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Abstract. Master production scheduling is an e�ective phase of production planning,
which ends in production scheduling and magnitude of di�erent products in a company.
This problem requires investigating a wide range of parameters, regarding demand,
manufacturing resource usage, and costs. Uncertainty is an intrinsic characteristic of these
parameters. In this paper, a model is developed for master production scheduling under
uncertainty, in which demands, as time-dependent variables, are considered as stochastic
variables, while cost and utilization parameters, with cognitive ambiguity, are expressed
as fuzzy numbers. A hybrid approach is also proposed to solve the extended model. The
application of the proposed method is examined in a practical problem of a polyethylene
pipe and �tting Co. in Iran. The result showed a high degree of applicability.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Master Production Scheduling (MPS) is one of the
most important activities in production planning and
control [1,2]. It is a mid-term phase in planning, which
translates the long-term aggregate production planning
to a plan determining production scheduling and mag-
nitude of di�erent products. MPS coordinates market
demand with internal resources of the company [3].
The main goal of MPS establishment is to increase
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the productivity of production resources, i.e., human
resources, costs, and production facilities, as well as
some important competitive criteria for the company,
e.g., pro�t, service level, etc.

MPS converts the strategic planning de�ned in
a production plan into the tactical operation execu-
tion. According to American Production and Inventory
Control Society (APICS), MPS is the declaration of
what the company expects to be produced in terms
of con�guration, quantities, and speci�c dates [4]. It
drives the Material Requirement Planning (MRP) and
other subsequent activities of a manufacturing com-
pany. Figure 1 shows the relation between MPS and the
other important activities in production management.
Therefore, MPS is a series of managerial decisions that
should be made by considering some important is-
sues like forecasted demands, pending orders, material
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Figure 1. The relation between production management activities.

Figure 2. Inputs to and outputs of MPS.

availability, available capacity, managerial policies, and
goals. Figure 2 shows the important inputs, outputs,
and considerations in an MPS process.

Using optimization approach is one of the conven-
tional approaches to solving the MPS problems, like
many other production management problems. Mod-
eling the problem as an optimization model and then
solving the model are the main steps in applying the
optimization approach. To model the MPS problem,
many objectives can be involved, which may conict
with each other. On the other hand, there can be
many constraints involved in modeling and solving the
MPS problem. The objective considered frequently
in the previous studies has been the minimization of
production costs, inventory costs, and backordering
costs, and the main constraint involved in model
development has been meeting the demands, inventory
related constraints, and resource related constraints.

The application of mathematical programming to
MPS problems is a well-known and accepted approach.
Houghton and Portugal [5] presented an analytic frame-
work for optimum production planning. Vasant [6]
proposed a fuzzy linear programming methodology and
applied it to a real-life industrial production planning
problem. Wang and Wu [7] presented a framework to
solve multi-period, multi-product, and multi-resource
MPS problem. Emani Vieira and Ribas [8] presented
a multi-objective model and its solution based on
simulated annealing. Sawik [9] presented a multi-

objective production scheduling in make-to-order man-
ufacturing and proposed a lexicographic approach to
solving the model. Soares and Vieira [3] presented and
developed the application of genetic algorithm to solve
the mathematical problem of MPS. Lei [10] reviewed
the literature on production scheduling problems. Leu
et al. [11] developed a linear programming model for
mid-term planning, considering the issues in produc-
tion and material requirement planning. Kelbel and
Hanzalek [12] developed an application of constraint
programming to production scheduling with earliness
and tardiness penalties. Al�eri et al. [13] proposed
an approach based on production process knowledge
to extract scheduling information from an aggregate
production plan in order to support material pro-
curement. Al�eri et al. [14] proposed a two-stage
stochastic programming project scheduling approach
to supporting production planning. Ballestin et al. [15]
modeled the production planning problem as a project
scheduling problem. Moon et al. [16] considered
electricity consumption costs in production scheduling
as well as two objectives to minimize makespan of
production and time-dependent electricity cost. The
hierarchical planning decisions are made in a way that
the production planning is carried out by the integrated
models at �rst, and the scheduling operations are then
performed. In this regard, the highest complexity
comes from the di�culties of synchronization of the
production planning with scheduling. Sun et al. [17]
planned a program to reduce the delivery time of
cement manufacturing product, which is a key factor
in this industry. They designed an MPS model based
on BOM and then, proposed an approach to reducing
the delivery time.

