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Abstract. This paper presents a new Multiple Disinfection Operation Problem (MDOP)
according to which several buildings have to be sprayed with various disinfectants. The
MDOP seeks to minimize the total cost of disinfection operations for all buildings. The
problem is di�erent from the typical vehicle routing problem since (a) each building has
to receive multiple spray applications of disinfectants; (b) the �nal spray application
of disinfectant in each building is �xed; (c) for safety, the time interval between two
consecutive spray applications of disinfectants for each building must meet or exceed a
speci�ed minimum. The MDOP problem is NP-hard and di�cult to solve directly. In
this paper, �rst, an e�cient encoding of spray operations is developed to simultaneously
determine the optimal sequence of buildings and their respective treatments with spray
disinfectants. Second, immune algorithm is adopted to solve the presented MDOP. Finally,
as a demonstration of our method, the problem for a campus case is solved to determine
the optimal disinfection strategy and routes, assuming both single and multiple vehicle
scenarios. Numerical results of immune algorithm are discussed and compared with those
of genetic algorithm and PSO to show the e�ectiveness of the adopted algorithm.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Taiwan is located in a subtropical zone with a long hot
and humid season; thus, preventing pests (e.g., ies,
eas, cockroaches, ants, mosquitoes, mice, gnats, etc.)
from infesting buildings is an important environmental
sanitation and disinfection issue. There are four main
disinfection methods for buildings:

1. Spray method: Using high-pressure approach to
spray liquid disinfectants on the area or path of
pests;

*. Corresponding author. Fax: + 886-5-2732934
E-mail address: psyuu@mail.ncyu.edu.tw (P.-S. You)

doi: 10.24200/sci.2018.20324

2. Fumigation method: Heating the disinfectants to
generate smoke in the area or path of pests;

3. Enticement method: Putting baits in the area or
path of pests;

4. Decomposition method: Tossing disinfectants for
decomposition in the area or path of pests.

For simplicity, throughout this paper, the term
\spray" is used to represent all of the above disinfection
methods.

In this paper, the new Multiple Disinfection
Operation Problem (MDOP) is investigated, in which
we assume that: (a) Each building has to receive
multiple sprays of disinfectants in a speci�c sequence to
be e�ective in preventing infestation by various insects
and bacteria; (b) The �nal disinfectant of spray in some
buildings is �xed; (c) For safety, the minimum time
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interval between two consecutive sprays of disinfectants
for each building must be met. The MDOP seeks to
minimize the total cost of disinfection operations for all
buildings, where the total cost consists of the routing
cost of vehicles and both the working and idle costs of
workers. Note that:

1. The MDOP generalizes the typical Traveling Sales-
man Problem (TSP). In a TSP, one has to visit
every node of a network once with the objective
of minimizing the total travel time [1-3]. Hence,
the considered MDOP generalizes the typical TSP
if there is only one disinfection operation required
for each building, and only the �nish time of the
disinfection operation for all buildings is considered
in the objective;

2. The MDOP generalizes the typical Vehicle Routing
Problem (VRP).

In a VRP, one has to deliver products once
to some speci�ed nodes of a network using multiple
vehicles with the aim of minimizing the total vehicle
routing time [4-6]. Hence, the considered MDOP
generalizes the typical VRP if the buildings of the
MDOP have to receive only one application of
disinfectant spray, and only the total �nish time
of the disinfection operation is considered;

3. The MDOP generalizes the typical Periodic Vehicle
Routing Problem (PVRP).

In a PVRP, one has to deliver products pe-
riodically to some speci�ed nodes for many times
with multiple vehicles with the aim of minimizing
the total vehicle routing time [7-9]. Hence, the
considered MDOP generalizes the typical PVRP if:

(i) The time interval between two consecutive
sprays of disinfectants for each building is set
to zero;

(ii) There is no �nal spray of disinfectants for any
building;

(iii) Only the total completion time of the disinfec-
tion operation for all buildings is considered.

4. The MDOP di�ers from the typical PVRP with
Time Windows (PVRP-TW). In a PVRP-TW, the
vehicle has to deliver a product periodically to the
speci�ed nodes within the given time windows [10-
12]. However, in the considered MDOP, one has
to spray various disinfectants for buildings, and
the time interval between two consecutive spray
applications of disinfectants for each building must
meet or exceed a speci�ed minimum rather than
time windows. Additionally, �nal spray application
of the disinfectant in each building is �xed for the
MDOP;

5. The MDOP di�ers from the typical hole-making
problem in manufacturing. In a hole-making prob-
lem, a hole requires various tools to drill, and

each tool is used to drill for some of holes [13-
16]. Moreover, the sequence of tools used for a
hole is �xed; however, no constraint on the time
interval of using tools for a hole is considered. In
the considered MDOP, the time interval between
two consecutive spray applications of disinfectants
for each building must meet or exceed a speci�ed
minimum, and there is no priority for the spray
application of disinfectant except for the �nal spray.

Since the newly presented MDOP generalizes
TSP, VRP, and PVRP, it is more di�cult to handle
than these three speci�c routing problems. TSP, VRP,
and PVRP are all NP-hard problems [17]; hence, the
considered MDOP is also NP-hard. Note that, for
the MDOP, one has to determine the sequence of
disinfection operations and disinfectants for the build-
ings with the following constraints: (i) each building's
�nal disinfectant should be used last for that building;
(ii) the time interval between two consecutive spray
applications of disinfectants for a given building must
meet or exceed a given time minimum; (iii) the total
cost (including routing, working, and idle costs) is
minimized.

The purposes of this paper are manifold:

1. A new MDOP is presented, and an e�cient spray
operations encoding is also presented to simultane-
ously determine both the sequence of buildings and
the order of spray disinfectants for each building;

2. An e�cient spray operations encoding is proposed
and embedded in Immune Algorithm (IA) to solve
the considered MDOP;

3. A campus case is solved for the optimal disinfection
strategy assuming both single and multiple vehicle
routes. Numerical results of IA are reported and
compared with those of Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) to show
the e�ectiveness of the adopted IA.

