

Using Lemma 3 yields:

A
Z 1

0
w(�)RL0 D1��

t x(t)d�+Bg(t)

=Ap(t;w(�)) �Bg(t)

+Ap(t;w(�+ 1) � v1(�)) �Bg(t) +Bg(t)

=Ap(t;w(�)) �Bg(t)

+Ap(t;w(�)�v1(�+1))�Bg(t)+Bg(t): (61)

Finally, replacing v1(�+ 1) into Eq. (37), we obtain
the right side of Eq. (51) as follows:

A
Z 1

0
w(�)RL0 D1��

t x(t)d�+Bg(t)

= p(t;Aw(�)) �Bg(t)

+ p
�
t;
X+1

k=1
Ak+1w�k+1(�)

�
�Bg(t) +Bg(t)

= p
�
t;
X+1

k=1
Akw�k(�)

�
�Bg(t)+Bg(t); (62)

which is equal to Eq. (56). 2
Theorem 1

The exact solution to the system of di�erential
(Eq. (29)) is given by:

x (t) = E (t;Aw (�))x0 + E (t;Aw (�)) �Bg (t) ;

t � 0; (63)

where E(t;Aw(�)) is de�ned by Eq. (32).

Proof
Since Eq. (29) is linear, its solution is given by the sum-
mation of the homogeneous and particular solutions
presented by Lemmas 4 and 5, respectively.

In order to highlight how the exact solution of
a linear system of the distributed order di�erential
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equations is a�ected by the de�nition used for its
di�erential operators, let us take a look at the system
of di�erential equations in the Caputo sense (Eq. (30)).
Considering Eq. (30) as an integral equation of con-
volution type, the resolvent formalism suggests the
following representation for its solution:

x(t) = �1(t)x0 +
Z t

0
�2(t� �)Bu0(�)d�;

where:

�1(t) =
Z t

0

X+1
k=0

Aki�k(�)d�;

�2(t) =
Z t

0

X+1
k=0

Aki�k+1(�)d�;

u0(t) =
d
dt
u(t);

i(t) = L�1
s!tf1=

Z 1

0
w(�)s�d�g:

In fact, a variant of the distributed order integration
can be de�ned as a linear time-invariant operator with
impulse response i(t). It can be shown that i(t) cannot
be expressed by elementary functions in general except
a few special cases. For instance, in the case w(�) �
0 and w(�) 6� 0, by using the Fourier-Mellin inverse
formula together with the residue theorem, i(t) can be
computed through an improper integral as follows:

i(t) =
1
�

+1Z
0

exp(�rt) R 1
0 w(�)r� sin(��)d�

(
R 1

0 w(�)r� cos(��)d�)
2
+(
R 1

0 w(�)r� sin(��)d�)
2 dr:

This representation of i(t) can be achieved by following
a procedure similar to the one employed in deriving
the analytic solution of the di�usion problem in [8].
On the other hand, using the initial value theorem
reveals that i(t) has a singularity at t = 0. Based on
this argument, a comparison of the exact solutions of
Eqs. (29) and (30) implies that using the RL de�nition
for describing the distributed order system leads to
an exact solution, which may be computed relatively
easier. This is due to the fact that the calculation
of convolution powers of the weight function, which
is usually just a polynomial in the range of [0; 1], is
obviously simpler than successive convolution powers
of i(t). In fact, w�k(�) can be given explicitly for any
k 2 N in some usual cases of the weight function, and it
can be e�ciently computed using quadrature formulas.

Lemma 6

The Laplace transform of Function (32) is given by:

Lt!sfE(t;Aw(�))g =

(I �A:L�!ŝfw(�)gjŝ=ln s)
�1=s: (64)

Proof
For convenience, the result of Lemma 5 is used, which
states that Function (52) satis�es Eq. (51). Con-
sidering the Laplace transform of Eq. (51) by using
Proposition 2 yields the following:

sX(s)=A:L�!ŝfw(1��)gjŝ=�ln sX(s)+BG(s); (65)

where G(s) = L�!sfg(t)g. Since L�!sfw(1 � �)g =
L�!ŝfw(�)gjŝ=�s exp(�s), Eq. (65) takes the follow-
ing form:

sX(s) = AL�!ŝfw(�)gjŝ=ln ssX(s) +BG(s): (66)