Sahebjamnia et al. [18] developed a fuzzy stochas-
tic multi-objective linear programing model as a novel
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fuzzy stochastic programming for a multi-level, capac-
itated lot-sizing problem in a furniture company. They
treated the demand- and process-related parameters as
fuzzy stochastic parameters. Kim and Lee [19] pro-
posed an iterative approach to achieving the synchro-
nization in order to coordinate the input and output
quantities of the production plan while generating a
schedule. For this purpose, they utilized the input-
output quantity as well as the production quantity as
coordination factor [19]. In another paper, Menezes et
al. [20] introduced a hierarchical approach to solving
the production planning and scheduling problems. In
this mathematical model, when scheduling is not fea-
sible, capacity information is forwarded to production
planning to modify and show the use of new tasks. This
method was proposed and is used for transportation
of products and in stock conditions, particularly the
situations which involve the ow of products in bulk
cargo (iron ore, coal, and grains) terminals. Martinez
et al. [21] worked on molded pulp packaging as a
sample of multi-stage, multi period, and multi-product
manufacturing type. The problem was solved with a
mixed integer programing model. For multi-objective
optimization of master production scheduling problem,
Radhikan et al. [22] used Jaya algorithm as a meta-
heuristic problem solving method, which required only
common control parameters, not any algorithm-speci�c
control ones. Cho and Jeong [23] used genetic algo-
rithm as another meta-heuristic production planning
and scheduling method to solve Bi-objective problems.
Farrokh et al. [24] proposed a novel robust fuzzy
stochastic programming approach in the loop supply
chain network. Gramani et al. [25] proposed an exact
method of production planning and compared their
�ndings with industrial practices. Considering the
above studies, the main contributions of the current
paper can be �tting a real statistical distribution to
demand data and describing the cognitive hesitancy
of costs and prices by using fuzzy sets. A hybrid
approach for the fuzzy-stochastic programming model
is proposed to solve the considered problem. Also,
the material requirement planning is integrated in
the production planning problem to determine the
magnitude and scheduling of material procurement
along with developing the production plan.

De�ning the parameters while using the optimiza-
tion approach is a big challenge in modeling. The
de�ned parameters, which are used in model develop-
ment, should conform to the real world, because using
the crisp numbers instead of parameters leads to im-
practicability of the established model. In fact, uncer-
tainty is an intrinsic feature of real-world applications.
Usually, the uncertainty can occur due to (1) partial
or (2) approximate information [26]. Using the fuzzy
logic, researchers apply grey numbers and stochastic
programming as a solution to this kind of challenge.

Each type of uncertainty has its own characteristics
and is appropriate for special cases. While probability
is concerned with occurrence of well-de�ned events,
fuzzy sets deal with gradual concepts and describe their
boundaries [27]. In production planning framework,
the behavior of demand along with time can be assessed
with a probability distribution, while the ambiguity
of cost parameters is often due to lack of knowledge
and it does not behave stochastically. Therefore, as it
is convenient, the demands are taken into account as
stochastic variables, while cost parameters are consid-
ered as fuzzy numbers. The aim of this paper is to
combine both of them in a singular model.

Demand uncertainty has been considered in some
previous studies on MPS. Tang and Grubbstrom [28]
presented an MPS model under demand uncertainty.
Fleten and Kristo�ersen [29] applied stochastic pro-
gramming to production planning. Feng et al. [30]
studied the MPS problem for single end-product with
time-varying demand uncertainty and supply capacity.
Liang [31] developed a fuzzy multi-objective linear
model to solve multi-product and multi-time-period
production/distribution problems. Supriyanto and
Noche [32] proposed a methodology for MPS problems
in which uncertainty was considered under fuzzy in-
formation. K�orpeo�glu et al. [33] used a multi-stage
stochastic programming approach, considering several
demand scenarios. Also, Mula et al. [34] reviewed
production planning under uncertainty.

In this paper, the main idea is to consider the
fuzziness of parameters and objectives as well as
stochastic customer demands in model establishment.
Hybrid uncertain methods have extensively been ap-
plied in di�erent �elds [35-38]. After model devel-
opment, an interactive method based on the existing
techniques in the optimization literature is developed
to solve the proposed model. This paper is organized
as follows. Section 2 provides a brief review of the
used methods in this paper. The problem modeling is
discussed in Section 3. Section 4 involves the problem
solving approach and in Section 5, a real-world case
study of the proposed method is presented. Finally,
Section 6 contains the conclusion.

2. Preliminaries

2.1. Chance constrained programming
Chance Constrained Programming (CCP) was intro-
duced by Charnes and Cooper [39] as a conceptual
framework to deal with stochastic programming. This
model considers the case when objective function is a
deterministic function, while constraints are expressed
in stochastic form. Suppose the following problem:

Maximize f(c;X);
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Subject to: ÂX � b̂;
X � 0; (1)

where f(c;X) is the objective function, X is the
decision vector, c is the vector of objective coe�cients,
Â is the stochastic matrix of constraint coe�cients, and
b̂ is the stochastic right-hand-side vector. The CCP
model maximizes the objective function subjected to
constraints, which must be satis�ed at a prescribed
level of probability. A typical CCP model can be
expressed as follows:

Maximize f(c;X);

Subject to: Pr
�
ÂX � b̂� � �; � 2 [0; 1];

X � 0: (2)

Here, � is the prescribed level of probability [39,40].