This paper is organized as follows. In Section 2,
related notations and assumptions of the MDOP are
presented. Section 3 presents the new e�cient spray
operations encoding to simultaneously determine both
the sequence of buildings to spray and the order of
spray operations for each building. Two simple exam-
ples are illustrated in this section. In Section 4, the
main steps of the three adopted heuristic algorithms
(IA, GA, and PSO) are described. Section 5 shows
and discusses the numerical results of a campus case
study. Finally, conclusions and future research are
summarized in Section 6.
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2. The new Multiple Disinfection Operations
Problem (MDOP)

Next, the notations and assumptions for the MDOP
are presented.

2.1. Notations
I Number of buildings requiring multiple

disinfection operations;
i Index for buildings, i = 0; 1; 2; :::; I,

where i = 0 denotes the depot;
J Number of types of disinfectants;
j Index for the types of disinfectants,

j = 1; 2; :::; J ;
ni Number of types of disinfectant used

for building i, ni � 1, i = 1; 2; :::; I;
N = n1 + n2 + ::: + nI is the total

number of disinfection operations for
all buildings;

tij Spray time of disinfectant j in building
i;

qij Required quantity of disinfectant j for
building i;

dii0 Traveling time from building i to
building i0, i 6= i0, i, i0 = 0; 1; 2; :::; I;

Q Disinfectant carrying capacity of each
vehicle;

w Number of workers in a vehicle;
L Minimum time interval between two

consecutive sprays of disinfectants for
the same building;

� Unit cost of traveling a unit distance
(meter) for a vehicle;

� Cost of hiring a worker for an hour;
 Penalty parameter of idle time for a

worker.
2.2. Assumptions
1. There are I buildings requiring multiple spray

applications of disinfectants, and there are J types
of disinfectants used to spray;

2. Assume that building i requires ni disinfection
operations with disinfectants of types
ji;1; ji;2; :::; ji;ni 2 J , i = 1; 2; :::; I, and the
spray time of disinfectant type ji;k is tik,
k = 1; 2; :::; ni. N = n1 + n2 + ::: + nI is the total
number of disinfectant treatments for all buildings;

3. The types and quantities of disinfectants for each
building are given in advance, and the quantity of
disinfectants for a building is proportional to its
area. Assume that qij is the required quantity of
disinfectant j for building i, and dii0 is the travel
time from building i to building i0, i 6= i0, i, i0;2
f1; 2; :::; Ig;

4. For some buildings, a designated �nal disinfectant
must be used in the �nal spray application;

5. For safety, the time interval between two consecu-
tive sprays of disinfectants for each building has to
meet or exceed a given minimum period of time L;

6. There are multiple identical vehicles available to
carry disinfectants and workers, and each vehicle's
capacity for disinfectants, Q, is limited. Each
vehicle carries various disinfectants to buildings to
spray and returns back to the depot to re�ll when
the disinfectants are of insu�cient quantity for the
next spray operation;

7. Each vehicle can carry w workers, where w � 1,
and work e�ciency is identical for all workers. The
cost of an hour of labor is �;

8. Two policies of workplace are considered here:

- Policy 1: Worker(s) can be idle (i.e., wait) in
front of a building as required until the constraint
of maintaining a minimum time interval between
two consecutive disinfectant sprays is satis�ed;

- Policy 2: Worker(s) cannot be idle (i.e., no
wait) in front of a building if the constraint of
maintaining a minimum time interval between
two consecutive sprays of disinfectants is not
satis�ed. For Policy 2, the penalty of idle time
of workers is added to the objective function.
Moreover, we assume that the total idle cost =
� total idle time (hr) of workers, where  is the
penalty parameter.

9. The objective of the MDOP is to minimize the
total cost of the disinfection operation, including:
(i) the total routing cost of vehicles, (ii) the total
working cost of workers, and (iii) the total idle cost
of workers. Note that:

� Total routing cost = �� the total routing length,
where � = the unit cost of one unit of length (m)
for a vehicle;

� Total working cost = ��w� total working time
(hr) = ��w� ftotal routing time + total idle time
+ total working timeg, where total routing time
= total routing length (m)�0.002. Of note, we
assume 0.002 (hr/m) for each vehicle;

� Total idle cost = � total idle time (hr) of
workers, where  is the penalty parameter of one
hour for each worker.

2.3. An example
Consider an MDOP example with �ve buildings and
four disinfectants, i.e., I = 5 and J = 4. The
corresponding required disinfectants and quantities for
each building are shown in Table 1. For example,
Building 3 requires three disinfectants, namely, A, C,
and D, where D is the �nal disinfectant used in the
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Table 1. The corresponding disinfection data of the �ve buildings in the example.

Building (i) 1 2 3 4 5

Disinfectant (j) A, B, C A, B, C A, C, D� B, D� B, D�

Quantity (qij) 10, 8, 5 10, 8, 5 6, 3, 4 13, 7 13, 7

Operation time (tij) 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 1

�: The �nal disinfectant should be used in the disinfection operation.

Disinfection Operation 1 (infeasible):

Index: 1 2 3 4 5 6 7 8 9 10 11 12 13
Building (i): 2 1 3 2 2 3 1 5 4 5 1 4 3
Disinfectant (j): A C C B C D B D D B A B A
Quantity qij 10 5 3 8 5 4 8 7 7 13 10 13 6

Disinfection Operation 2 (feasible):

Index: 1 2 3 4 5 6 7 8 9 10 11 12 13
Building (i): 2 1 3 2 2 3 1 5 4 5 1 4 3
Disinfectant (j): A C C B C A B D B B A D D
Quantity qij 10 5 3 8 5 6 8 7 13 13 10 7 4
Accumulated qij (10 15 18) (8 13 19) (8 15) (13) (13) (10 17) (4)

Box I

disinfection operation for this building. Thus, in this
example, the total number of disinfection operations
for all buildings is N = 3 + 3 + 3 + 2 + 2 = 13.
Suppose that one vehicle is available and Q = 20,
tij = 1:0, dii0 = 0:5, L = 2 for all i, j, i0. The following
information details two disinfection operations, where
Disinfection Operation 1 shown in Box I is infeasible
(since the �nal disinfectant for Buildings 3 and 4 should
be D), and Disinfection Operation 2 shown in Box I is
feasible.