Solving Eq. (66) with respect to X(s) yields:

X(s) = (I �AL�!ŝfw(�)gjŝ=ln s)
�1BG(s)=s; (67)

where I is the identity matrix with the same dimensions
as matrix A. Since Eq. (67) is the Laplace transform
of Eq. (52), this lemma follows. 2

In the following lemma, some properties of Func-
tion (32) are presented (in this lemma, it is shown that
some properties of Function (32) are analogous to those
of the Mittag-Le�er functions).

Lemma 7

Function (32) satis�es the following relations:

1: E(t;A�(�� �)) = E�;1(At�); 0 < � < 1:

2: 0I
w(�)
t E(t;Aw(�)) = A�1(E(t;Aw(�))� I):

3: E(at;Aw(�)) = E(t;Aa�w(�)); a > 0:

4: E(t;Aw(�)) + E(t;�Aw(�))=2E(t;A2w�2(�)):

5: 0I
d
d�w(�)
t E(t;Aw(�))

= �A�1(ln t+ 
) � _E(t;Aw(�)):

Proof
1. Note that the iterated self-convolutions of the

weight function become w�k(�) = �(�� �k) for
this case; this result is followed by Eq. (34);

2. This result is followed by multiplying Eq. (64)
by (I �A:L�!ŝfw(�)gjŝ=ln s) and rewriting the
resultant expression in the time domain;

3. By writing a� = exp(� ln�) and using the relation,
L�!sfa�w(�)g = L�!ŝfw(�)gjŝ=s�ln a, we have:
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L�!sfE(t;Aa�w(�))g

=
1
s

(I �AL�!ŝfw(�)gjŝ=ln(s)�ln(a))
�1

=
1=a
s=a

(I �AL�!ŝfw(�)gjŝ=ln(s=a))
�1 ;

(68)

which is equal to L�!sfE(at;Aw(�))g.
4. Proof of this property is on the basis of the proof of

the similar property for the Mittag-Le�er functions
in [12]. In addition, it should be noted that
although we have assumed the second argument
of Function (32) to be a real matrix in our study,
it is possible to de�ne this function with complex
arguments, too. The proof is presented for this
generalized case. Since

Pm�1
r=0 exp(i2�kr=m) equals

m if k � 0 (mod m) and zero otherwise, by using
representation (34), we obtain:Xm�1

r=0
E(t;A exp(i2�r=m)w(�))

=
Z +1

0
(t�=�(�+ 1))

X+1
k=0

Akw�k(�)

Xm�1

r=0
exp(i2�rk=m)d�

=
Z +1

0
(t�=�(�+ 1))X+1

k=0
mAmkw�mk(�)d�

=mE(t;Amw�m(�)): (69)

As a special case, choosing m = 2 in Eq. (69) gives
the result of this part.

5. Multiplying and dividing Eq. (64) by In s gives:

Lt!sfE(t;Aw(�))g
= ln s(ln sI�A ln sL�!ŝfw(�)gjŝ=ln s)

�1=s:
(70)

Using the equality:

ln sL�!ŝfw(�)gjŝ=ln s = L�!ŝ
�
d
d�
w(�)

�
jŝ=ln s;

(71)

we can rewrite Eq. (70) as follows:

Lt!sfE(t;Aw(�))g

= ln s
�

ln sI�AL�!ŝ
�
d
d�
w(�)

�
j
ŝ=ln s

��1=s

:
(72)

Multiplying Eq. (72) by: (ln sI�AL�!ŝ f dd�w(�)g
jŝ=ln s) gives:

(ln s)(s=s)Lt!sfE(t;Aw(�))g �AL�!ŝ�
d
d�
w(�)

�
jŝ=ln sLt!s

�
E(t;Aw(�))

�
= I(ln s)=s: (73)

By using Eq. (10) and the fact that E(0;Aw(�)) =
I, the interpretation of Eq. (73) in the time domain
becomes:

�(ln t+ 
) � ( _E(t;Aw(�)) + �(�)I)�A0I
d
d�w(�)
t

E(t;Aw(�)) = �(ln t+ 
)I: (74)

Based on Eq. (74), it is followed that:

�(ln t+ 
) � _E(t;Aw(�))� (ln t+ 
)I

�A0I
d
d�w(�)
t E(t;Aw(�))

= �(ln t+ 
)I0I
d
d�w(�)
t E(t;Aw(�))

= �A�1(ln t+ 
) � _E(t;Aw(�)): 2 (75)

In the following, the solution of Eq. (29) is obtained
in three special cases of the weight function. In
the �rst case, a weight function is considered which
consists of several weighted Dirac delta functions.
This would turn Eq. (29) into a multi-term system
of di�erential equations.

Theorem 2

The exact solution of Eq. (29) in the case of w (�) =Pn
i=1 ri� (�� �i), where 0 < �i < 1 and ri > 0, is

given by Eq. (63) in which:

E(t;Aw(�)) = E(�1;�2;:::;�n);1�
Ar1t�1 ; Ar2t�2 ; : : : ; Arnt�n

�
;

t � 0: (76)

Proof
The weight function in the above question has the
following representation in the Laplace domain:

L�!sfw(�)g =
Xn

i=1
ri exp(�s�i): (77)

By using the multinomial theorem [20], it is found that:

(L�!sfw(�)g)k =
X

l1+l2+���+ln=k

�
k

l1; l2; � � � ; ln
�

nY
i=1

rili exp(�sli�i)
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=
X

l1+l2+���+ln=k

�
k

l1; l2; � � � ; ln
�

exp(�sXn

i=1
li�i)

nY
i=1

rili : (78)

Thus, by considering the inverse Laplace transform, for
iterated self-convolutions of the weight function, it is
found that:

w�k(�) =
X

l1+l2+���+ln=k

�
k

l1; l2; � � � ; ln
� nY
i=1

rili�

(��Xn

i=1
li�i): (79)

Thereby:Z +1

0
w�k(�)(t�=�(�+ 1))d�

=
X

l1+l2+���+ln=k

�
k

l1; l2; � � � ; ln
� nY
i=1

rili

t
Pn
i=1 li�i

� (
Pn
i=1 li�i + 1)

: (80)

Finally, Based on Eq. (34), it is concluded that:

E(t;Aw(�)) =
X+1

k=0

X
l1+l2+���+ln=k

�
k

l1; l2; � � � ; ln
�

Ak
nY
i=1

rili
t
Pn
i=1 li�i

� (
Pn
i=1 li�i + 1)

: (81)

Since l1+l1+� � �+ln = k holds in the inner summation,
it is possible to write:

E(t;Aw(�)) =
X+1

k=0

X
l1+l2+���+ln=k

�
k

l1; l2; � � � ; ln
�

nY
i=1

(Ari)li
t
Pn
i=1 li�i

� (
Pn
i=1 li�i + 1)

=
X+1

k=0

X
l1+l2+���+ln=k

�
k

l1; l2; � � � ; ln
�

nY
i=1

(Arit�i)
li=�(

Xn

i=1
li�i + 1)

=E(�1;�2;:::;�n);1(Ar1t�1; Ar2t�2 ; :::; Arnt�n): (82)

Theorem 3

The solution of Eq. (29) in the case:

w(�) =

(
1; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

is given by Eq. (63) in which:

E(t;Aw(�))

= I + exp(A)tW1;2(�At)� ln t
Z +1

0
W1;�+1

(�At�) exp(A�)t�d�; t > 0: (83)

Proof
First of all, the Laplace transform of self-convolutions
of the weight function is calculated as follows:

W (s) = (1� exp(�s))=s; (84)

W k(s) = (1� exp (�s))k=sk: (85)

Using binomial theorem [20], we obtain:

W k(s) =
kX
i=0

�
k
i

�
(�1)i exp(�si)=sk: (86)

In order to �nd the solution Eq. (63) expressed in
terms of Eq. (34), v(�+ 1) should be calculated by
considering the inverse Laplace transform of Eq. (33)
as follows:

v (�+ 1) = � (�) I +
X+1

k=1
AkL�1

s!�
�
W k (s)

