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Abstract. Studying natural convection of nanouids in enclosures with non-uniform
heated walls is of importance in many engineering applications such as solar energy
collection. In this study, we developed a Fully Higher-Order Compact (FHOC) �nite
di�erence method to investigate the natural convection and heat transfer of nanouids in an
inclined square enclosure with sinusoidal temperature distributions. Numerical simulations
were performed over a range of amplitude ratios, inclination angles, phase deviations,
nanoparticles volume fractions, and Rayleigh numbers. Results showed that heat transfer
could increase signi�cantly by increasing the amplitude ratio and inclination angles in
nanouids. Moreover, elevating the nanoparticles volume fraction did not always enhance
the heat transfer of nanouids. When the Rayleigh number Ra was low (Ra = 103), the
average Nusselt number decreased as the solid volume fraction parameter, �, increased. On
the other hand, elevating � had favorable e�ects on the heat transfer of nanouids when Ra
was high (e.g., Ra = 104, 105). With Ra = 104, the total heat transfer rate decreased with
nanoparticles in the order of Cu, CuO, Al2O3, and TiO2. Finally, a correlated expression
of the total average Nusselt number, the Rayleigh number, and the solid volume fraction
of nanoparticles was empirically obtained.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In nanouids, which were �rst introduced by Choi [1],
small amounts of metallic or metallic oxide nanoparti-
cles are dispersed into water or other uids. Recently,
there have been tremendous: e�orts to identify the
mechanisms of convective ow and heat transfer of
nanouids, including the e�ects of size and shape of
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nanoparticles, the hydrodynamic interaction between
nanoparticles and base uid, clustering of particles,
the inuence of temperature or Brownian motion,
etc. [2-7]. Heris et al. [8] conducted a comparative
experimental study to investigate the e�ects of metal
oxide nanopowders, including TiO2, CuO, and Al2O3
suspended in turbine oil, on the natural convection
ow inside a titled cube cavity. Rashidi et al. [9]
studied the e�ects of heterogeneous heating on the heat
transfer characteristics of a cavity �lled with Al2O3-
water nanouid. They found that the average Nusselt
number increased with increase in the volume fraction
of Al2O3 nanoparticles at Ra = 103. However, for other
values of Rayleigh number, there was an optimal value
of volume fraction of Al2O3 nanoparticles in which
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the average Nusselt number was maximized. Wang et
al. [10,11] investigated the inuence of nanoparticles
on the mixed and natural convective heat transfers of
nanouids in square and triangular cavities. They ob-
served that increase in the volume fraction of nanopar-
ticles could enhance the average rate of heat transfer.
Mahian et al. [12] considered the case of natural
convection of SiO2-water nanouids in square and
triangular cavities and concluded that both theoretical
analysis and experimental results predicted the same
trend in estimating the average Nusselt number and
heat transfer coe�cient ratio. Estell�e et al. [13] worked
on the prediction of heat transfer in a di�erentially
heated square cavity �lled with Newtonian or non-
Newtonian carbon nanotube nanouids. Their results
mainly proved that the Nusselt number of nanouids,
unlike thermal conductivity, was lowered by increase in
nanoparticle content due to non-Newtonian behaviour
of nanouids and temperature increase. Alizadeh and
Dehghan [14] conducted a numerical investigation to
explore the ow and thermal �elds of conjugate natural
convection of nanouids within a square cavity. They
concluded that nanouid type was a key factor in heat
transfer enhancement, and CuO nanoparticles led to a
better heat transfer rate than Al2O3 nanoparticles did.
Cianfrini et al. [15] numerically studied the laminar
natural convection of Al2O3-water nanouids inside
square cavities. They found that when the nanoparticle
volume fraction increased to an optimal particle load-
ing, the amount of heat transfer of nanouids reached
a peak across the enclosure.

However, whether the rate of heat transfer can be
enhanced by means of nanouids is still an interesting
question [16]. Contradictory studies indicate that the
presence of nanoparticles in the base uid may result
in a considerable decrease in the heat transfer [17].
Mahmoudi et al. [18] numerically examined how the
position of horizontal heat source on the left vertical
wall would a�ect the heat transfer in the cavity �lled
with Cu-water nanouids. They found that locating
the heat source close to the top horizontal wall would
lead to more e�ective outcomes in the heat transfer of
nanouids. Haddad et al. [19] studied the natural con-
vection heat transfer of CuO-water nanouids. They
found that the enhancement in heat transfer was more
pronounced at low volume fractions of nanoparticles
and the heat transfer decreased with increase in the
volume fraction of nanoparticles.

Up to date, most of the research studies on natural
convection and heat transfer of nanouids in enclo-
sures reported in the literature have been concerned
with fully heated cavities [20-22]. But, in realistic
situations, the active walls may be subject to non-
uniform temperature distribution due to shadows and
other natural interferences, such as solar energy collec-
tion [23]. It is important to apply solar energy to a wide

range of applications and provide solutions through
the modi�cation of the energy proportion, improving
energy stability, increasing energy sustainability, and
enhancing system e�ciency [24]. Mahian et al. [25]
investigated the e�ects of nanoparticle suspensions on
the performance of a solar still equipped with a heat
exchanger, both experimentally and theoretically. It
was found that in high temperatures, using SiO2-water
nanouids, which had lower e�ective thermal conduc-
tivity than Cu-water nanouids, provided higher per-
formance indices. Usually, the solar collector has at
plate cover and sinusoidal wavy absorber [26]. Thus,
investigating the convective heat transfer in enclosures
with sinusoidal heated walls is very helpful in such
situations. Arani et al. [27] investigated the mixed con-
vection and heat transfer of Cu-water nanouid inside
a lid-driven square cavity with sinusoidal temperature
distribution on sidewalls. They showed that when the
Richardson number decreased or the volume faction of
nanoparticles increased, the rate of heat transfer could
increase. Nasrin and Alim [28] compared performances
of di�erent nanouids for the natural convective ow
inside a solar collector with a sinusoidal wave absorber.
They found better performance in heat transfer inside
the collector could be achieved by the highest volume
fraction of Ag nanoparticles. Mejri and Mahmoud [29]
presented a numerical study to examine the natural
convection in an open cavity with a sinusoidal thermal
boundary condition. Their study revealed that the heat
transfer rate increased with increase in the Rayleigh
number.