Disinfection Operation 2 also indicates that the
vehicle has to re�ll its disinfectant supply six separate
times. The total routing time = 0:5+(0:5+0:5+0:5)+
0:5+(0:5+0:5+0:5)+0:5+(0:5+0:5)+0:5+(0:5)+0:5+
(0:5) + 0:5 + (0:5 + 0:5) + 0:5 + (0:5) + 0:5 = 10:5, and
the total working time of the worker = total routing
time + total working time + total idle time = (10:5) +
(13) + (2) = 27:5. A total idle time of 2 hours occurs
between Disinfection 4 (Building 2 and Disinfectant B)
and Disinfection 5 (Building 2 and Disinfectant C).

3. The new encoding scheme for MDOP

In this section, an e�cient encoding is presented to
convert any permutation of 1 � N , where N is the total
number of disinfection operations for buildings, into a
feasible one. Thus, this novel encoding scheme can

enhance the e�ectiveness and e�ciency of the adopted
algorithm (i.e., IA) for solving MDOP.

3.1. Encoding example for a single vehicle
The following encoding scheme will convert any infea-
sible sequence of disinfection operations into a feasible
one. Its main steps for cases involving a single vehicle
are as follows:

Step 1. Generate a 4 � N matrix M , where Row
1 = (1; 2; :::; N) is an index row, Row 2 is a random
permutation of f1; 2; :::; Ng, and Rows 3 and 4 are the
index of buildings and their required disinfectants,
respectively;

Step 2. Find a given �nal disinfectant for each
building in Rows 3 and 4. If the �nal disinfectant
violates the order (i.e., it is not used as the �nal
disinfectant), then swap it with the current �nal
disinfectant in matrix M . Repeat this step until all
�nal disinfectants of all buildings are used as the �nal
disinfectants;

Step 3. Based on the �nal matrix M in Step 2, �nd
the re�ll points of the vehicle with vehicle capacity,
Q;

Step 4. Compute the idle time of worker(s) for each
disinfection operation based on L, the time interval
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between two consecutive disinfection operations for
the same building.

Consider the example in Table 1 again. In
this example, Building 3 requires three disinfectants,
namely A, C, and D, where Disinfectant D is the �nal
disinfectant for this building. Suppose that one vehicle
is available and Q = 20, tij = 1:0, dii0 = 0:5, and L = 2
for all i, j, i0.

Next, we show the swap process in Step 2 to
convert any infeasible sequence of disinfection opera-
tions into a feasible one for a single vehicle. The swap
process of this example is also illustrated step by step
in Figure 1. Since the total number of disinfection
operations in Table 1 is N = 3 + 3 + 3 + 2 + 2 =
13, any permutation of f1; 2; :::; 13g can be converted
to represent a feasible disinfection operation for the
MDOP. Following the main steps of the new encoding
in Section 3.1 and Figure 1, we have:

Step 1. Generate a 4 � 13 matrix M , where Row
1 is the index row (1; 2; :::; 13), Row 2 is a random
permutation of f1; 2; :::; 13g, Row 3 is the index of
building, and Row 4 is the index of the disinfectant for
each building. Suppose that the random permutation

of 1 to 13 in Row 2 is: P = 4 � 3 � 8 � 5 � 6 �
9 � 2 � 13 � 11 � 12 � 1 � 10 � 7. Since P (1) = 4,
it is indicated that the �rst disinfection operation is
Disinfectant A in Building 2 (i.e., �nd the column
of index = 4). Next, P (2) = 3, indicating that
the second disinfection operation is Disinfectant C
in Building 1 (i.e., �nd the column of index = 3).
Then, matrix M is populated as shown in Step 1 of
Figure 1;

Step 2. There are three �nal disinfectants which
are not used as the �nal disinfection operations for
buildings of matrix M , namely Building 3 (using
Disinfectant A now), Building 4 (using Disinfectant
B now), and Building 5 (using Disinfectant B now).
Thus, these three pairs are swapped with those of
their given �nal disinfectants, that is, swap (Building
3, Disinfectant D) with (Building 3, Disinfectant
A), (Building 5, Disinfectant D) with (Building 5,
Disinfectant B), and (Building 4, Disinfectant D)
with (Building 4, Disinfectant B). These swaps are
shown in Step 2 of Figure 1;

Step 3. Insert 0 to indicate when a disinfectant
product re�ll is required for the vehicle. For example,

Figure 1. The example of the encoding procedure for disinfection operation with a single vehicle.
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the total quantity for the �rst three disinfection
operations is 10 + 5 + 3 = 18. Since the next
quantity is 8 (Building 2, Disinfectant B) and adding
this disinfection operation will violate the capacity
of vehicle (Q = 20), we insert 0 after the �rst three
disinfection operations. Similarly, we insert 0 for all
re�lls throughout the matrix;
Step 4. In this step, we check the constraint of two
hours (L = 2) for the minimum time interval between
two consecutive spray operations for a given building.
As shown in Step 4 of Figure 1, there is an idle time
of 2 hours for workers while applying Disinfectants B
and C in Building 2.

From Figure 1, an infeasible sequence of disinfec-
tion operations (in Step 1) is converted into a feasible
one (in Step 4). Using this feasible sequence, we can
compute the total routing time of the vehicle and the
total working and idle times of the workers to determine
the objective value of MDOP. More clearly, we may
obtain the assignment of the disinfection operation
for the vehicle in Step 2. In Step 3, based on the
assignment and the constraint of carrying capacity for
the vehicle, we can decide whether to go to the next
building or go to re�ll (i.e., insert 0 between buildings
in Figure 1). Finally, based on the constraint of
minimal time interval between two consecutive spray
applications of disinfectants for each building, we can
obtain the entering time of worker to a building.
Therefore, the idle time of the worker for each vehicle
can be computed as in Step 4 of Figure 1.

3.2. Encoding example for multiple vehicles
The main steps of encoding scheme for multiple vehicles
are as follows:

Step 1. The same as that for a single vehicle as
described in Section 3.1;
Step 2. The same as that for a single vehicle as
described in Section 3.1;
Step 3. Assign the disinfection operation following
Rows 3 and 4 to the vehicle with the earliest current
�nish time. If multiple vehicles have the same current
�nish time, then arbitrarily assign the disinfection
operation to one of those vehicles. Repeat this
step until all disinfection operations are assigned to
vehicles;
Step 4. Compute the idle time of the worker(s) for
the vehicles based on L.