2.2. Fuzzy sets
Fuzzy set theory was introduced by Zadeh [41] and
has been developed and applied to a wide variety of
practical problems. A fuzzy set ~A in the universe X
is characterized by its membership function � ~A : X !
[0; 1], where � ~A(x), x 2 X denotes the membership
degree of x to ~A.

A fuzzy number is a fuzzy set, ~a, on the real line,
R, whose membership function, �~a, is a convex, upper
semi-continuous function. A trapezoidal fuzzy number
is denoted by ~a = (a1; a2; a3; a4) whose membership
function is as follows [42]:

�~a(x) =

8>>><>>>:
(x� a1)=(a2 � a1); if a1 � x � a2

1; if a2 � x � a3

(x� a4)=(a3 � a4); if a3 � x � a4

0; otherwise

(3)

A special type of trapezoidal fuzzy number is a trian-
gular one with a2 = a3, and it can be shown in the form
of ~a = (a1; a2; a3). These two types of fuzzy numbers,
i.e., trapezoidal and triangular, are widely applied in
decision making and planning type problems.

The algebraic operations on fuzzy numbers are
well-known and have been reviewed in many refer-
ences [43,44]. Therefore, they are not repeated in this
paper.

3. Model construction

In this paper, the MPS problem is formulated in the
form of a mathematical programming model in order

to minimize total production cost, considering di�erent
limitations. Emani Vieira & Ribas [8] and Soares &
Vieira [3] regarded four considerations in formulating
an MPS problem:

1. Minimizing the inventory level;
2. Minimizing the unful�lled requirements (demand);
3. Minimizing the inventory below the safety stock

level;
4. Minimizing the quantity of additional needed re-

sources.

In the proposed model, two additional aspects are also
considered:

5. Minimization of production cost;
6. Minimization of resource procurement cost.

3.1. Parameters, variables, and notations
The following parameters are used in model con-
struction; \^" denotes the stochastic nature and \�"
denotes the fuzziness of notations.

Problem parameters
K Variety of products;
T Number of planning periods;
R Number of productive resources;
THt Time length of each period t,

t = 1; 2; � � � ; T ;
TH Total planning horizon;
POHk On-hand inventory of product type k

in the �rst period;

d̂kt Gross requirements for product k at
period t with expected value of �kt and
variance �2

kt;
cr0 Available capacity at resource r in the

�rst period;
~ark Capacity used from resource r to

produce one unit of product k;
~cpk Unit production costs of product k;

~chk Unit holding costs of product k;

~cbk Penalty costs for each unit of
requirement of product k that is not
met;

~uort Unit costs to obtain one unit of
resource r at period t;

~cbsskt Unit costs for each unit of product k
below safety stock at period t;

~hrt Unit holding costs of resource r at
period t;

SSkt Safety inventory level for product k at
period t.
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Decision variables:
xkt Total quantity to be manufactured

from product k at period t;
ikt Initial inventory level of product k at

period t;
fkt Final inventory level of product k at

period t;
crt The quantity of resource r that must

be supplied at period t;
srt Units of additional resource r that

remain unused at period t;
AILkt Average inventory level of product k at

period t;
BSSkt The average quantity below safety

inventory level for product k at period
t;

rkt Requirements not met for product k at
period t.

3.2. Objective function
Several objectives can be considered in formulating a
production planning problem. These objectives mainly
imply some costs to the manufacturer. For instance,
beyond the common production costs associated with
the direct material, manpower, and overhead, a man-
ufacturer tolerates some costs due to over- or under-
inventory and so on. In this paper, total production
cost is considered as an objective that the manufacturer
seeks to minimize. According to the de�ned parameters
and variables, the objective function of MPS problem
can be developed as follows:

Minimize ~Z =
KX
k=1

TX
t=1

�
~cpkxkt + ~chkAILkt + ~cbkrkt

�
+

KX
k=1

TX
t=1

~uortcrt +
RX
r=1

TX
t=1

~hrtsrt

+
KX
k=1

TX
t=1

~cbssktBSSkt: (4)

The �rst term of Eq. (4) represents the production
costs of products along with their induced holding
cost due to positive amounts of inventory level and
the penalty cost because of the inability to satisfy the
customers' demand. While the second term expresses
the procurement costs in the whole planning horizon,
the third term illustrates the holding cost due to
surplus amount of the obtained resources. The last
term is the penalty cost, which occurs due to inventory
level getting under safety stock in planning horizon.