However, review of the literature indicates that
few studies have been done on natural convection and
heat transfer in an inclined square enclosure subjected
to sinusoidal temperature distribution on boundary
for nanouids. Hence, the objective of this paper is
to numerically investigate such case, in order to see
the e�ects of the sinusoidal boundary conditions at
horizontal sidewalls on natural convection and heat
transfer in di�erent types of nanouids in an inclined
square enclosure. In addition, we will establish a
general expression for the correlation of the total
average Nusselt number, the Rayleigh number, and the
solid volume fraction of nanoparticles.

2. Mathematical formulation

We consider the natural convection and heat transfer of
water-based nanouids in an inclined square enclosure
with non-uniform heating on both top and bottom
sidewalls, as shown in Figure 1. The width and
height of the inclined square enclosure are assumed to
be L. The left and right walls of the enclosure are
adiabatic. The top and bottom horizontal sidewalls
are kept with sinusoidal temperature distributions [22],
where Tt and Tb are temperatures of the top and
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Figure 1. Schematic diagram of the enclosure.

bottom walls, respectively. It should be pointed out
that we impose a surface temperature distribution in
order to simplify the problem. Such type of surface
distribution can be used to model the e�ects of a
periodic array of heaters behind or within the top and
bottom walls [30]. Here, we consider four di�erent
types of nanoparticles, namely Cu, CuO, Al2O3, and
TiO2; their thermo-physical properties are listed in
Table 1 [31]. For simplicity, we assume the convective
ow to be two-dimensional, Newtonian, steady, and
incompressible [31]. It is further assumed that the base
uid (pure water) and nanoparticles are in thermal
equilibrium; no slip occurs between these two media;
and they ow with the same local velocity. In addition,
we assume that the thermo-physical properties of the
nanouids are constant except for the density variation
approximated by the Boussinesq model [32]. Thus,
based on the above assumptions, the mathematical
model governing the natural convection and heat
transfer of nanouids in an inclined square enclosure
with non-uniform heating can be expressed as follows
[31,32]:
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Here, u; v are components of the velocity in x- and y-
directions, respectively, p is pressure, T is temperature,
and r is the inclination angle. The water-based
nanouid is idealized as a single-phase uid. Hence, the
equations of physical parameters of nanouids are given
as follows [33-36]. The e�ective density of nanouid
is �m = (1 � �)�f + ��s; the thermal di�usivity
of nanouid is �m = �m=(�cp)m, where (�cp)m is
the heat capacitance of nanouid given by (�cp)m =
(1 � �)(�cp)f + �(�cp)s, and the thermal expansion
coe�cient of nanouid is (��)m = (1 � �)(��)f +
�(��)s. The viscosity of nanouid is assumed to follow
the Brinkman relation as [32] �m = �f (1� �)�2:5. The
e�ective thermal conductivity of nanouid is approxi-
mated by the Maxwell-Garnetts model as [37]:

�m =�f (�s + 2�f � 2�(�f � �s))
(�s + 2�f + �(�f � �s))�1: (5)

The corresponding boundary conditions are described
as follows: u = v = 0 on all the four walls, @T=@x =
0 on the vertical walls at x = 0 and x = L, Tb =
Tc + Ab sin(2�x=L + �) on the bottom wall and Tt =
Tc + At sin(2�x=L) on the top wall, where At and Ab
are amplitudes of the sinusoidal temperature on top
and bottom walls of the enclosure, respectively, and
the phase deviation of the sinusoidal temperature of
the bottom wall is � [38].

In order to rewrite Eqs. (1)-(4) in a dimensionless
form, we introduce the following variables:

X =
x
L
; Y =

y
L
; U =

uL
�f

; V =
vL
�f
;

� =
T � Tc

�T
; P =

pL2

�nf�2
f
: (6)

Table 1. Thermo-physical properties of water and nanoparticles.

Property Water Cu CuO Al2O3 TiO2

� (kg/m3) 997.1 8933 6500 3970 4250

cp (Jkg�1K�1) 4179 385 535.6 765 686.2

k (Wm�1K�1) 0.613 400 20 40 8.9538

� (K�1) 0.00021 0.000051 0.000051 0.000024 0.000024
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Thus, the dimensionless form of stream function and
vorticity formulation can be written as follows:
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; (7)
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where �, 
, and � are non-dimensional stream func-
tion, vorticity, and temperature, respectively, Ra
is the Rayleigh number which is de�ned as Ra =
g�fL3�T= (f�f ), and Pr is the Prandtl number for
the base uid, which is de�ned as Pr = �f=�f [31].

The corresponding non-dimensional boundary
conditions are as follows: � = 0 on all the four walls,

 = �@2�=@X2 and @�=@X = 0 on the left and
right walls X = 0 and X = 1, 
 = �@2�=@Y 2

and � = " sin (2�X + �) on the bottom wall Y = 0,

 = �@2�=@Y 2 and � = sin (2�X) on the top wall
Y = 1, where " = Ab=At is the amplitude ratio of
the sinusoidal temperature on the bottom wall to that
on the top wall of the enclosure. The local Nusselt
numbers along the isothermal walls of the enclosure
are expressed as follows [32]:

Nub(X) = ��m
�f

@�
@Y
jY=0; Nut(X) = ��m

�f
@�
@Y
jY=1:

(10)

The averaged Nusselt numbers along the horizontal
sidewalls are expressed as follows [22]:

Nu(b) =
Z 1

0
Nub(X)dX;

Nu(t) =
Z 1

0
Nut(X)dX: (11)

Furthermore, Nuavg = Nu(b) + Nu(t) is the total av-
erage Nusselt number across the entire enclosure. The
above systems in Eqs. (7)-(9) and the corresponding
dimensionless boundary conditions are complicated,
and the analytic solution may be di�cult to �nd.
Therefore, we will carry out a numerical simulation in
the next section.