Consider the example in Table 1 again with Q =
20, tij = 1:0, dii0 = 0:5, and L = 2 for all i, j,
i0. For convenience, we suppose that there are two
vehicles available for this example. Our main procedure
for converting an infeasible random permutation of
disinfection operations into a feasible one is illustrated

step by step in Figure 2. Suppose that the random
permutation of 1 to 13 is P = 4 � 3 � 8 � 5 � 6 �
9 � 2 � 13 � 11 � 12 � 1 � 10 � 7. In Figure 2, Steps
1 and 2 are the same as those in Figure 1. Following
the steps of the scheme shown in Figure 2, we have the
followings:

Step 3-1. The initial �nish time for Vehicles 1 and
2 is zero; thus, we arbitrarily assign the 1st operation
to Vehicle 1 and compute its start and �nish times as
V 1 = (0:5; 1:5). Note that we assume dii0 = 0:5 and
tij = 1:0;
Step 3-2. Assign the 2nd operation to the vehicle
with the earlier �nish time. That is, we assign the
2nd operation (Building 1, Disinfectant C) to Vehicle
2 and compute its start and �nish times as V 2 =
(0:5; 1:5);
Step 3-3. Assign the 3rd operation to the vehicle
with the earlier �nish time. Since min fV 1(2); V 2(2)g
= minf1:5; 1:5g = 1:5, the �nish time is identical
for Vehicles 1 and 2, and we may arbitrarily select
one, say Vehicle 1. Thus, we assign the 3rd operation
(Building 3, Disinfectant C) to Vehicle 1 and compute
its corresponding start and �nish times as V 1 =
(2:0; 3:0);
Step 3-4. Assign the 4th operation to the vehicle
with the earlier �nish time. Since min fV 1(2); V 2(2)g
= minf3:0; 1:5g = 1:5, Vehicle 2 has the earlier �nish
time, and we assign the 4th operation (Building 2,
Disinfectant B) to Vehicle 2 and compute its start
and �nish times as V 2 = (3:5; 4:5). Note that
V 2(1) = 1:5 + 2 = 3:5, since the previous �nish
time is 1.5 for Building 2 (see Disinfectant A, Step
3-1). For safety reasons, we have to add 2 hours
(= L = minimum time interval for two consecutive
operations in the same building) to compute the start
time. Thus, the �nish time of the 4th operation in
Vehicle 2 is V 2(2) = V 2(1) + 1:0 = 4:5;
Step 3-5. Assign the 5th operation to the vehi-
cle with the earlier �nish time. Since minfV 1(2);
V 2(2)g = minf3:0; 4:5g = 3:0, Vehicle 1 has the
earlier �nish time; we assign the 5th operation
(Building 2, Disinfectant C) to Vehicle 1 and compute
its start and �nish times as V 1 = (6:5; 7:5). Note that
the previous �nish time of Building 2 (Disinfectant B
in Step 3-4) is V 1(2) = 4:5; thus, the 5th operation
can start at 4:5 + 2(= L) = 6:5, which implies that
the idle time of the worker(s) is 6:5�(3:0+0:5) = 3:0.
Thus, the �nish time of the 5th operation in Vehicle 1
is V 1(2) = V 1(1) + 1:0 = 7:5;
Step 3-6. Assign the 6th operation to the vehi-
cle with the earlier �nish time. Since minfV 1(1);
V 2(1)g = minf7:5; 4:5g = 4:5, Vehicle 2 has the
earlier �nish time; we assign the 6th operation
(Building 3, Disinfectant A) to Vehicle 2 and compute
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Figure 2. The example of the encoding procedure for disinfection operation with two vehicles.

its start and �nish times as V 2 = (5; 6). Note that the
previous �nish time of Building 3 (Disinfectant C in
Step 3-3) is V 1(2) = 3:0; thus, the 6th operation can
start at maxf3:0 + 2(= L); 4:5 + 0:5g = 5:0, implying
no idle time for the worker(s). Thus, the �nish
time of the 5th operation in Vehicle 2 is V 2(2) =
V 2(1) + 1:0 = 6:0;

Step 3-7. Assign the 7th operation to the vehi-
cle with the earlier �nish time. Since minfV 1(2);
V 2(2)g = minf7:5; 6:0g = 6:0, Vehicle 2 has the
earlier �nish time; we assign the 7th operation
(Building 1, Disinfectant B) to Vehicle 2 and compute
its start and �nish times as V 2 = (7; 8). Note that
Vehicle 2 has to re�ll the disinfectant due to the
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capacity limit of vehicle (Q = 20) before inserting
the 7th operation, and we insert 0 into Vehicle 2.
The start time of the 7th operation is V 2(1) = �nish
time of the 6th operation + the travel time from
Building A to depot + the travel time from depot
to Building B = 6:0 + 0:5 + 0:5 = 7:0. The previous
�nish time of Building 1 (Disinfectant C in Step 3-
2) is 1.5; therefore, the 7th operation can start at
maxf1:5 + 2(= L); 7:0g = 7:0, implying no idle time
for the worker(s). Thus, the �nish time of the 7th
operation in Vehicle 2 is V 2(2) = V 2(1) + 1:0 = 8:0.

By repeating this process until all buildings are
treated, the steps shown in Figure 2 are created. Note
that, in Figure 2, the handling of constraints, i.e.,
(i) carrying capacity of each vehicle and (ii) the time
interval between two consecutive spray applications of
disinfectants for each building must meet or exceed a
speci�ed minimum, is similar to handling of those of a
single vehicle in Section 3.1.

