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Abstract. This study considers a new view of the transition from periodic to aperiodic
signals in time and spectral domains, thus pointing out the idea of how the concept of
in�nity is involved. The results of this paper contribute to a better understanding of the
nature of both spectral descriptions and conditions of their practical use, particularly in
unusual cases. Therefore, this study highlights invariance of convergence of spectrum by
introducing some numerical parameters, which exactly describe such a process. Their
behavior is numerically examined in detail. In addition, the opposite transition from
aperiodic to periodic is considered to clarify the meaning of the spectral line. To suggest
the applicability of our analysis, an actual seismic signal is used. By extracting the
most prominent waveform part, regarding its in
uence on structures, a periodic signal
is formed whose line spectrum can clearly show possible resonance with the vibrating tones
of structures.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

It is well known that the Fourier Series (FS) calculates
the line spectrum of a periodic function instead of a
periodic signal, since the latter cannot simply exist in
the strict sense of the word, i.e., to be periodic over the
whole t domain, according to the FS de�nition. The
periodic function is a mathematical representation of
a periodic signal, which is, by itself, a version of the
\periodic", or real, signal that is periodized to in�nity.
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Although an entity is placed between periodic
signal and its function, there are indeed di�erent
entities. The �rst entity is composed of pure numerical
values, while the other one expresses the values of some
physical quantities. As for the FS, it acts only in
accordance with the given shape ([1], pp. 34{40). There
are those who assign physical meaning to mathematical
shapes and interpret the nature of the entity before and
after it is subjected to the FS.

The term \line" stands for its discrete nature,
originating from a suitable graphical representation.
This term is of importance to our theoretical consid-
erations.

Nevertheless, in scienti�c research and engineer-
ing practice, one often use line spectral representa-
tion of \periodic" signals because of its convenience
in describing the actual issue. However, always, it
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should be noted how much a \periodic" signal di�ers
from its aperiodic (theoretical) counterpart in order to
appropriately explain the actual results.

Generally, signals that are not strictly periodic
should be regarded as aperiodic ones, which, depending
on their duration, are further divided into impulses and
�nite realizations of some processes (random, periodic,
etc.). Whatever the actual duration of signal/function
may be, it is always formally extended by zero to
in�nity to cover the whole t-axis/domain. For theo-
retical purposes, �nite random realisations are often
generalized to cover t 2 (�1;+1) or t 2 (�1; 0) [2].
Moreover, even a strict periodic signal can be formally
treated as an aperiodic one if considered as a whole,
not as a sequence of repeating waveforms ([1], pp. 119{
133).

Herein, a practical rule of thumb is proposed on
how to distinguish impulses from long-lasting aperiodic
signals. It is based on the number of changes, i.e.,

uctuations, in the signal duration. That is, an
aperiodic signal may last long, yet can be considered
as an impulse since it slowly 
uctuates and comprises
several changes.

Re�ning this rule, i.e., how much changes can
di�erentiate impulses from the lasting aperiodic sig-
nals, calls for a deeper investigation; however, herein,
this study considers acoustic, or much better seismic,
waveforms to �nd a clue for such a recommendation.

Aperiodic signals are represented in the frequency
domain by a continuous spectrum. The nature of
the spectral density is important to better interpret
research results.

The very transition between those two spectral
entities, line and continuous, if properly considered,
may give a deeper insight and improve one's under-
standing and even broaden the scope of waveform anal-
ysis. Seismogram analysts and station operators should
possess the capability to \understand each wiggle" in
a seismic record [3], especially in unusual cases. The
same holds for some researchers and engineers that
encounter seismic factors in their work. It is implied
here that they should have clari�ed the notions of all
aspects of the seismogram, including its treatment by
Fourier tools. The FS calculates the spectrum of a
periodic function (not of a periodic signal) since such
a signal cannot simply exist in the strict sense of the
word, i.e., to be periodic over the whole t domain.