3. Numerical simulation

To develop a higher-order accurate numerical method
for solving the above heat transfer and convective ow

of nanouids in an inclined square enclosure with non-
uniform heating, we �rst design a mesh as Xi = ih,
Yj = jh, h = 1=M , i; j = 0; 1; :::;M , where M
is a positive integer, h is the mesh size, and  i;j
denotes the approximation of the function  (Xi; Yj),
 = �;
; �. We also note that each of Eqs. (7)-(9)
can be viewed as the following steady-state convection
di�usion equation [39]:
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@ 
@Y

= s(X;Y );
(12)

where  is a transport variable representing �, 
,
and �, respectively; and a, b, and s denote the
corresponding coe�cient functions with respect to x
and y. We start by examining the 1D steady convection
di�usion equation:

� d2 
dX2 + a(X)

d 
dX

= s(X): (13)

For the numerical solution to Eq. (13), the following
second-order O(h2) accurate �nite di�erence scheme is
employed:

��2
X i + ai�X i = si; i = 0; 1; 2; :::;M; (14)
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di�erence operators in the X-direction, respectively,
such that:
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X i = (ai+1 � 2ai + ai;j)=h2:

To establish a higher-order accurate spatial compact
�nite di�erence approximation of Eq. (13), the �-
nite di�erence approximations of the �rst and second
derivatives appearing in Eq. (13) are given as follows:
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Substituting Eq. (15) into Eq. (14), we obtain:
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By taking the �rst and second derivatives (@=@X,
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First, discretizing the right-hand-sides in Eqs. (17) and
(18) by using the �rst- and second-order central dif-
ference operators, respectively, and then, substituting
them into Eq. (16), we obtain a spatially fourth-order
accurate compact approximation of Eq. (13) as:

�Ai�2
X i + Ci�X i = Si; (19)

where the corresponding coe�cients are:

Ai = 1 +$(a2 � 2�Xa)i;

Ci = ai +$(�2
Xa� a�Xa)i;

Si = si +$(�2
Xs� a�Xs)i; (20)

and $ = h2=12.
We now extend the above fourth-order compact

method for the 1D convection di�usion problems to
the 2D case. The 2D convection di�usion equation in
Eq. (12) is �rst split into the following two systems:8><>:�

@2 
@X2 + a(X;Y ) @ @X = s1(X;Y );

s1(X;Y ) = @2 
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@X2 � a(X;Y ) @ @X + s(X;Y ):

(22)

Applying Eqs. (19) and (20) to the 1D-like Eqs. (21)
and (22), we obtain the spatially fourth-order compact
approximations of Eq. (12) as:
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where the coe�cients are given as follows:
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The standard second-order central di�erence operators
within the nine-point stencil are given in Appendix A.

Note that one has to solve three systems based on Eqs.
(23)-(29) for stream function, vorticity, and tempera-
ture. To simplify the computation, we introduce the
pesudo-time algorithm [40,41] for solving Eqs. (23)-
(29):
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n
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As a result, at steady state,  n+1 converges to  n, so
that @ n=@t � 0, and the �nal solution to Eq. (30)
converges to the solution to Eq. (23). We use the
Alternating Directing Implicit (ADI) method to solve
Eq. (30) until the solution converges to the steady
state.

Finally, the computation procedure of the FHOC
scheme for obtaining the stream function, vorticity, and
temperature in the nano�eld problem can be described
as:

Step 1. Solve the stream function based on the
FHOC scheme for Eq. (7). To this end, determine
stream function boundaries on the walls based on
U = 0 and obtain �n+1 = 0. Then, use the ADI
method to solve the following equation in region
[1;M � 1]� [1;M � 1] to obtain �n+1:
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Step 2. Solve the vorticity based on the FHOC
scheme for Eq. (8). To this end, �rst determine
vorticity boundaries on the walls. The boundaries
on the bottom wall are given as:
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i;0 = � h
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and similarly for the other three walls. Then, solve
the following equation:
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in region [1;M � 1]� [1;M � 1] to obtain 
n+1.
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Figure 2. Grid independence study based on (a) the maximum value of the stream function and (b) the total average
Nusselt number across the entire inclined square enclosure as a function of the grid size for the natural convection ow of
Cu-water nanouid.

Step 3. Solve the temperature based on the FHOC
scheme for Eq. (9). First, determine the tempera-
ture boundaries on the left-hand-side wall based on
@�=@X = 0, and then develop a fourth-order discrete
temperature boundary condition on X = 0 as:

�n+1
0;j =[�n1;j+1+�n1;j�1+2�n0;j+1+4�n1;j+2�n0;j�1]=10: (36)

Finally, solve the temperature equation:

@�ni;j=@t =�A�i;j�2
X�

n
i;j �B�i;j�2

Y �
n
i;j

+ C�i;j�X�
n
i;j +D�

i;j�Y �
n
i;j � S�i;j ; (37)

in region [1;M � 1]� [1;M � 1] to obtain 
n+1.
Step 4. Repeat Step 1 to Step 3 from n = 0; 1; 2; :::;
until the following convergence criterion for stream
function, �, vorticity, 
, and temperature, �, is
satis�ed:

max(j�n+1 � �nj) � �;
max(j
n+1 � 
nj) � �;
max(j�n+1 � �nj) � �; (38)

where � = 10�6 in our computation.

4. Numerical results

We �rst tested the grid independence of the present

FHOC scheme. To this end, eight di�erent meshes of
11�11, 21�21, 31�31, 41�41, 51�51, 61�61, 71�71,
and 81�81 were used for the natural convection and
heat transfer of Cu-water nanouid. The maximum
value of the stream function of the primary eddy j�jmax
and the total average Nusselt number Nuavg across the
entire inclined square enclosure were used to measure
the accuracy of the solution [42]. Figure 2 demonstrates
the inuence of the number of grid points on natural
convection and heat transfer of Cu-water nanouid,
where Pr = 6.8, � = 10�6, Ra = 104, " = 0:5, � = 90�,
� = 5%, and r = 30�. It can be seen from Figure 2 that
when the mesh is �ner, the solution is more accurate;
and when the mesh is �ner than 61�61, the solution
does not change signi�cantly. This indicates that our
scheme is grid-independent. We then tested our FHOC
scheme for the classical natural convection heat transfer
of pure water in a di�erentially heated square enclosure,
where Ra = 103. The obtained numerical results
were compared with those given by various references
listed in Table 2. As seen from Table 2, the obtained
numerical results show a good agreement with those
given by the existing references [43-49]. Furthermore,
our numerical simulation procedure was tested in a
square enclosure where the Al2O3-water nanouid was
�lled and the bottom wall was kept with a non-uniform
temperature distribution as that in [50], where Ra =
105, Pr = 6.2, and � = 10%. The obtained averaged

Table 2. Comparison of the average Nusselt numbers of pure uid in di�erent references when Ra = 103.

References Nu References Nu

Bejan [43] 15.800 Baytas and Pop [47] 14.060

Gross et al. [44] 13.448 Saeid and Pop [48] 13.726

Manole and Lage [45] 13.637 Varol et al. [49] 13.564

Goyeau et al. [46] 13.470 This study 13.612
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Nusselt number through the hot source is 6.955, which
is in an excellent agreement with 6.956 obtained in [51].