4. Immune algorithm, genetic algorithm, and
particle swarm optimization

As mentioned in Section 1, MDOP is an NP-hard opti-
mization problem. In the past decades, several evolu-
tionary arti�cial intelligence algorithms have been pro-
posed to solve various types of optimization problems,
including Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Tabu Search (TS), Simulated
Annealing Algorithm (SA), Ant Colony Optimization
(ACO), Arti�cial Bee Colony Algorithm (ABC), Im-
mune Algorithm (IA), etc. Additionally, several new
algorithms inspired by animals, nature, and society
have also been proposed to solve various optimiza-
tion problems, e.g., Whale Optimization Algorithm
(WOA), Grey Wolf Optimizer Algorithm (GWO),
Virus Colony Search Algorithm (VCS), Heat Transfer
Search Algorithm (HTS), Electromagnetic Field Opti-
mization Algorithm (EFO), Teaching-Learning-Based
Optimization Algorithm (TLBO), etc. Readers are
referenced to [18] for a brief survey of various new
evolutionary arti�cial intelligence algorithms.

Though there are several new evolutionary arti-
�cial intelligence algorithms proposed, GA and PSO
might be the most popular algorithms in the literature
due to their numerous successful applications, e.g.,
using GA to solve the multi-objective reliability growth
planning problem [19] and using PSO and GA to solve
the multi-objective control chart problem [20]. Note
that, in [19,20], new versions of GA and PSO have been
developed to solve di�erent multi-objective optimiza-
tion problems. Additionally, IA, which is similar to
GA, has attracted much attention because its memory
mechanisms can provide more varieties in population
and its several successful applications, e.g., using IA to

solve a multi-objective ergonomic product classi�cation
problem [21]. Since the encoding of chromosome of
IA and GA is based on 0 and 1, both algorithms are
more suitable for discrete optimization problems. The
original encoding of PSO is based on a real number,
which is suitable for continuous optimization problems.
However, the real number encoding of PSO can be
easily converted into binary encoding (BPSO, binary
particle swarm optimization), implying that it is also
suitable for discrete optimization problems.

In this paper, we focus on the main purpose
of presenting a new MDOP and solving it by IA
practically rather than comparing its e�ectiveness with
several developed algorithms. Therefore, in this paper,
IA is adopted to solve the new presented MDOP and
compare its numerical results with those of GA and
PSO to analyze the e�ectiveness of IA. Next, the main
steps of IA, GA, and PSO are briey described.

4.1. Immune Algorithm (IA)
IA is very similar to GA. The main di�erence is that
IA has to update the so-called memory set of solutions.
We refer to the referenced papers in [22-25] for the
introduction of the immune system. Next, the main
steps of IA are described briey as follows:

Step 1. Randomly generate a population of strings
as the initial solutions;
Step 2. Compute the objective value, i.e., total cost,
for each individual in the population;
Step 3. Based on the objective value, choose the
best g individuals from the population;
Step 4. Clone these g individuals chosen in Step 3
using the genetic operators of crossover and muta-
tion [26];
Step 5. Compute the new objective values for the
individuals in Step 4. Update the memory set of
strings, that is, replace the inferior individuals with
the superior individuals in the memory set. Note
that, in this step, individuals will be deleted if their
structures are too similar to those in the memory set;
Step 6. Check the stopping criterion. If stop, then
go to the next step, otherwise go to Step 2;
Step 7. Stop the algorithm and report the optimal
or near-optimal solution(s) from the memory set.

4.2. Genetic Algorithm (GA)
GA is a well-known evolutionary method proposed
by John Holland in 1975. GA randomly generates
a population of strings, and the best string in the
population will achieve an optimal solution with the
use of evolutionary operators, e.g., crossover, mutation,
and reproduction. Readers are referenced to [26] for
the introduction of GA and its mechanisms. The main
steps of GA are summarized as follows:
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Step 1. Randomly generate a population of strings
as the initial solutions;
Step 2. Compute the objective value, i.e., total cost,
for each individual in the population;
Step 3. Based on the objective value, choose the
best g individuals from the population;
Step 4. Clone these g individuals chosen in Step 3
using the genetic operators of crossover and mutation.
Compute the objective values of the new individuals;
Step 5. Check the stopping criterion. If it stops,
then go to the next step, otherwise go to Step 2;
Step 6. Stop the algorithm and report the optimal
or near-optimal solution(s) from the memory set.

4.3. Particle Swarm Optimization (PSO)
PSO is a well-known optimization method proposed
by Kennedy and Eberhart in 1995 [27]. PSO randomly
generates a population of particles, and the particles in
the population will achieve an optimal solution with the
update of pbest (particle best) and, gbest (global best)
through the so-called velocity and position of particles.
Readers are referenced to [28-29] for the introduction
of PSO and its mechanisms. The main steps of PSO
are summarized as follows:

Step 1. Initialize population, velocity, and position
of particles;
Step 2. Evaluate the objective values for particles;
Step 3. Find the pbest (particle best) for each
particle;

Step 4. Find the gbest (global best) for all particles
in populations;

Step 5. Update the velocity and position of each
particle using Eqs. (1) and (2) [28-29]:

V t+1
i =wV ti + C1 � rand1()� (Xpbest

i �Xt
i )

+ C2 � rand2()� (Xgbest �Xt
i ); (1)

Xt+1
i = Xt

i + V t+1
i : (2)

Step 6. If stopping criterion is indicated, then
proceed to Step 7;

Step 7. Stop the algorithm and report the optimal
or near-optimal solution(s).

5. Numerical results and discussion

5.1. The instance of NFU
In this section, the campus case of MDOP at National
Formosa University (NFU), Taiwan is taken into con-
sideration. Figure 3 illustrates the network of NFU
main campus in Yunlin, Taiwan, and there are eighteen
major buildings (Node 1 to Node 18) requiring multiple
disinfection operations. The depot of re�ll is located at
Node 0, and the corresponding distances of buildings
are shown in Figure 3.

Since these buildings are di�erent in purpose
of usage, e.g., class rooms, o�ces, restaurant, lab-
oratories, etc., they require di�erent disinfectants in

Figure 3. The network of eighteen buildings (Nodes 1-18) and the depot (Node 0).
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Table 2. The data of required disinfectants for Buildings 1-18.

