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Abstract. Better understanding and modeling of breaking waves are critical issues for
coastal engineering. This article concerns the plunging wave break with free surface over a
slope bottom considering unsteady, incompressible viscous flow. The method solves the two-
dimensional Navier-Stokes equations for conservation of momentum, continuity equation,
and full nonlinear kinematic free-surface equation for Newtonian fluids as the governing
equations in a vertical plane. A new mapping was developed to trace the deformed free
surface encountered during wave propagation by transferring the governing equations from
the physical domain to a computational domain. Also, a numerical scheme is developed
using finite element modeling technique to predict the plunging wave break. The Arbitrary
Lagrangian Eulerian (ALE) algorithm is employed in modeling wave propagation over
sloping beaches. In the conclusion, results are compared with the results of other researches.

(© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Breaking waves have strong effects on the hydrody-
namic behavior of ship wakes as well as on the struc-
tural behavior of offshore structures. Depending on the
way in which they break, breaking waves have been
classified as spilling, plunging, surging, or collapsing.
Plunging breakers are the major causes of overturning
of ships in rough seas. Before Longuet and Cokelet [1],
most of the numerical computations had succeeded
ounly in integrating the equations of motion up to the
instant when surface became vertical. Wellford and
Ganaba [2], using finite element techniques, analyzed
free surface problems involving extra-large free surface
motions. They employed a spatially fixed Eulerian
mesh in regard to the moving Lagrangian free surface
line. Fenton and Rienecker [3] have developed the
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Fourier method to address the interaction of solitary
waves with an impermeable wall, whereas Kim et
al. [4] used the Boundary Integral Equation Method
(BIEM) for the same problem. Zelt [5] parameterized
wave breaking with an artificial viscosity term in the
momentum equation to damp-out the oscillation of free
surface right behind the bore. Furthermore, Zelt [6]
investigated the run-ups of nonbreaking and breaking
solitary waves on plane impermeable beaches by using
his Boussinesq wave model and a Lagrangian finite
element method. Solitary wave generation, propaga-
tion, and run-up are well described, and forces for a
vertical wall case are also calculated in their method.
Hayashi et al. [7] applied a finite element analysis on
the Lagrangian description, combined with a fractional
step method to solve unsteady incompressible viscous
fluid flow governed by Navier-Stokes equations. Using
the same model, they also simulated the solitary wave
run-up on a circular island. Dolatshahi and Wellford [8]
analyzed free surface profile with a two-dimensional
Arbitrary Lagrangian-Eulerian finite element method
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to predict wave breaking. They computed the wave
run-up over the vertical wall by employing Eulerian de-
scription in wave propagation direction and Lagrangian
description in vertical direction. Oscillation of the free
surface on the vertical wall due to mesh movement
in the z direction was a deficiency in this method.
Detailed characteristics of solitary waves shoaling over
plane slopes and those of solitary wave breakers, like jet
shape and wave height variation, were studied by Grilli
et al. [9]. Titov and Synolakis [10] have extended viscid
solution to two-dimensional topographies and solved
several large-scale problems. Zhou and Stansby [11]
extended an Arbitrary Lagrangian-Eulerian model in
the ¢ coordinate system (ALE o) for shallow wa-
ter flows, based on the unsteady Reynolds-averaged
Navier-Stokes equations. Gaston and Kamara [12]
presented a two-dimensional Lagrangian-Eulerian finite
element approach for the non-steady state turbulent
fluid flows with free surfaces. Their model was based
on a velocity-pressure finite element Navier-Stokes
solver, including an augmented Lagrangian technique.
Turbulent effects were taken with the k — ¢ two-
equation statistical model. Mesh was updated using
an Arbitrary Lagrangian-Eulerian (ALE) method for
a proper description of the free surface evolution.
Dyachenko et al. [13] used conformal mapping method
for free surface waves. They solved the potential flow
of two-dimensional ideal incompressible fluid with a
free surface using the theory of conformal mappings
and Hamiltonian formalism and they reached the exact
equations. Li et al. [14] studied the exact evolution
equations for surface waves in water of finite depth
using conformal mapping. Zakharov et al. [15] pre-
sented a new method for numerical simulation of a
non-stationary potential flow of incompressible fluid
with free surface of two-dimensional fluid, based on
combination of the conformal mapping and Fourier
Transform. The method is efficient for study of
strongly nonlinear effects in gravity waves including
wave breaking and formation of rogue waves. Klop-
man [16] proposed the variational Boussinesq model
for solitary wave and represented free surface overturn-
ing using Fourier transformation. Ginnis et al. [17]
matched the collocated Boundary Element Methods
(BEM) with the unstructured analysis suitable for T-
spline surfaces to solve free surface problems such as
wave breaking.