We then investigated the natural convection and
heat transfer in an inclined square enclosure utilizing
nanouids with four types of nanoparticles (Cu, CuO,
Al2O3, TiO2)-water with non-uniform heating. Nu-
merical results were studied based on the following
parameters: the Rayleigh number (Ra = 103, 104, 105),
the enclosure inclination angle )r = 0�; 30�; 45�), the
solid volume fractions (� = 0%; 1%; 2%; 3%; 4%; 5%),
the amplitude ratio of the sinusoidal temperature
(" = 0; 0:5; 1:0), and the phase deviation of the
sinusoidal temperature of the bottom wall (� =
0; �=4; �=2; 3�=4; �). Throughout the study, Pr = 6.8
and � = 10�6 were �xed.

Figure 3 illustrates the local Nusselt number along

the bottom wall (on the left column) and the top wall
(on the right column) for di�erent Rayleigh numbers
and inclination angles of CuO-water nanouid, where
� = 5%, " = 0:5, and � = �=4. One may observe from
these �gures that the local Nusselt number Nub(X)
along the bottom wall increases as Ra increases on the
left half of the enclosure (0 � X � 0:5); on the other
hand, it decreases as Ra increases on the right half of
the enclosure (0:5 � X � 1). Furthermore, the local
Nusselt number Nut(X) along the top wall decreases
as Ra, increases on the left half (0 � X � 0:4), and
increases as Ra increases on the right half (0:4 � X �
1). In addition, when the Rayleigh number is low (Ra
=103), changing the inclination angle, r, along both
the bottom and top walls has no e�ects on the heat
transfer rate. When the Rayleigh number, Ra, is high

Figure 3. Local Nusselt numbers along the bottom wall (on the left column) and the top wall (on the right column) for
di�erent Rayleigh numbers at (a) r = 0�, (b) r = 30�, and (c) r = 45� for the CuO-water nanouid.
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(Ra = 104, 105), the heat transfer rate decreases as
the inclination angle increases from 0� to 45�. These
observations are similar to those of Varol et al. [49] for
a pure uid case.

Figure 4 shows the local Nusselt number Nub
along the bottom wall of the inclined square enclo-
sure for di�erent amplitude ratios, ", for Al2O3-water
nanouids with � = 5%, r = 30�, and � = �=4.
From Figure 4, one may observe that heat transfer
rate, Nub(X), along the bottom wall increases as the
amplitude ratio, ", increases on the left half (0 �
X � 0:4) and in a narrow zone close to the right

wall (0:8 � X � 1); on the other hand, it decreases
as the amplitude ratio, ", increases on the right half
(0:5 � X � 0:8). This is because the temperature
� on the bottom boundary is " sin(2�X + �); and "
is dependent only on the bottom wall and the energy
transport on the top wall is not a�ected by it. As a
result, changing " will not a�ect the heat transfer rate,
Nut(X), along the top wall. These observations are
similar to those of Sivasankaran et al. [22].

Figures 5 and 6 show streamlines and isotherms
for di�erent amplitude ratios of the sinusoidal tempera-
ture (" = 0:5 on the left column and " = 1:0 on the right

Figure 4. Local Nusselt numbers along the bottom wall for di�erent amplitude ratios at (a) Ra = 103, (b) Ra = 104, and
(c) Ra = 105 for the Al2O3-water nanouid.

Figure 5. Streamlines for di�erent amplitude ratios (" = 0:5 on the left column and " = 1:0 on the right column) at (a)
Ra = 104 and (b) Ra = 105 for the Al2O3-water nanouid.
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Figure 6. Isotherms for di�erent amplitude ratios (" = 0:5 on the left column and " = 1:0 on the right column) at (a) Ra
= 104 and (b) Ra = 105 for the Al2O3-water nanouid.

column) at di�erent Rayleigh numbers for the Al2O3-
water nanouid with � = 5%, r = 30�, and � = �=4.
Results show that with increase in " from 0.5 to 1.0,
the convective ow is distributed over the enclosure
and the secondary eddy near the right-bottom corner
becomes bigger and more powerful. For the same
amplitude ratio, ", an increase in Ra increases the value
of j�jmax. For example, when " = 0:5, the value of
j�jmax increases from 5.4412 at Ra = 104 to 17.1660 at
Ra = 105. In addition, for the same Rayleigh number,
an increase in " increases the value of j�jmax. For
example, when Ra = 105, the value of j�jmax increases
from 17.1660 at " = 0:5 to 18.6625 at " = 1:0. From
Figure 6, one may see that when " is increased from
0.5 to 1.0, there is a signi�cant di�erence in isotherms
and, in particular, strong thermal boundary layers are
developed along both horizontal walls. Accordingly,
we conclude that increasing the amplitude ratio, ", will
lead to increase in heat transfer.

The e�ects of the phase deviation � on the local
Nusselt number along the bottom wall for TiO2-water
nanouids are demonstrated in Figure 7, where � =
5%, r = 30�, and " = 1:0. From the �gure, we
can see that the local Nusselt number, Nub(X), along
the bottom wall is signi�cantly a�ected by changing �.

Furthermore, the heat transfer rate along the bottom
wall decreases as the phase deviation increases on the
left half of the square enclosure; on the other hand, it
increases as the phase deviation increases on the right
half of the square enclosure.

Figures 8 and 9 plot the streamlines and isotherms
for di�erent phase deviations (� = �=4 on the left
column and � = �=2 on the right column) at di�erent
Rayleigh numbers for the TiO2-water nanouid with
� = 5%, r = 30�, and " = 1:0. Results show that
when the phase deviation, �, is increased from �=4 to
�=2, the secondary vortex near the right-bottom corner
becomes bigger and bigger until it is distributed over
the right half of the square enclosure. Moreover, for the
same phase deviation, �, one can see that an increase
in Ra increases the value of j�jmax. For example, when
� = �=4, the value of j�jmax increases from 6.3723 at Ra
= 104 to 18.5263 at Ra = 105. On the other hand, for
the same Rayleigh number, an increase in � decreases
the value of j�jmax. For example, when Ra = 105, the
value of j�jmax decreases from 18.5263 at � = �=4 to
13.1169 at � = �=2. From Figure 9, we can see that
both horizontal walls are divided into the heating zone
and the cooling zone, because of the sinusoidal heating
temperature, and the zones on the top wall are stagnant
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Figure 7. E�ects of the phase deviation � on the local Nusselt number along the bottom wall at (a) Ra = 103, (b) Ra =
104, and (c) Ra = 105 for the TiO2-water nanouid.