	
: (87)

According to Eqs. (86) and Eq. (87), it is deduced that:

v(�+ 1) =�(�)I +
+1X
i=0

Ak
Xk

i=0

�
k
i

�
(�1)i(�� i)k�1H(�� i)=�(K): (88)

By changing the order of series, we can write:

v(�+ 1) =�(�)I +
+1X
i=0

X+1
k=i

Ak

�
k
i

�
(�1)ik(�� i)k�1H(�� i)=k! (89)

Note that in the range of � 2 (m;m+ 1], where
m 2 Z�0, there holds:(

H(�� i) = 0; i � m+ 1
H(�� i) = 1; i � m (90)
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Thus, we only need to consider i � m in the series (89)
which results in:

v(�+ 1) =�(�)I +
mX
i=0

X+1
k=i

Ak
�
k
i

�
(�1)ik(�� i)k�1=k!; � 2 (m;m+ 1];

m 2 Z�0: (91)

Changing the variables as j = k � i, we obtain:

v(�+ 1) =�(�)I +
Xm

i=0

X+1
j=0

Ai+j((i+ j)=i!j!)(�1)i(�� i)i+j�1

=�(�)I +
Xm

i=0
((�A)i(�� i)i�1=i!)X+1

j=0
Aj(i+ j)(�� i)j=j!;

� 2 (m;m+ 1]; m 2 Z�0: (92)

The inner series in Eq. (92) equals:X+1
j=0

Aj(i+ j)(�� i)j=j!

= i
X+1

j=0
Aj(��i)j=j!

+
X+1

j=1
Aj(��i)j=(j�1)! (93)

The �rst series in Eq. (93) is already expressed by the
exponential function series. Changing the variable as
j0 = j � 1 in the second series makes it possible to
express both series by:X+1

j=0
Aj(i+ j)(�� i)j=j!

=(iI +A(�� i)) exp(A(�� i)): (94)

Replacing Eq. (94) in Eq. (92) gives:

v(�+ 1) = �(�)I +
Xm

i=0
g(�; i);

� 2 (m;m+ 1]; m 2 Z�0; (95)

in which:

g(�; i) =(�A)i(��i)i�1(iI+A(��i))
exp(A(��i))=i! (96)

Therefore, according to Eqs. (34) and (95), after some
manipulation, it is possible to write the solution as
follows:

E(t;Aw(�)) =I +
X+1

i=0

Z +1

i

g(�; i)(t�=�(�+ 1))d�: (97)

Changing the variable as � = � � i in the integral in
the right side of Eq. (97) results in:

E(t;Aw(�))

= I+
Z +1

0

X+1
i=0
g(�+i; i)(t�+i=�(�+i+1))d�: (98)

Replacing g(�+i; i) with its value obtained by Eq. (96)
yields:

E(t;Aw(�)) =I +
Z +1

0

X+1
i=0

(�A)i�i�1(iI +A�) exp(A�)(t�+i=�

(� + i+ 1))=i!d�: (99)

Splitting the series in Eq. (99) gives:

E(t;Aw(�)) =I +
Z +1

0
t� exp(A�)�X+1

i=1

(�A)iti�i�1i
i!�(� + i+ 1)

+
X+1

i=0

(�A)iti�iA
i!�(� + i+ 1)

�
d�: (100)

The second series in Eq. (100) is already a Wright
function. Changing the variable as i0 = i � 1 in the
�rst series makes it possible to express both series in
terms of the Wright function. By doing so, we obtain:

E(t;Aw(�)) =

I +
Z +1

0
t� exp(A�)(�AtW1;�+2(�A�t)

+AW1;�+1(�A�t))d�: (101)

Since there holds W�;�+� (z) = d
dzW�;� (z) for the

Wright function, Eq. (101) can be written in the
following form:

E(t;Aw(�)) =

I +
Z +1

0
t� exp (A�)

d
d�

(W1;�+1 (�A�t))d�

+A
Z +1

0
t� exp(A�)W1;�+1 (�A�t) d�; (102)

which allows us to integrate the �rst term by parts.
Doing so results in (83). 2
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Corollary 1

The solution of Eq. (29) in the case:

w(�) =

(
ca�; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

a 2 R+; c 2 R
is given by Eq. (63) in which:

E(t;Aw(�)) = I + exp(cA)atW1;2(�caAt)

�ln at
Z +1

0
W1;�+1(�caAt�)exp(cA�)(at)�d�; (103)

for t > 0.