For a periodic time function s(t), its spectral
(Fourier) coe�cients are easily calculated as follows:

Sn = S(n) = S(n!0) =
1
T

T=2Z
�T=2

s(t)e�i(n!0)tdt;

n = 0;�1;�2; � � �; (1)

which covers the in�nite ! domain and is readily seen
if Eq. (1) is rewritten in the following:

Sn = S(n) = S(n!0) =
1
T

(k+1)TZ
kT

s(t)e�i(n!0)tdt;

n = 0; �1; �2; � � � ;
k = 0; �1; �2; � � � ; (2)

where it is observed how the FS maps the whole t
domain to the whole ! domain.

Expression (2) gives an implication of t domain
in�nity such that the same operation is carried out
in each period throughout t domain, i.e., one actually
deals with a single period, yet treats it like dealing
with all others in the same manner. Therefore, possible
mistakes and errors are predicted while calculating
signal's spectrum. If not, the computer program does
not know how many periods there are.

For a time process (time variations of some physi-
cal quantity), described by signal �(t), which is of �nite
duration:

9� (t) 8t 2 (t1; t2) ; (3)

its continuous spectrum is determined by the Fourier
Transform (FT), encompassing the whole t domain:

S (!) =
1Z
�1

s(t)e�i! tdt i:e:
1Z
�1

[ ]dt: (4)

As mentioned before, prior to applying the FT to
�(t), it must be expressed by function s(t), extending
its de�nition domain to the whole t-axis as in the
following:

9s (t) 8t 2 (�1;+1) ; (5a)

� (t) � s (t) 8t 2 (t1; t2) ; (5b)

ensuring that there is no other signal on the rest of t-
axis. This is not hair-splitting process as it may seem,
yet the need to follow fundamental issues to prevent
principal mistakes is implied.

Another in�nite domain, frequency, is hidden in
the FT expression:

S (!) =
1Z
�1

s(t)e�i! tdt

�1 < t <1 �1 < ! <1: (6)

The result of the performance of the FT on s(t) is a
continuous spectrum S(!).

In the following, the relationship between these
two spectral entities is examined.
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2. The essence of the relationship between FS
and FT

Making an aperiodic signal (function) sA(t) from its pe-
riodic counterpart sP (t) is seemingly simple (Figure 1).
Let us assume:
sA(t) = sP (t) 0 � t < T: (7)

In other words:

sP (t) =
+1X

n=�1
SPn e

in!0t

= S0 +
+1X
n=1

2
��SPn �� cos[n!0t+ �(!)]

= sA(t) 0 < t < T; (8)

where all harmonics outside the interval [0,T ] are cut
o�. This operation in t domain causes drastic mathe-
matical disruption since it disintegrates the nature of
trigonometric function (Figure 2) by contradicting the
very de�nition of FS based directly on the space of
trigonometric functions, which are inherently in�nite,
covering the whole t domain ([1], pp. 87{94).

To �nd a mathematically proper way to relate pe-
riodic and aperiodic functions/signals, the limit process
is addressed:

Figure 1. Aperiodic function derived from the
corresponding periodic signal by simply considering one
period content.

Figure 2. Creating an aperiodic signal by cutting o� one
period from its periodic counterpart so that all
trigonometric functions involved in the periodic signal
description are cut o�.

sP (t) ����!
T!1 sA(t): (9)

Considering that spectral analysis, e.g., Yarlagadda [4],
is well and widely known throughout classical litera-
ture, let us follow this limit process by formulae.

Considering Eqs. (1) and (8), we write:

sP (t) =
1X

n=�1

"
1
T

Z T

0
sP (x)e�in!0xdx

#
e�in!0t

=
1

2�

1X
n=�1

"Z T

0
sP (x)e�in!0xdx

#
e�in!0t!0

�����!
T!1
n!0!!
!0!d!

1
2�

1Z
�1

ei!t
0@ t2Z
t1

s(x)e�i!tdx

1A d!