3.3. Constraints of the model
The main constraints that should be satis�ed when
minimizing the de�ned objective function are related

to inventory, demand, safety stock, and resource uti-
lization:
- Inventory related constraints: for the kth product at

period t, Eq. (5) should be satis�ed:
ik1 = POHk; k = 1; 2; � � � ;K; (5)

and:
ikt = fkt�1: (6)

Therefore, the average inventory level for each period
t and each product k will be as follows:

AILkt =
ikt + fkt

2
: (7)

- Demand related constraints: for the kth product at
period t, Eq. (8) should be satis�ed:

xkt + ikt + rkt � fkt � d̂kt; k = 1; 2; � � � ;K:
(8)

- The inventory level of each product remains below
the de�ned safety stock by the satisfaction of Eq. (9):
BSSkt = max[0; SSkt � fkt]; k = 1; 2; � � � ;K:

(9)

- The resource utilization related constraints are de-
�ned by Eq. (10):

KX
k=1

~akrxkt�srt=crt�sr(t�1); r=1; 2; � � � ; R:
(10)

Therefore, the fuzzy-stochastic MPS model can be
demonstrated as follows:

Minimize ~C=
KX
k=1

TX
t=1

�
~cpkxkt+~chkAILkt+~cbkrkt

�
+

RX
r=1

TX
t=1

~uortcrt +
RX
r=1

TX
t=1

~hrtsrt

+
KX
k=1

TX
t=1

~cbssktBSSkt:

Subject to:

(i) ik1 = POHk,
(ii) ikt = fkt�1,
(iii) xkt + ikt + rkt � fkt � d̂kt,
(iv) BSSkt � SSkt � fkt,
(v)

KP
k=1

~akrxkt + srt = crt + sr(t�1),

xkt; ikt; fkt; rkt; BSSkt; crt; srt � 0;

k = 1; 2; � � � ;K; t = 1; 2; � � � ; T: (11)

In Eq. (11), the set of constraints (iii) is stochas-
tic, and the objective function and set of constraints
(v) are of the fuzzy type.
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4. Solving approach

The proposed optimization model for MPS problems,
i.e., Eq. (11), is a combined stochastic-fuzzy linear
programming model. Chance constrained program-
ming [39] is a well-known method to solve stochastic
programming problems, while there are some methods
to solve fuzzy linear programming problems [45-49].
Since the chance constrained programming method
solves the problems in di�erent levels of probability,
i.e., �i, i = 1; 2; � � � ; l, the applied method to solve
hybrid problems will be constructed based on di�erent
signi�cance levels. The main advantage of chance
constrained programming is its ability to handle and
analyze di�erent statistical distributions. Also, there
are not any limitations on randomness of objective
function, constraints, and right-hand-side values. In
this regard, scholars have proposed chance constrained
programming as a powerful tool of handling stochastic
optimization problems [50-52].

Suppose that the decision maker determines the
satisfaction level �. The stochastic constraints (iii) can
be analyzed based on chance constrained programming;
If d̂kt is a random variable which follows a probability
distribution like f , then these constraints can be
demonstrated as Eq. (12) in the satisfaction level �:

Pr
�
d̂kt � xkt + ikt � rkt � fkt

� � �: (12)

If f�1
� has a value such that Pr(d̂kt � f�1

� ) = �, then
Eq. (12) is equivalent to Eq. (13):

xkt + ikt + rkt � fkt � f�1
� : (13)

By de�ning Eq. (13), the stochastic constraints
(iii) can be transformed into a set of linear constraints.
Now, a method using the concept of �-cuts is developed
to deal with the fuzziness. If ~A is a fuzzy set in universe
U characterized by membership function � ~A, its �-cut
is de�ned as ~A� = fx 2 U j� ~A(x) � �g. The �-cuts
can be shown as crisp intervals, which are called �-level
interval:

~A� =
�
Al�; A

u
�
�

=
h
min
x
fx 2 U j� ~A(x) � �g ;

max
x
fx 2 U j� ~A(x) � �gi : (14)

For a trapezoidal fuzzy number, ~a=(a1; a2; a3; a4),
its �-level interval is determined as ~a� = (�a2; (1 �
�)a1; �a3; (1 � �)a4). Applying the concept of �-level
interval and probability level � (totally named satisfac-
tion level), the stochastic-fuzzy problem in Eq. (11) is
reduced to an equivalent interval linear programming

as represented in Eq. (15).