Figure 8. Streamlines for di�erent phase deviations (� = �=4 on the left column and � = �=2 on the right column) at (a)
Ra = 104 and (b) Ra = 105 for the TiO2-water nanouid.

while the zones on the bottom wall shift with increase
in the phase deviation.

Figures 10 and 11 demonstrate variations of the
total average Nusselt number, Nuavg, across the entire
inclined square enclosure with di�erent solid volume
fractions for four di�erent nanouids (Cu, CuO, Al2O3,
TiO2), where � = 0%, 1%, 2%, 3%, 4%, 5%, r =
30�, " = 0:5, and � = �=4. It is seen from these
two �gures that the total average Nusselt numbers
are signi�cantly a�ected by changing the nanoparticle

volume fraction. However, the e�ects of the solid
volume fraction parameter � on the natural convection
and heat transfer of nanouids seem to be complicated.
When the Rayleigh number Ra is low (Ra = 103),
the total average Nusselt number decreases as the
solid volume fraction parameter, �, increases, as seen
in Figure 11(a). For example, when the volume of
Al2O3 nanoparticles increases from 0% to 5%, the
total average Nusselt number decreases from 0.4208 to
0.3628 at Ra = 103. On the other hand, elevating �
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Figure 9. Isotherms for di�erent phase deviations (� = �=4 on the left column and � = �=2 on the right column) at (a) Ra
= 104 and (b) Ra = 105 for the TiO2-water nanouid.

Figure 10. Variations of the total average Nusselt number across the entire inclined square enclosure with di�erent solid
volume fractions for di�erent nanouids of (a) Cu, (b) CuO, (c) Al2O3, and (d) TiO2.
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Figure 11. Variations of the total average Nusselt number with di�erent solid volume fractions for di�erent nanoparticles
at (a) Ra = 103, (b) Ra = 104, and (c) Ra = 105.

Table 3. Nanoparticle e�ects on the total average Nusselt number Nuavg at various Rayleigh numbers, Ra, and the solid
volume fraction, �, for four types of nanouids.

Nanoparticle
type

Ra Nuavg � = 0% � = 1% � = 2% � = 3% � = 4% � = 5%

103 0.4208 0.4168 0.4127 0.4083 0.4037 0.3989
# { 0.93% 1.92% 2.97% 4.06% 5.19%

Cu 104 1.4531 1.4810 1.5086 1.5358 1.5625 1.5888
" { 1.92% 3.82% 5.69% 7.53% 9.34%

105 1.8056 1.8570 1.9091 1.9620 2.0158 2.0703
" { 2.85% 5.73% 8.66% 11.64% 14.66%

103 0.4208 0.4146 0.4083 0.4018 0.3953 0.3886
# { 1.46% 2.97% 4.50% 6.06% 7.65%

CuO 104 1.4531 1.4764 1.4991 1.5213 1.5429 1.5638
" { 1.60% 3.16% 4.69% 6.18% 7.62%

105 1.8056 1.8547 1.9043 1.9544 2.0051 2.0563
" { 2.72% 5.47% 8.24% 11.05% 13.89%

103 0.4208 0.4091 0.3975 0.3858 0.3743 0.3628
# { 2.76% 5.53% 8.30% 11.05% 13.78%

Al2O3 104 1.4531 1.4725 1.4907 1.5077 1.5234 1.5376
" { 1.33% 2.59% 3.76% 4.84% 5.82%

105 1.8056 1.8598 1.9142 1.9688 2.0236 2.0785
" { 3.00% 6.02% 9.04% 12.08% 15.12%

103 0.4208 0.4100 0.3992 0.3885 0.3778 0.3672
# { 2.56% 5.12% 7.67% 10.22% 12.74%

TiO2 104 1.4531 1.4690 1.4840 1.4980 1.5110 1.5228
" { 1.09% 2.12% 3.09% 3.98% 4.79%

105 1.8056 1.8519 1.8984 1.9449 1.9916 2.0383
" { 2.56% 5.14% 7.72% 10.30% 12.89%

has a favorable e�ect on the heat transfer of nanouids
when Ra is high (Ra = 104, 105), as seen in Figure
11(b) and (c). For example, when the volume of
TiO2 nanoparticles increases from 0% to 5%, the total
average Nusselt number increases from 1.4531 to 1.5228
at Ra = 104 and increases from 1.8056 to 2.0383 at Ra
= 105. Based on the de�nitions of e�ective density
and viscosity of nanouids, we see that the inertial and
viscous resistances of nanouids are greater than those
of water, since the density and viscosity of nanouids

are higher than those of water as � increases. When Ra
is high, the convection dominates the uid movement.
Under such circumstance, the heat transfer increases
with increase in the value of the solid volume fraction
parameter. Since larger volumes of nanoparticles give
relatively higher thermal conductivity, it is noteworthy
that high values of Ra lead to higher Nusselt numbers
for each solid volume fraction. Here, we give a
better comparison by examining the values presented
in Table 3:



X. Wang and W. Dai/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2311{2328 2323

"= Num �Nuf
Nuf

� 100%;

#= Nuf �Num
Nuf

� 100%; (39)

where " and # denote the increase and decrease in the
total average Nusselt number of nanouids compared
to those of water, respectively [17]. It can be seen
from this table that for the high values of Ra (Ra
= 104, 105), the rate of change in the heat transfer
rate increases by adding the volume of nanoparticles
into the pure water. Furthermore, the high values of
Ra are associated with the high rate of increase in
the total average Nusselt number. For example, when
the volume of CuO nanoparticles increases from 0%
to 5%, the rate of the total average Nusselt number
increases by 7.62% at Ra = 104 and by 13.89% at
Ra = 105. In addition, when Ra = 104, the value of
the total average Nusselt number decreases according

to the following order of Cu, CuO, Al2O3, and TiO2.
These observations are similar to those of Elif [31]. The
highest heat transfer is obtained when using the Al2O3-
water nanouid for � = 5% and Ra = 105.