=
1

2�

1Z
�1

S(!)ei!td! = sA(t): (10)

Herein, pulse de�nition interval (t1; t2) to (�1;+1)
is simply extended. Now, the formal analogy in these
two expressions is highlighted as follows:

sP (t)=
1X

n=�1
SPn e

in!0t=
1X

n=�1

��SPn �� ei[n!0t+�n]; (11)

and:

sA(t) =
1

2�

1Z
�1

SA(!)ei!td!

=
1Z
�1

�
1

2�
jSA(!)j d!

�
ei[!t+�(!)]; (12)

which de�ne conventional and in�nitesimal series, re-
spectively.

Each spectral component has an in�nitesimal
amplitude:

dA(!) =
1

2�
jSA(!)j � d!; (13)

where the frequency di�ers in�nitesimally from fre-
quencies of neighboring ones. As a measure of di�er-
ence, d! can be used.

If the progress of the limit process in both t and !
domains is considered, we notice that as pulses of sP (t)
spread out, amplitudes of spectral components become
denser and smaller (Figure 3) through several steps and
in the case of periodic rectangular pulses for the sake
of clari�cation. When the neighboring pulses become
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Figure 3. The spectrum becoming denser and component
amplitudes smaller as pulses in periodic function spread
out.

in�nitely far away and no one can determine how
in�nitely far they are, components become in�nitely
small and dense. Apparently, the (line) spectrum
disappears, and Eq. (10) does not �t the situation
on the terrain. These interrelated aspects of in�nity
are very interesting: when neighboring pulses stand
in�nitely far away, it can be concluded that the whole
t domain is at disposal to a single pulse ([1] pp. 93{
94), making it a truly aperiodic one and preparing it
for correct action of the FT in accordance with its
de�nition.

Therefore, if we seek to capture a useful picture of
the spectrum function, which seemingly disappears, we
must get a number of appropriate valuable characteris-
tics to override in�nitesimal ambiguity. It is a well-
known method for comparing one in�nitesimal with
another, or so-called normalization:
jS(!)j d!
jS(0)j d! = K(!): (14)

Therefore, the continuous spectrum shows relations
between amplitudes of components instead of their
actual values which one gets by multiplying spectrum
(function) values by d! (Eq. (13)). Hence, values of
jS(!)j show the participation of components in creating
the signal waveform (its t function).

3. Numerical results and discussion

Another interpretation involves the density of spectral
components, i.e., harmonics, so-called microharmonics,
expressed by the rectangular area (Figure 4) ([1], pp.
91{92):

P� = jS�(!)j ��! =
X
n2�!

An: (15)

Let us de�ne a quantity:

Figure 4. Sum of amplitudes of harmonics, which belong
to the frequency interval, represented by the area of the
corresponding rectangle.X
n!02�!

jS(n!0)j; (16)

which is the sum of the amplitudes of all components
within a frequency interval �!, and the change of its
value is considered during the limit process. Hence, for
T = T1, we obtain:

�1 =
X

n!02�!

���S(1)(n!0)
���; (17)

for T = T2, we have:

�2 =
X

n!02�!

���S(2)(n!0)
���; (18)

etc. Sums �1;�2;�3; : : : are usually di�erent because
of the discrete nature of spectrum (see Figures 3
or 4) and form a sequence which is not monotonic
necessarily; however, it converges to an asymptotic
value for T !1.

In this case, we see how \mathematical liquid" of
components is not compressible and does not disappear
at T !1.