Minimize ~C =
KX
k=1

TX
t=1

�h
cplk ; c

pu
k

i
xkt

+
�
chlk ; c

hu
k
�
AILkt +

�
cblk ; c

bu
k
�
rkt
�

+
RX
r=1

TX
t=1

�
uolrt; u

ou
rt
�
crt

+
RX
r=1

TX
t=1

�
hlrt; h

u
rt
�
srt

+
KX
k=1

TX
t=1

�
clbsskt; c

u
bsskt

�
BSSkt:

Subject to:

(i) ik1 = POHk,
(ii) ikt = fkt�1,
(iii) xkt + ikt + rkt � fkt � f�1

� ,
(iv) BSSkt � SSkt � fkt,
(v)

KP
k=1

[alkt; aukt]xkt + srt = crt + sr(t�1),

xkt; ikt; fkt; rkt; BSSkt; crt; srt � 0;

k = 1; 2; � � � ;K; t = 1; 2; � � � ; T: (15)

Except for (v) constraints in Eq. (15), all the con-
straints are crisp. Therefore, a method is required to
deal with these constraints. Ishibuchi and Tanaka [53]
introduced some order relations to compare interval
numbers. Considering their de�nitions, the following
equation is substituted for these constraints:

KX
k=1

�
alkt + aukt

2

�
xkt + srt = crt + sr(t�1): (16)

Replacing Eq. (16) with (v) constraints in Eq. (15), a
problem with interval objective function arises. Now,
consider the concept of Right-Center (RC) order rela-
tion of Ishibuchi and Tanaka [53]. According to this
relation, an interval function [C; �C] will be minimized
when its upper bound �C and its center ((C + �C)=2)
are minimized. Applying this notion to the objective
function of Eq. (15), the upper bound of the objective
function is obtained as:

�C =
KX
k=1

TX
t=1

�
cpuk xkt + chuk AILkt + cbuk rkt

�
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+
KX
k=1

TX
t=1

uourt crt +
KX
k=1

TX
t=1

hurtsrt

KX
k=1

TX
t=1

cubssktBSSkt; (17a)

while its center is:

C + �C
2

=
KX
k=1

TX
t=1

  
cplk + cpuk

2

!
xkt

+
�
chlk +chuk

2

�
AILkt+

�
cblk +cbuk

2

�
rkt

!
+

RX
r=1

TX
t=1

�
uolrt + uourt

2

�
crt

+
RX
r=1

TX
t=1

�
hlrt + hurt

2

�
srt

+
KX
k=1

TX
t=1

�
clbsskt + cubsskt

2

�
BSSkt: (17b)

Finally, the hybrid stochastic-fuzzy MSP problem
in Eq. (14) and its reduced-form interval linear pro-
gramming problem in Eq. (15) can be restated as a
vector minimization problem of the following form:

Minimize
�

�C;
C + �C

2

�
:

Subject to:

FS :

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ik1 = POHk;
ikt = fkt�1;
xkt + ikt + rkt � fkt � f�1

� ;
BSSkt � SSkt � fkt;
KP
k=1

�
alkt+a

u
kt

2

�
xkt + srt = crt + sr(t�1);

xkt; ikt; fkt; rkt; BSSkt; crt; srt � 0;
k = 1; 2; � � � ;K;
t = 1; 2; � � � ; T

(18)

A goal programming based approach is now de-
veloped to solve this problem. The problem seeks to
minimize total costs of production; therefore, its goal
value will be equal to zero. The soft constraints of the
problem are formulated as follows:(

�C + d�1 � d+
1 = 0

C+ �C
2 + d�2 � d+

2 = 0
(19)

Finally, the goal programming formulation of the
problems is extended to:

Minimize d+
1 + d+

2

�C + d�1 � d+
1 = 0;

C + �C
2

+ d�2 � d+
2 = 0;

x 2 FS; (20)

where x represents the solution vector. Solving the
above problem will determine the optimal production
plan.

Note that for both stochastic and fuzzy con-
straints, smaller values of � lead to larger feasible
regions and the objective function can be improved.
Therefore, the decision maker faces two conicting
objectives:

1. To improve the objective function value;

2. To improve the satisfaction level of constraints.

It is notable that since there are di�erent fuzzy param-
eters in the model, there is not any dependency among
the � values of these parameters. However, it seems
reasonable that by solving the model in one time, all
the � values can be determined equally. The considered
� values can be predetermined by the decision maker
based on their cognition of the uncertainty. However,
Jimenez et al. [47] proposed an interactive procedure
in a similar situation. Following Kaufmann and Gil
Aluja [54], they applied an eleven-point scale for
su�cient distinction between satisfaction levels:

0 Unacceptable solutions

0.1 Practically unacceptable solution

0.2 Almost unacceptable solution

0.3 Very unacceptable solution

0.4 Quite unacceptable solution

0.5 Neither acceptable nor unacceptable solution

0.6 Quite acceptable solution

0.7 Very acceptable solution

0.8 Almost acceptable solution

0.9 Practically acceptable

1 Completely acceptable solution

Firstly, the ordinal linear programming model
(20) is solved for each �k = �0+0:1k; k = 0; 1; � � � ; (1�
�0)=0:1. By solving Model (20) for di�erent values of
�, a set of optimal fuzzy values, ~C��, will be obtained.
To compare these solutions and choose an acceptable
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solution, the Yager [55] method is used. Yager [55]
index is de�ned as:

KG (z��) =

+1R
�1

�G(x) � ��(z)dx

+1R
�1

��(z)dx
; (21)

where the denominator is the area under ��(z) and, in
the numerator, the possibility of occurrence ��(z) of
each crisp value z is weighted by its satisfaction degree,
�G(x), of the goal G. This is an extension of the widely
accepted center of gravity defuzzi�cation method, using
the goal function, �G(x), as a weighting value. KG(z��)
illustrates the compatibility of a decision in satisfaction
level, �, with the aspiration of the decision maker
de�ned by �G(x). To balance the impact of satisfaction
level, the fuzzy decision in the assumed satisfaction
level is determined by the following membership degree
in decision space:

�D (x��) = � �KG (z��) ; (22)

where � is an operator like minimum, product, etc. The
�nal decision is chosen with the highest membership
degree in decision space, that is, x� is chosen when:

�D(x�) = max
�

�D (x��) : (23)

An algorithmic scheme of the above problem can be
stated as follows:

1. Prepare the information needed to formulate the
problem, Eq. (11); include fuzzy cost parameters,
demand statistical distributions, resources usage
of products, and maximum available amount of
resources;

2. Choose a satisfaction level, �k = �0 + 0:1k, k =
0; 1; � � � ; (1� �0)=0:1;

3. In the speci�ed satisfaction level, �k, transform the
stochastic constraints, using Eq. (13), into a set of
equivalent linear constraints;

4. Constitute the problem in Eq. (15) by using fuzzy
numbers of �-cuts;

5. Constitute and solve the problem in Eq. (16) at
di�erent �-levels and �nd the most compromising
solution using Eqs. (21)-(23).

Figure 3 illustrates the algorithm used to solve the
proposed model in a owchart.

5. Practical example, a real-world case study

In this section, an application of the proposed method
is presented. The Semnan Polyethylene Pipe and
Fitting Co. (SPP and F) was founded in 1994, following

the major demand of the polyethylene pipes and irri-
gation tools for the implementation of under-pressure
irrigation, water supply, and gas supply. This company
produces many types of polyethylene products, using
di�erent types of materials; therefore, it requires a
production scheduling program for its products. The
SPP and F products include 16 items as follows:

1. Bubbler Net (BN)
2. Dripper Sided Pot (DSP)
3. Easy Block Coupling (EBC)
4. Variable Plastic Nozzles (VPN)
5. Bubbler (B)
6. End Closure (EC)
7. O�take (O)
8. Adaptor (A)
9. Equal tee (E)

10. Drum Dripper (DD)
11. Adjustable Dripper (AD)
12. Spray Jets (SJ)
13. Puncher (P)
14. Bubbler Stake (BS)
15. In Line Dripper (ILD)
16. Male Adopter (MA)

The manufacturing process begins with the granular
raw materials entered into molding machine. After
being melted and shaped, the product will come out
of machine. The process continues with packaging
and then, the products are stocked. Three types of
main raw materials, which are used to produce these
products, include the following:

1. PP (polypropylene): Price per kg is approxi-
mated as (1.5, 1.7, 2.05) $ with a holding cost of
(0.18, 0.204, 0.246) $ per kg;

2. Poly acetal (or poly oxy methylene): Price per
kg is approximated as (0.65, 1, 1.4) $ with a holding
cost of (0.13, 0.2, 0.28) $ per kg;

3. ABS (acrylonitrile-butadiene-styrene): Price
per kg is approximated as (3.5, 4, 5) $ with a
holding cost of (0.595, 0.68, 0.85) $ per kg. Also, the
company has the capacity for buying and holding
300 tons of material per month.

Figure 4 presents a scheme of SPP and F production
shop. The aim of the problem is to determine the
production plan for a period of 3 months with 22, 21,
and 22 working days, each of which has two 8-hour
working shifts. Table 1 shows the information about
the operation process of each product. It is notable
that the operation time, per product per operation,
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Figure 3. The production shop in SPP and F.

is approximated with a fuzzy number, in which the
time variations are considered with a triangular fuzzy
number. On the other hand, the material usage of
each granular in each product is approximated by con-
sidering the approximated material waste and trash,
which is characterized with a triangular fuzzy number.
The required information about costs regarding each
product is given in Table 2.

The marketing department analyzed the historical
data on demand for products and found that the
data �tted the appropriate probability distribution on
demands per product. Table 3 shows the probability
distribution of products for a three-month period.

Initially, a total of sale information for a period of 120
months is analyzed and a probability distribution is
�tted to each product demand. Then, the distribution
parameters are evaluated for each month by using a
Maximum Likelihood Estimation (MLE) method in
similar months in previous years.