Figure 12 shows contours of streamlines for pure
uid (� = 0%) and four di�erent nanouids (� =
1%�5%), respectively, where r = 30�, " = 0:5, � = �=4,
and Ra = 104. Streamlines for nanouids are plotted in
dotted lines and those for pure uid are plotted in red
solid lines. From these streamlines, we can see that a
primary recirculating cell is formed in the enclosure due
to the fact that the uid ows up near the heat source
and ows down along the right and left walls with the
sinusoidal temperature distribution. Furthermore, one
can see that increasing � from 1% to 5% decreases the
value of j�jmax, which causes the uid with nanoparti-
cles to circulate slowly in the enclosure. However, the
di�erence between pure uid and nanouids with four
di�erent nano-particles is negligible.

Figure 12. Streamlines for pure uid � = 0% (red solid lines) and di�erent nanouids of (a) Cu, (b) CuO, (c) Al2O3, and
(d) TiO2 with � = 1%� 5% (dotted lines) at Ra = 104.
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Figure 13. Comparison between the numerical results of the average Nusselt number and those obtained by the
correlation in Eq. (40) for di�erent nanouids of (a) Cu, (b) CuO, (c) Al2O3, and (d) TiO2.

Finally, using the numerical results in Table 3, the
correlation of the total average Nusselt number along
the isothermal walls can be empirically expressed as:

Nuavg = (A+B�)RaC ; (40)

where � = 0%, 1%, 2%, 3%, 4%, and 5%; r = 30�;
� = �=4; Pr = 6.8; and the corresponding coe�cients
and values of the squared 2-norm for the residuals are
listed in Table 4. Figure 13 shows the comparison
between the total average Nusselt numbers in the
numerical results and those obtained based on the
above correlation, which indicates that they agree well
with each other.

5. Conclusion

We developed a numerical method for solving the
natural convection and heat transfer of nanouids in an
inclined square enclosure with sinusoidal temperature
distributions. The numerical scheme was derived from
the FHOC �nite di�erence method. From the obtained
numerical results, we reached the following conclusions:

1. When the Rayleigh number Ra is low (Ra = 103),
the average Nusselt number decreases as the solid

volume fraction parameter, �, increases. On the
other hand, elevating � has favorable e�ects on the
natural convection and heat transfer of nanouids
when Ra is high (Ra = 104, 105);

2. When the Rayleigh number is low (Ra = 103), the
heat transfer rates are not a�ected by changing the
inclination angle r. On the other hand, when the
Rayleigh number Ra is high (Ra = 104, 105), the
heat transfer rate decreases as the inclination angle
increases;

3. For the same amplitude ratio, ", an increase in
Ra increases the value of j�jmax. In addition, for
the same Rayleigh number, an increase in " also
increases the value of j�jmax;

4. The phase deviation parameter has a signi�cant im-
pact on the local Nusselt number along the bottom
wall. For the same phase deviation, an increase in
Ra increases the value of j�jmax. However, for the
same Rayleigh number, an increase in � decreases
the value of j�jmax;

5. When Ra = 104, the total average Nusselt number
Nuavg for the four nanouids decreases with the
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Table 4. Corresponding coe�cients and values of the squared 2-norm of the residuals for Eq. (40).

Nanoparticle type Ra A B C Res-norm

103 10.3395 �10:7424 �0:4634 2.4586E-006

Cu 104 9.6350 18.0032 �0:2053 6.7317E-007

105 9.4883 27.8111 �0:1442 1.5336E-006

103 10.7493 �16:4527 �0:4690 9.1729E-007

CuO 104 9.8626 15.0124 �0:2079 1.3756E-006

105 9.5192 26.4324 �0:1444 7.0900E-007

103 10.6119 �29:2677 �0:4673 1.1043E-007

Al2O3 104 9.9221 11.5605 �0:2084 6.8536E-006

105 9.4655 28.6197 �0:1439 7.6889E-008

103 10.6115 �27:0591 �0:4673 7.8265E-008

TiO2 104 9.9675 9.5696 �0:2090 4.3343E-006

105 9.5585 24.6427 �0:1448 2.71931E-008

nanoparticles in the order of Cu, CuO, Al2O3, and
TiO2.

In the future work, an optimization may be
needed to obtain the best value of the solid volume
fraction of nanouids in order to improve heat transfer
within a porous medium in the most e�ective way.
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Nomenclature

Ra Rayleigh number
t Phase deviation
Nu Nusselt number
L Length (width) of the enclosure, m
A Amplitude of sinusoidal temperature
u; v Velocity components, m/s
U; V Dimensionless velocity components
x; y Cartesian coordinates, m
X;Y Dimensionless Cartesian coordinates
P Dimensionless pressure
g Gravitational acceleration, m/s2

r Inclination angles
K Permeability of porous medium, m2

T Temperature, K

� Dimensionless temperature
� Dimensionless stream function

 Dimensionless vorticity
Pr Prandtl number
h Mesh size
cp Speci�c heat, J kg�1K�1

p Pressure, N/m2

	 A transport variable

Greek symbols
� Dynamic viscosity, kg/ms
� Density, kg/m3

� Volume fraction of nanoparticles
� Thermal di�usivity, m2/s
� Thermal expansion coe�cient, K�1

 Kinematic viscosity, �=�
� Thermal conductivity, Wm�1K�1

" Amplitude ratio
� Kinematic viscosity, m2/s

Subscripts
c Cold (lower value)
f The base uid
avg Average
m Nanouid
s Nanoparticle
t Top
b Bottom



2326 X. Wang and W. Dai/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2311{2328

References

1. Choi, S.U.S. \Enhancing thermal conductivity of uids
with nanoparticle", Asme. Fed., 231(1), pp. 99-105
(1995).

2. Nemati, H., Farhadi, M., Sedighi, K., Ashorynejad,
H.R., and Fattahi, E. \Magnetic �eld e�ects on natural
convection ow of nanouid in a rectangular cavity
using the lattice Boltzmann model", Scientia Iranica,
19(2), pp. 303-310 (2012).

3. Khorasanizadeh, H., Amani, J., and Nikfar, M. \Nu-
merical investigation of Cu-water nanouid natural
convection and entropy generation within a cavity
with an embedded conductive ba�e", Scientia Iranica,
19(6), pp. 1996-2003 (2012).

4. Ho, C.J., Chen, D., Yan, W., and Wahian, O.
\Buoyancy-driven ow of nanouids in a cavity con-
sidering the Ludwig-Soret e�ect and sedimentation:
Numerical study and experimental validation", Int. J.
Heat Mass Tran., 77(4), pp. 684-694 (2014).

5. �Oztop, H.F., Estell�e, P., Yan, W., Al-Salem, K.,
Or�, J., and Mahian, O. \A brief review of natural
convection in enclosures under localized heating with
and without nanouids", Int. Commun. Heat Mass
Tran., 60, pp. 37-44 (2015).