Building (i) 1 2 3 4 5 6 7 8 9

Disinfectant (j)a

A A A A A B B B A
B B B B B C C Gb Db

Fb Fb H Gb H Db Db H
H H H

Quantity (qij)

504.0 304.5 554.4 469.2 590.0 388.8 284.0 336.0 96.6
504.0 304.5 554.4 469.2 590.0 388.8 284.0 112.0 96.6
168.0 101.5 277.2 156.4 295.0 388.8 284.0 168.0
252.0 194.4 112.0

Operation time (tij)c

94.00 70.75 108.40 88.20 100.33 64.80 57.33 76.00 36.10
94.00 70.75 108.40 88.20 100.33 64.80 57.33 50.66 36.10
62.66 47.16 72.26 58.80 66.66 64.80 57.33 50.66
62.66 43.20 38.22

Building (i) 10 11 12 13 14 15 16 17 18

Disinfectant (j)

A B B B A A A C C
B C C C B B B Gb Gb

Fb Db Db Db Eb Eb Eb

H H

Quantity (qij)

210.0 144.0 120.0 96.0 198.0 312.0 320.0 25.2 124.8
210.0 144.0 120.0 96.0 198.0 312.0 320.0 8.4 41.6
70.0 144.0 120.0 96.0 66.0 104.0 160.7

72.0 60.0

Operation time (tij)

65.00 44.00 38.00 32.00 43.00 72.00 73.33 24.20 40.80
65.00 44.00 38.00 32.00 43.00 72.00 73.33 16.13 27.20
43.33 44.00 38.00 32.00 28.66 48.00 48.88

29.33 25.33
a A = Insecticides, B = Antiseptic, C = Synergists, D = Repellent, E = Rodenticides, F = Repellent,
G = Insect Growth Regulator, H = Rodenticides.
b The �nal disinfectant for the building.
c Operation time is for a worker.

disinfection operations. For example, the mechanical
engineering building needs to prevent the biting of
electric wires by mouse; the classrooms require the
disinfection operations to prevent the mosquito, etc.,
while the restaurant requires multiple disinfection op-
erations to prevent the mouse, mosquito, bacterium,
etc. The required types, quantities, and spray time
of various disinfectants for each building are estimated
and listed in Table 2. Note that, for some buildings,
the �nal disinfectants are required. For example, the
�nal disinfectant for Building 1 is Disinfectant F, and
the �nal disinfectant for Building 13 is Disinfectant D.
Therefore, there are six possible sequences of disinfec-
tion operation of disinfectants for Building 1, namely
(A, B, H, F), (A, H, B, F), (B, A, H, F), (B, H, A, F),
(H, A, B, F), and (H, B, A, F), respectively; in addition,
there are two possible sequences of disinfection opera-
tion of disinfectants for Building 13, namely (B, C, D)

and (C, B, D), respectively. In this test instance, we set
the capacity of vehicle to Q = 1000, and the minimal
interval time of two consecutive disinfection operations
is L = 2 (hours).

5.2. The parameters and strategies
In this paper, three algorithms, namely IA, GA, and
PSO, are adopted to solve the campus case of MDOP.
To �nd an appropriate crossover rate and mutation
rate for IA and GA, 100 experiments were executed for
various combinations of crossover and mutation rates,
namely (0.32, 0.02), (0.32, 0.05), (0.32, 0.08), (0.48,
0.02), (0.48, 0.05), (0.48, 0.08), (0.96, 0.02), (0.96,
0.05), and (0.96, 0.08). Our preliminary numerical
results show that crossover rate = 0.96 and mutation
rate = 0.05 are appropriate for our experiments. In
addition, to �nd the appropriate parameter values
of C1 and C2 in PSO, 100 experiments for various
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combinations of C1 and C2, namely (1.49449, 1.49449),
(2.0, 2.0), (3.1417, 3.1417), (5.1417, 5.1417), and
(5.1417, 3.1417) which were suggested in the literature,
were carried out. Our preliminary numerical results of
the tests show that (C1; C2) = (2:0; 2:0) are appro-
priate for our experiments. Moreover, based on our
preliminary tests, the parameters for IA and GA are
set as population = 200, a�nity = 0.25, crossover =
0.96, mutation = 0.05, maximum generations = 500,
and maximum no. of reproduction of each chromosome
= 7. For PSO, parameters are set as population = 500,
maximum generations = 1000, and inertia weight (w)
= 0:2. Our programs are coded in MATLAB R2008b,
and all results are computed by Intel-Pentium IV 4
CPU 3.0 GHz PC.

In this paper, various strategies are tested for the
MDOP, namely:

Strategy 1: 1 vehicle with 1 worker;

Strategy 2: 1 vehicle with 2 workers;

Strategy 3: 1 vehicle with 3 workers;

Strategy 1-1: 2 vehicles with 2 workers, i.e., one
worker for each vehicle;

Strategy 1-2: 2 vehicles with 3 workers, i.e., one
worker in a vehicle and two workers in another
vehicle;

Strategy 2-2: 2 vehicles with 4 workers, i.e., two
workers for each vehicle;

Strategy 2-3: 2 vehicles with 5 workers, i.e., two
workers in a vehicle and three workers in another
vehicle;

Strategy 3-3: 2 vehicles with 6 workers, i.e., three
workers for each vehicle.

Of note, we assume that the work e�ciency is
identical for all workers. Therefore, if a disinfection
operation requires 90 minutes for a building with
Strategy 1, then it reduces to 30 minutes when Strategy
3 is adopted. In addition, to test more experiments,
we set � = 1, 5, and 10 for a unit distance (m),
respectively. For all cases, we set � = 500 and  = 0,
10000/60 (min) = 166.67 (hr).

5.3. Numerical results and discussions
For each strategy, we experiment 100 times for IA, GA,
and PSO and report the best solutions. Numerical
results are summarized in Tables 3 to 6 and Figure 4.
Note that there are 48 sub-instances solved for each
algorithm in the experiments (� = 1, 5, 10, eight
strategies, idle/no idle for worker(s)). From Tables 3
to 6 and Figure 4, we observe that:

1. For IA approach, the best strategy for � = 1, 5, and
10 is Strategy 1 with objective values of 49786.42,
50327.02, and 49924.12 when idle time of workers
is not allowed, and those of 50301.52, 50001.35,
51052.02 when idle time of workers is allowed. That
is, Strategy 1 (one vehicle with one worker) is the

Table 3. Numerical results of IA for various strategies.