Model (20) for SPP and F includes 198 variables
and 104 constraints. SPP and F managers needed
to solve the production planning in three satisfaction
levels of 0.7, 0.8, and 1.0. Also, the values of f�1

�
for probability distributions of Table 3 at di�erent
satisfaction levels were determined using MINITAB 16
package. The obtained fuzzy objective functions in
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Table 1. Information about production and operation.

Material

Product Molding machine
(time per sec)

Packaging
(time per sec)

PP
(gr)

ABS
(gr)

Polyacetal
(gr)

BN 2.5 [0.6, 0.75, 1] 10.72 { {
DSP 8.8 [0.6, 0.72, 0.8] 112 { {
EBC 25 [0.6, 0.7, 0.8] 16.3 { {
VPN 22.5 [0.4, 0.6, 0.75] { 28 {

B 27 [0.7, 0.8, 0.9] { 25.46 {
EC 2.75 [0.65, 0.75, 0.88] 29.28 { {
O 4.38 [0.8, 0.9, 1] 19.2 { {
A 13.34 [0.65, 0.75, 0.85] 21.12 { {
E 9.88 [0.55, 0.65, 0.75] 22.08 { {

DD 10 [0.4, 0.6, 0.75] 23.58 { {
AD 19.25 [0.55, 0.65, 0.75] 28 { {
SJ 2.083 [0.45, 0.6,0.7] { { 9.6
P 15 [0.7, 0.85, 0.95] { 11.44 {

BS 21.88 [0.5, 0.6, 0.75] 30.6 { {
ILD 10.5 [0.7, 0.75, 0.9] 102.16 { {
MA 4.63 [0.5, 0.65, 0.8] 25.84 { {

Figure 4. The production shop in SPP and F.

these three levels are equal to (108902859, 134883301,
155675144), (127388473, 156915809, 180137255), and
(159099140, 194737221, 222036669).

To determine a preferable solution, an aspiration

membership function, �G, is constructed as follows:

�G(x) =

(
222036669�x

222036669 ; 0 � x � 222036669
0; otherwise

Applying Eq. (21), compatibility index of each
solution with DMs aspiration, �G, is computed as
KG(z�0:7) = 0:4003, KG(z�0:8) = 0:6036, and KG(z�0:8) =
0:1355. The membership of each decision in decision
space is speci�ed by Eq. (22) as �D(x�0:7) = 0:28021,
�D(x�0:7) = 0:48288, and �D(x�0:7) = 0:12195. Finally,
the optimal decision is selected with the highest degree
in 0.8 satisfaction level.

In satisfaction level of 0.8, the optimal master
production plan is shown in Table 4.

Note that as a result of the proposed model,
the values of crt in Table 4, which show the net
requirements of di�erent resources in each period,
can directly enter the process of material requirement
planning.

As this problem is solved to create a suitable
situation for production planning, the results of this
planning are compared with the same period in the pre-
vious year, which illustrate the existing gaps between
production amounts and the occurring sale as well
as the purchased materials and consumed amounts.
Consequently, the real data indicate that PP and
ABS have been purchased 1.5 and 0.7 tons more
than the required amounts, respectively, which lead to
additional holding costs. On the other hand, some
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Table 2. Costs information.

Product ~cpk ~chk ~cbk

BN [16, 19, 32] [2.4, 2.85, 4.8] [17.76, 21.09, 35.52]

DSP [15, 18, 23] [1.5, 1.8, 2.3] [16.65, 19.98, 25.53]

EBC [17, 21, 25] [3.4, 4.2, 4.6] [18.02, 22.26, 26.5]

VPN [90, 100, 150] [22.5, 25, 37.5] [103.5, 115, 172.5]

B [120, 139, 152] [12, 13.9, 15.2] [130.8, 151.51, 165.68]

EC [50, 79, 92] [10, 15.8, 18.4] [55.5, 87.69, 102.12]

O [65, 80, 102] [9.75, 12, 18.4] [72.8, 89.6, 114.24]

A [150, 173, 186] [37.5, 43.25, 46.5] [166.5, 192.03, 206.46]

E [45, 63, 92] [9, 12.6, 18.4] [48.6, 68.04, 99.36]

DD [80, 109, 118] [12, 16.35, 17.7] [90.4, 123.17, 133.34]

AD [100, 110, 120] [10, 11, 12] [106, 116.6, 127.2]

SJ [78, 90, 100] [19.5, 22.5, 25] [84.24, 97.2, 108]

P [90, 109, 116] [18, 21.8, 23.2] [94.5, 114.45, 121.8]

BS [68, 79, 90] [6.8, 7.9, 9] [76.16, 88.48, 100.8]

ILD [20, 35, 42] [5, 8.75, 10.5] [21.4, 37.45, 44.94]

MA [32, 49, 56] [4.8, 7.35, 8.4] [36.16, 55.37, 63.28]

products such as EBC, EC, DD, and SJ have been
produced less than the demands and, on the contrary,
DSP, VPN, D, BS, and ILD have been produced more
than the required amounts; both diversions lead to
remarkable backorder holding costs. However, with an
80% con�dence, the proposed method does not impose
any costs on demands not met and maintains holding
costs at their lowest level.