6. Esfe, M.H., Akbari, M., Karimipour, A., Afrand,
M., Mahian, O., and Wongwises, S. \Mixed-
convection ow and heat transfer in an inclined cavity
equipped to a hot obstacle using nanouids considering
temperature-dependent properties", Int. J. Heat Mass
Tran., 85, pp. 656-666 (2015).

7. Alsabery, A.I., Chamkha, A.J., Saleh, H., and Hashim,
I. \Transient natural convective heat transfer in a
trapezoidal cavity �lled with non-Newtonian nanouid
with sinusoidal boundary conditions on both side-
walls", Powder Technol., 308, pp. 214-234 (2017).

8. Heris, S.Z., Pour, M.B., Mahian, O., and Wong-
wises, S. \A comparative experimental study on the
natural convection heat transfer of di�erent metal
oxide nanopowders suspended in turbine oil inside an
inclined cavity", Int. J. Heat Mass Tran., 73(9), pp.
231-238 (2014).

9. Rashidi, I., Mahian, O., Lorenzini, G., Biserni, C.,
and Wongwises, S. \Natural convection of Al2O3-water
nanouid in a square cavity: E�ects of heterogeneous
heating", Int. J. Heat Mass Tran., 74(7), pp. 391-402
(2014).

10. Li, D.F., Wang, X.F., and Hui, F. \Fully HOC scheme
for mixed convection ow in a lid-driven cavity �lled
with a nanouid", Adv. Appl. Math. Mech., 5(1), pp.
55-77 (2013).

11. Wang, X.F. and Wang, J.T. \Numerical simulation
of natural convection in a triangle cavity �lled with
nanouids using Tiwari and Das' model: E�ects of
heat ux", Heat Trans.-Asian Res., 46, pp. 761-777
(2017).

12. Mahian, O., Kianifar, A., Heris, S.Z., and Wongwises,
S. \Natural convection of silica nanouids in square
and triangular enclosures: Theoretical and experimen-
tal study", Int. J. Heat Mass Tran., 99, pp. 792-804
(2016).

13. Estell�e, P., Mahian, O., Mar�e, T., and �Oztop, H.F.
\Natural convection of CNT water-based nanouids in
a di�erentially heated square cavity", J. Therm. Anal.
Calorim., 128(3), pp. 1765-1770 (2017).

14. Alizadeh, M.R. and Dehghan, A.A. \Conjugate nat-
ural convection of nanouids in an enclosure with a
volumetric heat source", Arab J. Sci. Eng., 39(2), pp.
1195-1207 (2014).

15. Cianfrini, M., Corcione, M., and Quintino, A. \Nat-
ural convection in square enclosures di�erentially
heated at sides using alumina-water nanouids with
temperature-dependent physical properties", Therm.
Sci., 19(10), pp. 591-608 (2015).

16. Sun, Q. and Pop, I. \Free convection in a triangle
cavity �lled with a porous medium saturated with
nanouids with ush mounted heater on the wall", Int.
J. Therm. Sci., 50(11), pp. 2141-2153 (2011).

17. Ghasemi, B. and Aminossadati, S.M. \Mixed convec-
tion in a lid-driven triangular enclosure �lled with
nanouids", Int. Comm. Heat Mass Tran., 37(8), pp.
1142-1148 (2010).

18. Mahmoudi, A.H., Shahi, M., Raouf, A., and
Ghasemian, A. \Numerical study of natural convection
cooling of horizontal heat source mounted in a square
cavity �lled with nanouid", Int. Comm. Heat Mass
Tran., 37, pp. 1135-1141 (2010).

19. Haddad, Z., Abu-Nada, E., Oztop, H.F., and Mataoui,
A. \Natural convection in nanouids: Are the ther-
mophoresis and Brownian motion e�ects signi�cant in
nanouid heat transfer enhancement?", Int. J. Therm.
Sci., 57, pp. 152-162 (2012).

20. Haddad, Z., Oztop, H.F., Abu-Nada, E., and Mataoui,
A. \A review on natural convective heat transfer of
nanouids", Renew. Sustain. Energy Rev., 16(7), pp.
5363-5378 (2012).

21. Donald, A.N. and Adrian, B., Convection
in Porous Media, Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-49562-0.

22. Sivasankaran, S., Sivakumar, V., and Prakash, P.
\Numerical study on mixed convection in a lid-driven
cavity with non-uniform heating on both sidewalls",
Int. J. Heat Mass Tran., 53(19), pp. 4304-4315 (2010).

23. Jmai, R., Ben-Beya, B., and Lili, T. \Heat transfer
and uid ow of nanouid �lled enclosure with two
partially heated side walls and di�erent nanoparticles",
Superlattice Microst., 53(1), pp. 130-154 (2013).

24. Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I.,
and Wongwises, S. \A review of the applications of
nanouids in solar energy", Int. J. Heat Mass Tran.,
57, pp. 582-594 (2013).



X. Wang and W. Dai/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2311{2328 2327

25. Mahian, O., Kianifar, A., Heris, S.Z., Wen, D., Sahin,
A.Z., and Wongwises, S. \Nanouids e�ects on the
evaporation rate in a solar still equipped with a heat
exchanger", Nano Energy, 36, pp. 134-155 (2017).

26. Nasrin, R., Parvin, S., and Alim, M.A. \Heat transfer
by nanouids through a at plate solar collector",
Procedia Engineering, 90, pp. 364-370 (2014).

27. Arani, A.A.A., Sebdani, S.M., Mahmoodi, M.,
Ardeshiri, A., and Aliakbari, M. \Numerical study
of mixed convection ow in a lid-driven cavity with
sinusoidal heating on sidewalls using nanouid", Su-
perlattice Microst., 51(6), pp. 893-911 (2012).

28. Nasrin, R. and Alim, M.A. \Performance of nanouids
on heat transfer in a wavy solar collector", Int. J. Eng.
Sci. Technol., 5(3), pp. 58-77 (2013).

29. Mejri, I. and Mahmoudi, A. \MHD natural convection
in a nanouid-�lled open enclosure with a sinusoidal
boundary condition", Chem. Eng. Res. Des., 98, pp.
1-16 (2015).

30. Rees, D.A.S. \The e�ect of steady streamwise surface
temperature variations on vertical free convection",
Int. J. Heat Mass Transfer, 31, pp. 1344-1353 (1999).