For the present study, flow is assumed to be
viscous and incompressible. No artificial viscosity
is introduced in the kinematic free surface equations
for out of the free surface oscillations in the region.
The equations of conservation of momentum and mass
for incompressible Newtonian fluids given by Navier-
Stokes along with the fully nonlinear kinematic free
surface equation are adopted as the governing equa-
tions. A particular mapping technique is used to

transform the fluid region and its boundaries into a
regular geometry for a convenient treatment of the
moving free surface and irregular bottom topography.
So it leads to transformation of the governing equations
and the boundary conditions into more complicated
equations. However, the transformed equations can be
effectively handled by a proper analytical and numeri-
cal procedure. Validity of the proposed algorithms are
examined by comparing the results with the available
numerical approaches to experimental results.

2. Free surface flow

The high order theory is required to address the nonlin-
earity effects of extra-large free surface displacements.
Navier-Stokes equations are suitable for a variety of
problems in fluid mechanics, including extra-large free
surface displacements, and have been used in different
methods by researchers in this field.

2.1. Problem formulation

The physical domain V surrounded by a piecewise
smooth boundary S is shown in Figure 1. This domain
is occupied by a viscous incompressible fluid with the
coeflicients of constant kinematic viscosity (v) and
specific mass (p). The problem under consideration
is unsteady motion of a surface wave under gravity;
also, two-dimensional unsteady incompressible viscous
flow is considered. The governing equations are ex-
pressed by the unsteady Navier-Stokes equation and
the equation of continuity. The rectangular coordinates
are denoted by z, y, and the corresponding velocity
components are denoted by @ and ©¥. As a result,
the equations of conservation of momentum and mass,
for incompressible Newtonian fluids, in the arbitrary
Lagrangian-Eulerian form are given as follows:
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Figure 1. Mathematical models for non-linear analysis.
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where w, and @, are the mesh velocities in x and y
directions. The boundary S consists of two types of
boundaries: One is the S; on which velocity is given,
the other is the free surface boundary S, on which the
surface force is specified. The boundary conditions can
be expressed as the followings:

=0, (1)

<
o

Y
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5t an Nz pp U@g ng =

on SQ, (2)

where the superscript caret denotes a function which
is given on the boundary and nz and ny symbolize the
direction cosines of outward normal to the boundary
with respect to coordinates x and y. Also, ¢, and ¢,
are the constants of integration. Top equations can
be rendered dimensionless by introducing the following
variables:

Using these transformations, Egs. (1) and (2) are
modified as follows:
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3. Solitary wave propagation

A solitary wave is essentially a wave that has infinite
length lying entirely above the still-water level and
propagates at a constant velocity without any change
in form over a constant depth. Solitary waves are
believed to represent a good model for both tsunamis
and extreme design waves because of their large run-
up, impulse, and impact force on structures. According
to this characteristic that the wave keeps its initial
form without deformation, the Fulerian Lagrangian
description of fluid motion is employed here to solve
the problem. In this description, the particles are
followed in y direction in Lagrangian manner and the
coordinate is fixed in the x direction. Although the
solitary wave can be readily produced in laboratory,
which appears to be the pure form, many numerical
methods have failed to establish a wave of permanent
shape. There are three theoretical solutions of the
solitary wave equations. Boussinesq [18] obtained an
analytical solution for the wave profile, wave propaga-
tion speed, and water particle velocities. The solution
of Laitone [19] is similar to that of Boussinesq, but with
higher order terms. He presented initial conditions
and first approximations that are in the following
dimensionless form:

h = Hsech [x\/.75h0] :
v = yh\/ﬁtanh [:m/ .75h0]

c=vV1+h p=1+h—y u=h, (6)

where ¢, u,v, p,y, and h denote normalized wave celer-
ity, velocities in z and y directions, pressure, water
depth, and wave height of the still-water surface,
respectively. H stands for the maximum initial wave
height of the incidental solitary wave.

4, Transformation of the basic equations into
the mapped coordinate system

Computation of the propagation of free surface waves
involves computational boundaries that do not coincide
with coordinate lines in physical space. For the finite
element method, such a problem requires a complicated
interpolation function on the local grid lines which
results in the local loss of accuracy in the computa-
tional solution. Such difficulties require a mapping or
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Figure 2. The computational grid is shown mapped back to the physical space.