Strategy
� Idle 1 2 3 1-1 1-2 2-2 2-3 3-3

Objective value
($)

1 Na 49786.42 50884.02 52148.25 52348.53 54095.58 55091.43 56988.54 59110.50
Yb 50301.52 50525.22 51618.25 52704.07 53479.35 53983.53 56451.75 56557.60

5 N 50327.02 50977.62 51347.95 52774.27 53385.68 53525.43 56712.00 57276.60
Y 50001.35 50707.13 51406.25 52833.43 54310.98 54913.80 56801.33 57583.80

10 N 49924.12 51388.42 51570.55 52638.80 53478.33 53757.73 55572.08 57126.10
Y 51052.02 51076.12 51855.15 53360.70 53490.35 55325.00 57791.92 58134.60

Makespan
(hrs)

1 N 53.77 27.37 18.63 26.96 18.23 13.77 11.21 9.45
Y 53.79 27.36 18.61 26.96 18.21 13.76 11.17 9.46

5 N 53.79 27.37 18.60 27.04 18.24 13.81 11.29 9.43
Y 54.25 27.41 18.60 27.95 18.98 14.33 12.27 10.45

10 N 53.78 27.39 18.61 27.00 18.23 13.88 11.30 9.50
Y 57.74 27.45 18.81 27.70 18.45 14.92 12.62 10.46

aN indicates that idle time of workers is not allowed; bY indicates that idle time of workers is allowed.
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Table 4. Numerical results of GA for various strategies.

Stategy

� Idle 1 2 3 1-1 1-2 2-2 2-3 3-3

Objective value
($)

1
Na 50495.32 51762.82 51893.85 53306.80 55389.80 55495.53 59018.04 60452.90

Yb 50811.52 52012.42 52604.05 54173.40 55498.60 55949.93 57996.58 58117.30

5
N 51030.82 51289.62 52095.25 53668.47 55480.40 56001.50 57507.25 59711.90

Y 50667.38 51606.82 52710.05 53578.67 56347.68 56864.97 59092.21 60028.20

10
N 50724.82 51768.02 52031.65 53293.30 54590.65 54701.47 57733.33 58846.00

Y 51154.98 51776.17 52530.25 54925.07 55613.45 60159.37 62867.96 64341.20

Makespan
(hrs)

1
N 53.80 27.40 18.62 26.99 18.27 13.78 11.26 9.48

Y 53.81 27.41 18.65 26.98 18.32 13.78 11.33 9.61

5
N 53.82 27.38 18.63 26.97 18.32 13.81 11.29 9.52

Y 54.22 27.40 18.65 27.69 19.86 14.83 11.90 10.74

10
N 53.81 27.40 18.63 27.04 18.39 13.91 11.23 9.49

Y 55.94 27.89 19.08 30.06 19.01 17.57 15.19 13.01

aN indicates that idle time of workers is not allowed; bY indicates that idle time of workers is allowed.

Table 5. Numerical results of PSO for various strategies.

Stategy

� Idle 1 2 3 1-1 1-2 2-2 2-3 3-3

Objective value
($)

1
Na 56192.02 58496.82 62170.55 59362.03 63238.90 64550.67 70002.00 75730.80

Yb 54376.42 58678.82 61184.65 57364.57 61551.70 62493.63 64257.25 66891.10

5
N 55784.02 58496.82 62170.55 59339.07 61413.40 63882.17 67906.92 75706.50

Y 52977.43 54794.42 57798.05 55816.10 59990.70 60435.50 62794.00 64490.00

10
N 56375.62 60566.42 61205.95 60344.53 61720.30 64830.50 67817.33 72676.50

Y 52937.65 54720.12 56353.85 56919.87 61194.10 63485.80 64927.42 66948.40

Makespan
(hrs)

1
N 54.02 27.66 19.01 27.35 18.42 14.05 11.50 10.22

Y 53.95 27.67 18.99 27.19 18.42 13.97 11.72 10.17

5
N 54.01 27.66 19.01 27.25 18.51 14.09 11.44 10.15

Y 54.32 27.52 18.85 27.26 19.27 15.80 11.98 11.22

10
N 54.03 27.74 18.97 27.24 18.36 14.08 11.44 10.05

Y 58.72 28.38 19.06 30.74 21.85 17.94 14.25 12.21

aN indicates that idle time of workers is not allowed; bY indicates that idle time of workers is allowed.
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Table 6. Comparison of objective values for three algorithms for various strategies.

� Idle Algorithm 1 2 3 1-1 1-2 2-2 2-3 3-3 Average

1

Na
IA 0.00% 0.00% 0.49% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06%
GA 1.42% 1.73% 0.00% 1.83% 2.39% 0.73% 3.56% 2.27% 1.74%
PSO 12.87% 14.96% 19.80% 13.40% 16.90% 17.17% 22.84% 28.12% 18.26%

Yb
IA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GA 1.01% 2.94% 1.91% 2.79% 3.78% 3.64% 2.74% 2.76% 2.70%
PSO 8.10% 16.14% 18.53% 8.84% 15.09% 15.76% 13.83% 18.27% 14.32%

5

N
IA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GA 1.01% 2.94% 1.91% 2.79% 3.78% 3.64% 2.74% 2.76% 2.42%
PSO 8.10% 16.14% 18.53% 8.84% 15.09% 15.76% 13.83% 18.27% 18.18%

Y
IA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GA 1.33% 1.77% 2.54% 1.41% 3.75% 3.55% 4.03% 4.24% 2.83%
PSO 5.95% 8.06% 12.43% 5.65% 10.46% 10.06% 10.55% 11.99% 9.39%

10

N
IA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GA 1.60% 0.74% 0.89% 1.24% 2.08% 1.76% 3.89% 3.01% 1.90%
PSO 12.92% 17.86% 18.68% 14.64% 15.41% 20.60% 22.03% 27.22% 18.67%

Y
IA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GA 0.20% 1.37% 1.30% 2.93% 3.97% 8.74% 8.78% 10.68% 4.75%
PSO 3.69% 7.13% 8.68% 6.67% 14.40% 14.75% 12.35% 15.16% 10.35%

aN indicates that idle time of workers is not allowed; bY indicates that idle time of workers is allowed.
Note: (A-B)/B%, A = objective value of A, A = IA, GA, PSO, B = the best objective value among IA, GA, and PSO.