A calculator (Windows XP) and a simple (C++)
program are used to carry out calculations to examine
the behavior of the quoted parameters during the limit
process. Any programming language can be used for
this purpose. A periodic train of rectangular pulses,
as shown in Figure 3, with parameters E = 1 V, � =
1 ms, is considered. First, zero of amplitude spectrum
envelope is measured in (krad/s) as in the following:

!Z =
2�
�

= 6:28318530718: (19)

The line spectrum changes in the frequency interval are
examined as follows:

�! =
h
3 � !Z

6
; 4 � !Z

6

i
: (20)

With respect to the e�ect of the coincidence caused by
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harmonic relations between component frequencies, we
made corrections and, �nally, de�ned the interval as
follows:

�! =
h
2:9 � !Z

6
; 4:1 � !Z

6

i
: (21)

Accordingly, uncertainty in calculating the sum (16)
is avoided when the frequency of a certain harmonic
coincides with an interval border. For example, in the
case of T11 = 60� , 29th and 41st harmonics coincide
with interval borders (Eq. (21)). Therefore, the values
of 2.91 and 4.09 may be highly appropriate for interval
borders since the coincidence appears to be far at
291st and 409th harmonics. However, the error in
amplitude summation (16) is not so critical. Amplitude
is calculated as follows:

An =
1
T

���� sin(n�=T )
n�=T

���� ; (22)

and is measured in [V].
Calculated parameters are given in Table 1

(rounded o� to 10 decimals).
Therefore, the calculation interval, at which we

will trace the spectrum change, is:

�![!min;!max]

= [3:03687289847033; 4:29350995990633]

= Dw = [Dwmin;Dwmax]: (23)

In the following, this study presents several calcula-
tion steps (and use, for convenience, normal variables
instead of italic style for variables).

Table 1. Calculation parameters.

Envelope zero wZ = 2 � �=� 6.2831853072
wZ=6 1.0471975512

Low border 2:9 � wZ=6 3.0368728985
Up border 4:1 � wZ=6 4.29350995991

For T1 = 4�� (simply meaning that the period is 4
times the pulse duration, which is a good relative mea-
sure for T ), the fundamental frequency (�rst harmonic)
is w01 = 2�=T1 = 1:5707963268, and only the second
harmonic belongs to the interval �! = [!min;!max],
since w21 = 2 � w01 = 3:1415926536 2 Dw. Its
amplitude is A21 = 1=T1 � j sin(2 � �=T1)=(2 � �=T1)j =
0:1591549431, and the sum (16) is sum 1 = A21 =
0:1591549431.

For T4 = 16 � � , results are given in Table 2.
The rest of the manual calculations is given in

Table 3 up to T13 = 80 � � (rounded o� to 4 decimals).
The label Nhar stands for the number of encom-

passed harmonics within interval Dw.
To illustrate the problem of coincidence, detailed

calculations (by Windows XP calculator, at full preci-
sion) are presented for the critical value of T11 = 60� .

The fundamental frequency is:

W011 = 2 � �=T11

= 0:10471975511965977461542144610; (24a)

and interval borders are:

Dwmin = 2:9 � wZ=6
= 3:036872898470133463847221937; (24b)

Table 3. Numerical results of various T , up to T = 80 � � .

T=� N harmonics Sum
4 1 0.1591
8 2 0.1384
12 3 0.1314
16 3 0.1039
21 4 0.0972
25 5 0.1007
30 6 0.1052
35 7 0.1084
40 8 0.1041
50 10 0.1034
60 11 0.0965
70 15 0.1065
80 16 0.1058

Table 2. Numerical results of T4 = 16:� .

Harmonic Frequency Frequency
value

Bel.
to Dw

Harmonic
amplitude

Amplitude
value

1st w04 = 2 � �=T� 0.3926990817 //
7th 7 � w04 2.7488935718 =2 Dw //
8th 8 � w04 3.1415926535 2 Dw A84 = 1=T4 � j sin(8 � �=T4)=(8 � �=T4)j 0.0397887358
9th 9 � w04 3.5342917352 2 Dw A94 = 1=T4 � j sin(9 � �=T4)=(9 � �=T4)j 0.0346881834
10th 10 � w04 3.9269908169 2 Dw A104 = 1=T4 � j sin(10 � �=T4)=(10 � �=T4)j 0.0294079989
11th 11 � w04 4.3196898986 =2 Dw //P

4 =
P

4 = A84 +A94 +A104 0.103884918
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and:

Dwmax = 4:1 � wZ=6
= 4:293509959906050759232279290: (24c)

It is readily seen that the 29th harmonic:

29 � w011 =

3:0368728984701334638472219371 = Dwmin; (25a)

and the 41th harmonic:

41 � w011 =

4:2935099599060507592322792904 = Dwmax; (25b)

coincide with the borders of interval Dw.
Whether harmonics will fall inside or outside of

interval Dw depends on the far 22nd decimal, i.e.,

Dwmin=w011

= 29:000000000000000000000400470474: (26)

Amplitudes of harmonics are given in Table 4 from
which we can get three di�erent sums depending on
whether harmonics (coinciding with border nodes) fall
into or out of interval Dw. Hence:X

11 =A2911 +A3011 +A3111 +A3211 +A3311

+A3411 +A3511 +A3611 +A3711 +A3811

+A3911+A4011+A4111 =0:1139554241; (27)X
11=1 =

X
11�A2911 = 0:1029942636; (27a)X

11=2 =
X

11�A4111 = 0:1074442745; (27b)X
11=3=

X
11�A2911�A4111 =0:0964831140:(27c)

Table 4. Amplitudes for T11 = 60 � � .

Harmonic Frequency Amplitude
29th 29�w011 A2911 0.0109611605
30th 30�w011 A3011 0.0106103295
31st 31�w011 A3111 0.0102539888
32sd 32�w011 A3211 0.0098926922
33rd 33�w011 A3311 0.0095269989
34th 34�w011 A3411 0.0091574721
35th 35�w011 A3511 0.0087846783
36th 36�w011 A3611 0.0084091859
37th 37�w011 A3711 0.0080315643
38th 38�w011 A3811 0.0076523829
39th 39�w011 A3911 0.0072722099
40th 40�w011 A4011 0.0068916112
41st 41�w011 A4111 0.0065111496

To view harmonic disposition for T = 50 � � , Figure 5
is presented.

Further calculations are carried out by a short
(C++) program. Results are given in the diagram form
in Figure 6.

In repeating shape of diagram one can notice
periodic convergence. In this respect, the increment
rate is 50. The diagram starts at T = 50.

Let us now examine the opposite transition from
continuous to line spectrum.

Considering a (�nite) sequence of rectangular
pulses, with periodic disposition along t-axis (Figure 7),
its spectral function is easily calculated as follows:

S (!) = SP (!)h
1 + e�i!T + e�i2!T + � � �+ e�i(N�1)!T

i
= SP (!)

XN�1

n=0
e�in!T ; (28)

Figure 5. Harmonics' amplitudes for T = 50 � � .

Figure 6. The change of sum as a function of T .
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Figure 7. Shape of spectral characteristic of three various
rectangular pulse sequences with 3, 4, and 10 pulses. It is
readily seen that the tendency of spectral peak rises to
in�nity and its width to in�nitesimal.

where the shift theorem of the FT is used.
The sum of geometric progression with N terms

in Eq. (28) is as follows:

�N =
1� e�iN !T

1� e�i!T =
sinN!T/2
sin!T/2

e�i! (N�1)T/2; (29)

and, �nally:

S(!) = SP (!)
sinN!T/2
sin!T/2

e�i! (N�1)T/2; (30)

where N is the number of pulses in the sequence,
T is the pulse period, and SP (!) is the spectral
characteristic of the single rectangular pulse.

When the number of pulses in the sequence rises,
the change of continuous spectrum shape shows the
tendency of localization (Figure 7) ([1], pp. 139{143),
[5,6]), and rising peaks at harmonic frequencies appear
in the places of lines in the discrete spectrum.

To represent the result of this limit process math-
ematically, Dirac's function is used as follows:

�(x) =

(!1 x! 0
= 0 x 6= 0

Z +1

�1
�(x)dx = 1 (31)

Herein, we simply cannot help admiring the math-
ematical elegance of Eq. (31), where in�nity and
in�nitesimal are combined.