Proof
Let us denote the unitary weight function by:

w1(�) =

(
1; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

Then, the relation w (�) = ca�w1 (�) holds between
the two weight functions. Thus, by using the third
part of Lemma 7, it is deduced that:

E(t;Aw(�)) = E(at; cAw1(�)): (104)

Using Theorem 3 for the term E(at; cAw1(�)) in
Eq. (104) concludes the proof.2
4. Numerical examples

In this section, at �rst, we will focus on the distributed
order relaxation equation in the Riemann-Liouville
sense as follows:

_x(t) = ��
Z 1

0
w(�)RL0 D1��

t x(t)d�;

x(0) = 1; � > 0: (105)

The solution of Eq. (105) in the cases of:

w(�) =

(
1; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

;

w(�) =

(
�; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

;

w(�) =

(
�2; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

;

respectively, is shown in Figures 1, 2, and 3 for � 2
f0:5; 1; 1:5; 2g. (For numerically �nding the solutions,

at �rst, their representations in the Laplace domain
are derived by using Lemma 6. Talbot's method
[21] is utilized afterward as a numerical technique for
inversion of the solutions back to the time domain.)
As it can be seen in these �gures, the solution decay is
more intense for greater amounts of �. In addition, the
solutions associated with di�erent weight functions are
evaluated together in Figure 4 where � = 1.

As another example, the system of linear di�er-
ential equations is considered:

_x(t)�A(RL0 D0:8
t x(t)+RL

0 D0:6
t x(t)+RL

0 D0:4
t x(t)

+ RL
0 D0:2

t x(t)) = Bg(t); x(0) = x0; (106)

in which A =
�

1 �0:8
0:8 1

�
and B =

�
0:25
0:25

�
. The

Figure 1. Solution of Eq. (105) with

w(�) =

(
1; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

for � 2 f0:5; 1; 1:5; 2g.

Figure 2. Solution of Eq. (105) with

w(�) =

(
�; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

for � 2 f0:5; 1; 1:5; 2g.
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Figure 3. Solution of Eq. (105) with

w(�) =

(
�2; � 2 (0; 1)
0; � 2 (�1; 0] [ [1;+1)

for � 2 f0:5; 1; 1:5; 2g.

Figure 4. Solution of Eq. (105) for di�erent weight
functions where � = 1.

system of linear di�erential equations (106) can be
rewritten in the form of the distributed order system of
linear di�erential equations (29) by choosing the weight
function w(�) = �(�� 0:2) + �(�� 0:4) + �(�� 0:6) +
�(�� 0:8). Therefore, its solution is given by Theorem
1. Assume that x0 = (1=

p
2; 1=
p

2)T and g(t) = H(t).
The solution in this case is indeed provided by the sum
of homogeneous and particular solutions, which are,
respectively, shown in Figures 5 and 6.

5. Conclusion

The system of linear di�erential equations of dis-
tributed order de�ned in the Riemann-Liouville sense
was studied in this paper. The analytic solution of
such a system was presented in terms of what can
be interpreted as the distributed order generalization
of matrix Mittag-Le�er functions. Some interesting
properties of this function were revealed, and it was
shown that this function turns into the multivariate
Mittag-Le�er function when the weight function is

Figure 5. Solution of Eq. (106) where
x0 = (1=

p
2; 1=
p

2)T and g(t) = 0.

Figure 6. Solution of Eq. (106) where x0 = (0; 0)T and
g(t) = H(t).

made up of several impulses and can be expressed
in terms of the Wright function in the case of an
exponential weight function. Since a special case of
the problem considered in this paper is the distributed
order relaxation equation, a numerical simulation was
performed to evaluate the solutions to such equations.
As another example, the solution of a system of
di�erential equations with multiple fractional order
operators was numerically obtained.
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