31. Elif, B.O. \Natural convection of water-based nanou-
ids in an inclined enclosure with a heat source", Int.
J. Therm. Sci., 48(11), pp. 2063-2073
(2009).

32. Abu-Nada, E. \Mixed convection ow in a lid-driven
inclined square enclosure �lled with a nanouid", Eur.
J. Mech. B-Fluid, 29(6), pp. 472-482 (2010).

33. Ghasemi, B. and Aminossadati, S.M. \Mixed convec-
tion in a lid-driven triangular enclosure �lled with
nanouids", Int. J. Heat Mass Tran., 37(8), pp. 1142-
1148 (2010).

34. Lavasani, A., Farhadi, M., and Darzi, R. \Study
of convection heat transfer enhancement inside lid
driven cavity utilizing �ns and nanouid", Therm. Sci.,
21(6), pp. 2431-2442 (2017).

35. Mansour, M.A., Ahmed, S.E., and Chamkha, A.J.
\Entropy generation optimization for MHD natural
convection of a nanouid in porous media-�lled enclo-
sure with active parts and viscous dissipation", Int. J.
Numer. Method Heat Fluid Flow, 27(2), pp. 379-399
(2017).

36. Shahriari, A., Javaran, E.J., and Rahnama, M. \E�ect
of nanoparticles Brownian motion and uniform sinu-
soidal roughness elements on natural convection in an
enclosure", J. Therm. Anal. Calorim., 131, pp. 2865-
2884 (2018).

37. Oztop, H.F. and Abu-Nada, E. \Numerical study
of natural convection in partially heated rectangular
enclosures �lled with nanouids", Int. J. Heat Fluid
Flow, 29(5), pp. 1326-1336 (2008).

38. Ashraf, M.I. and Sinha, S. \Natural convection of
nanouids in a cavity with nonuniform temperature

distributions on side walls", Numer. Heat Transfer-A
Appl., 65(3), pp. 247-268 (2014).

39. Wang, X.F., Shi, D.Y., and Li, D.F. \Natural con-
vective ow in an inclined lid-driven enclosure with a
heated thin plate in the middle", Int. J. Heat Mass
Tran., 55(25-26), pp. 8073-8087 (2012).

40. Erturk, E. \Numerical performance of compact fourth-
order formulation of the Navier-Stokes equations",
Commun. Numer. Meth. Eng., 24(12), pp. 2003-2019
(2008).

41. Erturk, E., Corke, T.C., and G�okc�ol, C. \Numerical
solutions of 2-D steady incompressible driven cavity
ow at high Reynolds numbers", Int. J. Numer.
Methods Fluids, 48(7), pp. 747-774 (2005).

42. Famouri, M. and Hooman, K. \Entropy generation for
natural convection by heated partitions in a cavity",
Int. Commun. Heat Mass Tran., 35(4), pp. 492-502
(2008).

43. Bejan, A. \On the boundary layer regime in a vertical
enclosure �lled with a porous medium", Lett. Heat
Mass Tran., 6(2), pp. 93-102 (1979).

44. Gross, R.J., Bear, M.R., and Hickox, C.E. \The
application of ux-corrected transport (FCT) to high
Rayleigh number natural convection in a porous
medium", Proc. 8th Int. Heat Tran. Conf., San Fran-
cisco, CA, pp. 2641-2646 (1986).

45. Manole, D.M. and Lage, J.L. \Numerical benchmark
results for natural convection in a porous medium
cavity", Heat Mass Tran. Porous Media, ASME Conf.
216, pp. 55-60 (1992).

46. Goyeau, B., Songbe, J.P., and Gobin, D. \Numeri-
cal study of double-di�usive natural convection in a
porous cavity using the darcy-brinkman formulation",
Int. J. Heat Mass Tran., 39(7), pp. 1363-1378 (1996).

47. Baytas, A.C. and Pop, I. \Free convection in a square
porous cavity using a thermal nonequilibrium model",
Int. J. Therm. Sci., 41(9), pp. 861-870 (2002).

48. Saeid, N.H. and Pop, I. \Natural convection from a
discrete heater in a square cavity �lled with a porous
medium", J. Porous Media, 8(1), pp. 55-63 (2005).

49. Varol, Y., Oztop, H.F., and Varol, A. \E�ects of
thin �n on natural convection in porous triangular
enclosures", Int. J. Therm. Sci., 46(10), pp. 1033-1045
(2007).

50. Talebi, F., Mahmoudi, A.H., and Shahi, M. \Numer-
ical study of mixed convection ows in a square lid-
driven cavity utilizing nanouid", Int. Commun. Heat
Mass Tran., 37(1), pp. 79-90 (2010).

51. Ben-Cheikh, N., Chamkha, A.J., Ben-Beya, B., and
Lili, T. \Natural convection of water-based nanouids
in a square enclosure with non-uniform heating of the
bottom wall", J. Modern Phys., 4(2), pp. 147-159
(2013).



2328 X. Wang and W. Dai/Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 2311{2328

52. Wang, X. and Dai, W. \Heatline analysis on heat
transfer and convective ow of nanouids in an inclined
enclosure", Heat Tran. Eng., 39(10), pp. 843-860
(2018).

Appendix A

For a transport variable,  , the standard second-
order central di�erence operators within the nine-point
stencil are given as [52]:

�X i;j =
1

2h
( i+1;j �  i�1;j); (A.1)

�Y  i;j =
1

2h
( i;j+1 �  i;j�1); (A.2)

�2
X i;j =

1
h2 ( i+1;j � 2 i;j +  i�1;j); (A.3)

�2
Y  i;j =

1
h2 ( i;j+1 � 2 i;j +  i;j�1); (A.4)

�X�Y  i;j =
1

4h2 ( i+1;j+1 �  i�1;j+1

�  i+1;j�1 +  i�1;j�1); (A.5)

�2
X�Y  i;j =

1
2h3 ( i+1;j+1�2 i;j+1

+  i�1;j+1� i+1;j�1+2 i;j�1� i�1;j�1);
(A.6)

�X�2
Y  i;j =

1
2h3 ( i+1;j+1 � 2 i+1;j

+ i+1;j�1� i�1;j+1+2 i�1;j� i�1;j�1);
(A.7)

�2
X�

2
Y  i;j =

1
h4 ( i+1;j+1 +  i�1;j+1 + 4 i;j

+ i+1;j�1+ i�1;j�1)� 2
h4 ( i;j+1+ i+1;j

+ i�1;j+ i;j�1): (A.8)
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