Now, two di�erent descriptions of the same entity,
i.e., spectral line, are available. This ambiguity reminds
us not to confuse the (formal) representation of the
entity with the entity itself.

4. Seismic signal in the periodic form

If the ever-lasting seismic noise [7] is excluded, the
seismic signal can be considered as a 
uctuating pulse
with a very complicated waveform, as an aperiodic ran-
dom signal. Depending on its source, there are several
categories of seismic signals [8{10]. The propagation
of seismic waves through the Earth strongly adds to
intrinsic waveform complexity [9,11]. Accordingly, the
spectrum of the seismic signal (i.e., what is recorded by
seismograph in-situ) is inevitably continuous, in which
several peaks can be identi�ed that are essential for
the interaction between structures and seismic dynamic
load.

The seismic waveform from the source (hypocen-
ter) is distorted by dispersion, refraction, multipath
propagation of seismic waves, etc., while traveling
through a quite inhomogeneous medium. Therefore,
at a distance, the processes in the source cannot be
easily analyzed. Multiple seismic echoes further com-
plicate the situation, although the distortion within a
waveform packet is smaller than that between them
[12,13].

On the other hand, seismic perturbation in-situ
recorded by seismographs [14,15] is what actually acts
on structures, causing damage and casualties and
bearing the highest practical importance.

The structure, made up of mutually connected
reinforced concrete frames, reacts to seismic pertur-
bations by vibrations composed of so-called tones,
i.e., low-frequency harmonics, that stem from dynamic
properties of multi-story frame con�guration [16{18].
Typical values of a basic oscillating period for multi-
frame and multi-story RC structures range from 0.15
to 0.5 [19].

The correspondence between harmonics in the
seismic signal and \hidden" harmonics in the struc-
ture may clearly reveal the resonance of the inter-
actions. Herein, neither repeated (non-overlapped
seismic echoes) nor multiple seismic in
uences are
taken into account [20].

It is recommended to apply the proposed analysis
to seismic pulse, of whatever complicated waveform
type it might be, and assume an aperiodic shape as
periodic one in order to present its spectral content in
the spectral line form.

An important question concerning `how to cut out
the most signi�cant part of pulse waveform and how
to sequence such pulses into a periodic signal' arises
so that noticeable spectral e�ects of this operation
can be minimized; in other words, pulses should be
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tailored without discontinuities. A similar problem
in digital signal processing is regularly solved by
windowing [21,22]. Windowing often indicates edge
distortions and carries subjective in
uence through
decisions. Repeating pulses are simply tailored by
taking a packet waveform as a basic period and relying
on the similarity of edge 
uctuations in amplitude and
slope [22,23]. Obviously, a subjective factor, similar to
that in windowing, is involved in this process; however,
this study, driven by its predilections, considers this
factor to be a much more natural approach based on
variations in the waveform and, broadly, researchers'
experience, very desirable in seismic analysis [3]. We
hope that this approach will be helpful as an addition
to the seismic-analysis-related methods [24,25].

Let us explain our approach through Figure 8 [24].
Point S in Figure 8 indicates the emergence of an earth-
quake, which develops itself through strong 
uctuations
of the main portion of the pulse, followed by relaxations
and ceasing. We state that the main portion of the
seismic pulse (roughly, from 1150 to 1350 seconds in
Figure 8) imposes strong impact on structures.

The subsequent relaxation portion of the seismic
pulse (from about 1375 to 1460 seconds) imposes, in
relative terms, the same level of impact on structures
since they are already damaged and weakened by the
preceding strong impact. To incorporate all these
signi�cant parts of seismic impulse into our analysis,
it is estimated that a level 10% of extremal amplitude
may be considered as the best. Therefore, the cutting
points are determined (zoomed in Figure 8). This basic
criterion is combined with amplitudes of peaks that
precede and follow the cutting points [12].