Figure 4. Numerical results of strategies versus total cost
and makespan for various approaches.

best one. For GA and PSO, a similar result is
obtained;

2. IA is superior to GA, except for the case of Strat-
egy 3 (one vehicle with 3 workers) when � = 1 and
there is no idle time of workers. For example, for
the case of Strategy 3 with � = 1 and no idle time

of workers, the objective value of GA is 51893.85
which is better than 52148.25 obtained by GA;

3. IA is superior to PSO, and GA is superior to PSO
for all cases of test problems. For example, for
Strategy 1-1 with � = 1 and no idle time of workers,
the objective value of PSO is 59362.03, while it is
53306.80 for GA and 52348.53 for IA. Similar results
for the other cases are obtained;

4. Figure 4 summarizes the numerical results of Ta-
bles 3 to 5, and it can be used to select the best
strategy for universities and disinfection companies
according to their budget or makespan (completion
time). For example:

(i) If the budget of disinfection is 55000, idle time
is not allowed, and � = 1, then there are 5
feasible strategies, namely:

Strategy 1: Budget used = 49786.42 and
makespan = 53.77 (hrs);
Strategy 2: Budget used = 50884.02 and
makespan = 27.37 (hrs);
Strategy 3: Budget used = 51893.85 and
makespan = 18.62 (hrs);
Strategy 1-1: budget used = 52348.53 and
makespan = 26.96 (hrs);
Strategy 1-2: Budget used = 54095.58 and
makespan = 18.23 (hrs).
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This further indicates that Strategy 1-2
is the best one with minimal makespan 18.23
(hrs) if budget is 55000.

(ii) If the makespan of disinfection is set to 15
(hrs), idle time is not allowed, and � = 1, then
there are 3 feasible strategies, namely:

Strategy 2-2: Budget used = 55091.43 and
makespan = 13.77 (hrs);
Strategy 2-3: Budget used = 56988.54 and
makespan = 11.21 (hrs);
Strategy 3-3: Budget used = 59110.50 and
makespan = 9.45 (hrs).

This further indicates that Strategy 2-2 is the
best one with minimal budget 55091.43 if the
makespan of disinfection is limited to 15 (hrs).

5. Table 6 reports the comparison of results among
IA, GA, and PSO. It shows that, in the objective
value, IA outperforms GA from 1.74% to 4.75% and
outperforms PSO from 9.39% to 18.67% for various
combinations of � and idle/no idle for worker(s).
To further analyze the performance of IA, GA, and
PSO algorithms, based on the 100 experiments,
the following statistical hypothesis is used to test
whether or not there is a signi�cant di�erence
among these three algorithms:

H0 : V (A) = V (B);

H1 : V (A) 6= V (B);

where V (A) denotes the average objective value by
using algorithm A, A = IA, GA, or PSO. The p-
values of the statistical hypothesis show that:

(i) Except for one sub-instance (no idle, � =
1, Strategy 3-3) with p-value of 0.082, IA
outperforms GA for the other sub-instances;

(ii) IA outperforms PSO for all 48 sub-instances
(with p-value < 0.05);

(iii) GA outperforms PSO for all 48 sub-instances
(with p-value < 0.05).

These results of statistical hypothesis imply that
IA outperforms GA, and GA outperforms PSO for
solving the MDOP.

The above numerical results are based on a prac-
tical instance at NFU (Taiwan). Currently, Strategy 1
is adopted at NFU, i.e., one vehicle with one worker.
In the past, the worker scheduled all spray operations
according to the order of Disinfectants A, B, C, H,
D, E, F, G, respectively. Additionally, for the same
disinfectant, the nearest rule was used to schedule the
order of buildings. For example, there are ten buildings
requiring the spray operation of Disinfectants A, and
the spray order of these buildings adopted is: 9 !
14 ! 15 ! 16 ! 10 ! 3 ! 2 ! 1 ! 4 ! 5, since

Building 9 is closest to the depot (Node 0 in Figure 3);
then, Building 14 is closest to Building 9, Building 15 is
closest to Building 14, and so on. The objective value
for this typical schedule is $58628.75 (� = 10, no idle),
which further implies that there is an improvement of
17.44% by IA (objective value = $49924.12), 15.58% by
GA (objective value = 50724.82), and 4.00% by PSO
(objective value = $56375.62).

6. Conclusions

In this paper:

1. We proposed and investigated the MDOP, in which
several buildings were sprayed with multiple disin-
fectants. In addition, there were some disinfectants
designated for use as the �nal disinfectants;

2. We developed an e�cient encoding scheme of spray
operations to convert any infeasible sequence of
disinfection operations into a feasible one, and
it can simultaneously determine the sequence of
buildings and their disinfectant spray operations;

3. We compared the numerical results of IA, GA, and
PSO with that of the typical schedule adopted
at NFU, and it was shown that there was an
improvement of 17.44% by IA, 15.58% by GA, and
10.75% by PSO;

4. We applied IA, GA, and PSO for solving the MDOP
using various strategies. Numerical results showed
that IA outperformed GA from 1.74% to 4.75%
except for one sub-instance of test problem, and
IA was superior to PSO from 9.39% to 18.67% for
all sub-instances of the test problem;

5. We provided numerical results of strategies using
various numbers of vehicles and workers. As shown
in the discussion, the best strategy can be easily
derived based on the numerical results when the
budget or makespan of the disinfection operation
is given. Therefore, the numerical results of this
paper can be useful for disinfection companies or
universities in scheduling their optimal disinfection
operations based on their budgets or total comple-
tion time (makespan) targets.

In the future, one may use other evolutionary
arti�cial intelligence algorithms to solve the presented
MDOPs and compare their e�ectiveness. Additionally,
one may consider other variants of MDOP. For exam-
ple, there are 5 disinfection operations A, B, C, D, and
E for Building 1, and the �rst and last disinfection
operations of disinfectants for this building must be
�xed as A and E, respectively.
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