transformation from physical space to a generalized ( 0 0

space. This transformation simplifies the problem of A

highly deformed air-fluid interface that arises in the (L)nil (L)niz
n—1 n—1

analysis of wave breaking. This mapping transforms

the wave propagation model from the physical domain ne1 ne2

(z,y) to a computational domain (£,n). The use of (%) (%1)

generalized coordinates implies that a distorted region C=

in physical space, such as breaking wave, is mapped

into a rectangular region in the generalized coordinate

space, where the unknown interface coincides with a oo\ "L e\ "2

coordinate line as in Figure 2. (7) (7)
Since the interior points in the computational

domain form a regular grid and the boundaries coincide L

with coordinate lines, determination of x(¢,n) and

y(&,n) is easier than working in the irregular physical 0 0 1

domain. The simple equation x = £ + h transforms

physical to computational domain if free surface has ( 1 )2 ( 1 ) 1

no overturning (Figure 2). For mapping the overturned

free surface and plunging wave breaker, the following 9

mapping can be established: (%) (%) 1

n

x:Z(f—i-hai)Fi(n), 1

=1

g =01+ R)+ (1= n)(€ - &) tan B, (") (=2)" (=2) 1

where ; is the starting point of slope; and F;(n) is the
interpolation function employing n points in depth and _
it is the vital part of modelling. Accuracy of the model [( i—1 >"_]]

nxn

depends on the number of points in depth interpolation
function.

Fi(n) = biw, (8)

- i—1\"™
Cij = ; (12)
where: 7 (n — 1)

bij = lei] " x di, (9) and:

and: D =1d;;], ., = 107 [
C= Lci,jJan- (10)

_ 1—: 2—1 n—1+1 n—u
C has a matrix form such as: =10 0 -0 0" "Jixn. (13)
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Thus:
-1
i—1\""’ i
by = [(n— 1) ] X [O ]]nxl’ (14)
nxn

and finally:

-1
i i—1\""’ imj

Fl(n):[n j|1><n>< n—1 X[O :In><1'

nxn (15)

For example, interpolation functions employing three,
four, and five points are presented in Eqs. (16) to (18):

Fi(n) =1-3n+21?

Fy(n) = 4n —4n%,

F3(n) = —n+ 21, (16)

Fi(n) = —4.50° + 9% = 5.50% + 1,

Fy(n) = 13.50° — 22.50% + 92,

F3(n) = —13.50° + 18y — 4.59%,

Fy(n) = 4.5 — 4.50° + 172, (17)

Fi(n) = 10.67Tp* — 26.67n° 4+ 23.33n> — 8.33n + 1,

Fy(n) = —42.67Tn* + 960> — 69.33n° + 167,

F3(n) = 64n* — 128> + 760 — 127,

Fy(n) = —42.67Tn* + 74.67n* — 37.33n° + 5.33n,

Fs(n) = 10.67n* — 16n° + 7.33n° — 1. (18)
For more accuracy, six point interpolation functions
can be used as in Eq. (19) shown in Figure 3. It will be

shown later that it is not necessary to use more points
in interpolation functions.

Fi(n) = —26.04n° + 78.13n* — 88.54n° 4 46.88?
—11.42n 41,

Fy(n) = 130.215° — 364.58n* + 369.79n° — 160.42n*
+25.00m,

F3(n) = —260.42° + 677.08n" — 614.58n% + 222.92n>
—25.007,

Fy(n) = 260.42° — 625.00n* + 510.42n> — 162.501°

+16.67n,

1.0

0.9H Fi(n)
..... x— F5(n)
F3(n)
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—e—Fg(n)
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Figure 3. Six point interpolation function.
Fis(n) = —130.21%° + 286.46n* — 213.54n> + 63.54n°
—6.251),
Fs(n) =26.047° —52.08n* +36.461° —10.42% 41 (19)

The strategy to determine when the wave profile is not
uniquely defined requires the calculation of Jacobin
matrix of transportation. To have a single-value
mapping and one-to-one mapping, the Jacobin matrix
of transportation must be finite and non zero (|J 1| >
0).

4.1. FEulerian description

To have an Eulerian description, where the physical
coordinate system coincides with the generalized coor-
dinate system, it is necessary to set a; = 8 = h = 0.

4.2. Eulerian description in x direction and
Lagrangian description in y direction
Fulerian description in x direction and Lagrangian de-
scription in y direction can be applied for nonbreaking
waves. In these cases, it is necessary to set «; = 0.
The transformation is Lagrangian in y direction and
Eulerian in z direction and the problems associated
with this transformation should have a single value

profile.

4.8. Arbitrary Lagrangian-Eulerian
description

The arbitrary Lagrangian-Eulerian algorithm is em-
ployed in modelling wave propagation both over sloping
beaches, where the evolution occurs over bathymetry
topography, and over constant depth regions. Although
this transformation is convenient for breaking waves,
nonbreaking waves can also be treated using the same
mapping. Various types of a; depend on the nature
of the problem. To coincide physical boundary with
computational boundary, the a; values are considered
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to be a fifth order polynomial function of ¢ as follows:
ai = f(§) =mi&® +mat" + ma&® +myé?