Now, we have a seismic pulse without begin-
ning and ending tails, especially ending, which is an
important picture of earthquake ceasing. However,
the crucial portion of seismic pulse, responsible for
destroying e�ect, is included. It is now possible to
calculate a line spectrum by creating a periodic signal
from this pulse or simply by assuming it as a periodic
signal. The only question to respond is how to choose
the value of period, i.e., the value of the fundamental
harmonic depending on the required density of the
spectrum.

Figure 8. Seismic pulse of Haiti earthquake, January 12,
2010 at 21:53:09 UTC, recorded at Lac du Bonnet,
Manitoba, transverse displacement, Love waves.

Figure 9. A periodic seismic signal formed by repeating
and seamless tailoring of the impulse in Figure 8.

A periodic seismic signal composed of such pulses
is given in Figure 9. It resembles a double-side-band
amplitude modulated signal ([6], pp. 72{80) composed
of two prominent frequencies: seismic 
uctuations as
a \carrier" and repeating rate of the whole pulse as a
fundamental harmonic.

5. Conclusion

Among other techniques, such as those of Havskov and
Aguacil [15] and �Cosi�c et al. [25], spectral analysis is a
widely used tool for seismogram interpretation. There
are many categories of spectrum users in the seismic
community [3]. Spectrum tools are closely related
to dedicated computer software, often yielding ready-
made results and hiding calculation details. Users
usually communicate with this software over Graphical
User Interface (GUI). Despite tremendous advances in
GUI technology, one cannot claim that it is always
optimal (user-friendly at high extent).

Hence, a researcher/user encounters twofold opac-
ity of such software: hidden program codes and condi-
tions of their use, represented indirectly through GUI
and written by some seismic experts and/or designers
of GUI.

In addition, the frequent use of spectral tools in
the explication of seismic matters inevitably is normal-
ized and is followed sometimes by self-con�dence, feel-
ing of easiness, and albeit insu�cient attention. Habit
often disrupts carefulness. As humans are dominantly
visual beings, they often show a subconscious tendency
toward treating the GUI of tools as tools per se. Hence,
it is recommended that psychological analysis be taken
worthy of further study and research in this regard.

Researchers are not immune to such e�ects, par-
ticularly when unusual cases are analyzed and inter-
preted.

Because of all these circumstances, it is important
to make contributions for a better understanding of
subjects and tools of our research. We attempted to
highlight a new aspect of the relation between line and
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continuous spectra through the transition process, done
in two directions, to clarify the fundamental notions of
spectral line, from both sides, and spectral density.

Although spectral analysis may seem as an out-
dated issue belonging to the classical literature, we
state that our analysis, presented in this paper, brings
into attention a valuable aspect of spectrum behavior,
either of line or continuous cases. As a shortcoming,
it was impossible to survey each item of available
literature and trust them, or to compare our approach
to possible existing similar ones, because this issue
relates to the very fundamental concept of Fourier tools
that was studied a long time ago in very broad terms.
Nevertheless, our theoretical and numerical tracing of
beginning stages of the transition process from line
toward continuous spectrum has revealed interesting
behavior, involving invariance through convergence.

Similar processes associated with spectral lines
from continuous spectrum emerge. A careful consid-
eration helps clarify the essence of interpretation of
spectral terms when using such mathematical tools.

Thus, the idea of using periodization of fragments
of seismic signal, instead of windowing technique, to
represent important parts of seismic waveform in terms
of the line spectrum was used to describe spectral
content clearly, thus facilitating the e�orts to create a
correspondence between a structure's tones to directly
estimate possible resonances that can have high signif-
icance in considering seismic in
uence on structures.

Of note, matching does not merely mean coin-
cidence of (seismic) harmonics and (structure) tones,
but rather considering the distances between close and
corresponding ones, where another direction of further
research appears so as to create a resonance between
intensity and distance.

Determining the criteria required for choosing and
extracting portions of seismic signal along with their
in
uence on structures remains a mainstream research.
Herein, this study o�ers a starting point for de�ning
some new attributes of seismic signals.
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