Regarding these results, the production plan is
determined as an exact guide for production managers.
Also, a purchase manager can schedule their buying
process according to these results.

6. Conclusion

Master production scheduling is a roadmap in the
hands of production managers to schedule their oper-
ations and get the required materials and resources.
Various parameters and variables are considered in
MPS, like demand for products, cost parameters,
material requirement parameters, capacity limitations,
etc. These parameters usually face uncertainty and
are not determined exactly. In this study, a model was
proposed to deal with the situation; in the model, de-
mands for products behaved stochastically, while cost
and resource utilization parameters were determined
as fuzzy numbers. These assumptions are logical in

practical situations. While demand followed a time-
dependent behavior, which could be captured soundly
with probability distributions, the cost and capacity
constraints dealt with recognition-based uncertainty,
due to lack of knowledge, and could be handled with
fuzziness. The problem was modeled and its solution
approach was proposed based on an interactive proce-
dure, in which the formulated MPS problem was solved
in di�erent satisfaction levels; �nally, the preferable
solution was chosen based on aspiration of the decision
maker. The results of the proposed method determined
the production scheduling and magnitude of di�erent
products of the manufacturer in each period. Also, one
of the advantages of the model was the possibility to
determine the material net requirement in each period,
which could be used directly in material requirement
planning. Application of the proposed model was
shown in a real-world case study consisting in produc-
tion scheduling of 16 products with stochastic demand
in a time horizon of 3 months. The best results were
obtained at a satisfaction level of 0.8. The proposed
method had a good conformity with real situations, in
which demand for products had a stochastic nature and
cost parameters were not determined exactly. Another
advantage of the proposed model was its feasibility
to accept new restrictions such as warehouse space,
outsourcing, etc. This model can be applied in manu-
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Table 3. Products demand information for a three-month period.

Product Probability
distribution

Parameter
Months (Ton)

1 2 3

BN Weibull
Shape 1.6125 1.8 1.5

Scale 46045 44320.5 47342

DSP Normal
Mean 19217 18500 20562

Variance 166916 124568 103791

EBC Weibull
Shape 1.7238 1.982 2.045

Scale 6032 7000.32 8931

VPN Poisson Mean 2560 2800 2011

B Normal
Mean 30966 28690.7 32019

Variance 191068 145678.2 58960

EC Logistic
Location 51929 47542 72940

Scale 4772 3864 2901

O Normal
Mean 44694 51203 65789

Variance 53790 68700 80173

A Exponential Mean 58568 46400 28304

E Normal
Mean 21587 18700 32570

Variance 19934 13456 21723

DD Exponential Mean 20125 29340 17811

AD Uniform
Lower bound 10000 8500 13000

Upper bound 15000 12000 17000

SJ Log logistic
Location 9.33 10.465 11

Scale 0.1989 0.3 0.45

P Lognormal
Location 8.18 9.15 10

Scale 0.6344 0.6987 0.8019

BS Logistic
Location 51925 61248 40890

Scale 26997 29896 31075

ILD Normal
Mean 31820 37658 35941

Variance 47917 54210 63183

MA Constant 24000 20000 19800
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Table 4. Optimal production plan at satisfaction level of 0.8.

Product
Months (Ton)

Material
Months (Ton)

1 2 3 1 2 3

BN 61853 57733 65018 PP 15.81 16.35 16.35

DSP 19561 18797 20834 Polyacetal 0.93 1.01 1.37

EBC 7950 8901 11278 ABS 0.14 1.58 0.00

VPN 2603 2845 2049 Material
holding

Months (Ton)

B 31084 29012 32224 1 2 3

EC 58545 52899 76962 PP 0 0 0

O 44890 51424 66028 Polyacetal 0 1.07 0

A 94262 74678 45554 ABS 0 0 0

E 21706 18798 32694 - The results are rounded upward.

DD 32390 47221 28666

AD 14000 11300 16200

SJ 14935 53151 111729

P 6088 16951 43257

BS 89351 102693 84843

ILD 32005 37854 36153

MA 24000 20000 19800

facturing companies that produce multiple products;
the companies whose critical issue is planning and
scheduling of the products and getting the required
resources. Future researches can be focused on for-
mulating multi-objective production planning models
considering other objectives like production progress.
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