The coefficient m; is calculated from these free surface
conditions:

fZO = a; =0,

L= 0. (21)

And finally fifth order polynomial function is:

0 = i | A€~ P — ) +IE - o)

(4 — 5e — 52) + 21%(&€ — &)%(—1 — & + 5¢?)
+Pe(E - (3 - 52). (22

a;, = Ca_q 0<C<0.5. (23)
Definitions of b, e, [, and £; are illustrated in Figure 4.
Parameter C' is a constant coefficient and its value is
obtained by trial and error to stabilize the problem.

4.4. Variation equations in the transformed
domain

Spatial discretization of partial differential equations
in the numerical model is based on a Galerkin finite
element method. This method is implemented using
the weighted residual variation method for the solution
within each element. Using standard linear shape-
functions for a rectangular element in the natural co-
ordinate system, the velocity, pressure, and correction

W
€o

)

Jﬁ

Figure 4. Parameters in «; function.

potential fields within the element are interpolated in
terms of their nodal values as follows:

V= Pala,

o= woz(bow

where v, is the interpolation function and wu,v, ¢,
and h represent the nodal values at the node of the
jth element. ¢ is the correction potential based on
the Fractional step method presented by Hayashi and
Hatanaka [20]. By dividing the total time of ¢ into a
number of short time increments of A¢, the equations of
motion, continuity, and kinematic boundary condition
can be discretized into:

U= VYalia,

P = YaPa, h=vYasha, (24)

Mo |77t = Mg |07
At[[[0em\?  [oem\?
‘ReH(aJ *(ay) }Mﬂ“m

on™ 2 on™ 2
+{2(ax> +(ay> }Mam

+ (Z(ZZL(?;L + 85; a;;) (Ma1p2 + Ma?,@l):|
|J—1|” ujy — % (3;; %é; alfl

+ %%L; a1p2 + (?977; %Mazm

+ %’Z%’ZMQM) | 774" v

aE" on™
—At|| =— M, —— M, 35 " — wug"
tK 97 1881 + R ﬂﬁz> (ug wys")

o™ on™ n n
+ (ayMaﬁm + ayMaﬁm) (v5" — wup )}

Mag 774" 5 = Maa |1
(5 S )

Moy |77 gt = Mg |77 !
(5 ) ey
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Mo |77 gt = Mag | 74" 9

1

— —Mus|J

-1 |n+1
At

os, (28)
Hop |J71" WY = Hop |7 B

+ At |:Ho¢ﬁ |JS—1|TL+1 ’Uﬂn-l—l
oc" on™
- (; Happr + an Haﬁﬁ?) ( wy = wff;l)

Exdih hﬁ} : (29)

Note that due to the complexity, the equations are
written in the mapped domain using indicial notation.
|J*1| is the Jacobin inverse of transformation matrix
and the following definitions are for the consistent mass
matrix obtained from analytical integration used to
write the above equations.

M, / badV, Mags = / L/Jai/fﬁawﬁdv

aﬂ—/ VatpdV, Maﬁﬁz—/ ¢a¢5a¢ﬁdv

5?% 5¢ﬁ /
M, = dV, H,z = 2WsdS,
o v 0§ 0§ g sw Ve
Mo APy / 1/),8
M, = dV, Hup = o ds,
182 /v % on 51 P
O 0P / g
Myog1 = dV, Hgypo= a—=—dS,
) on o 2S5 o

Oy 0
Map :/ (;éwﬂdv H.ps1 —/wawﬂ qpﬁds
v

g
Moz = / 0o 208 4y,
= \% 877

)
Hopps = / Vaths— wﬂ ds. (30)

It should be noted that all of the derivations are with
respect to &;.

5. Results

For showing the propagation and deformation of a soli-
tary wave with Navier-Stokes equations, the physical
domain with 1 m in depth and 40 m in length is discrete
to Az = Ay = 0.2 m with 5x200 elements in space
with At = 0.01 Sec in time and the results have been

At = 2.0 sec, 200 x5 mesh
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0
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3
0
1 i
0 5 10 15 20 25 30 35 40
27 T T T T T T T
iC
0
-1 i i i i i i i
0 5 10 15 20 25 30 35 40
27((1) T T T T T T T
- 1
0
1 ;
0 5 10 15 20 25 30 35 40
2l e \ : \ \ T \ \
o1 (e)
0
-1 i i i i i i i
0 5 10 15 20 25 30 35 40
27 f T T T T T T T
_2m
0
-1 i i i i i i i
0 5 10 15 20 25 30 35 40

Figure 5. Solitary wave propagation with H/ho = 0.40
on a bed with slope=0.05.

400%x10 mesh
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T

Figure 6. Solitary wave propagation with H/ho = 0.20
on a bed with slope=0.05.

shown in Figure 5. Figures 6 to 8 show the results of
wave breaking with H/ho = 0.20 on various slopes.

For better judgment about the efficiency and
effectiveness of Arbitrary Lagrangian-Fulerian algo-
rithm, the results of this numerical model have been
compared with the shape obtained from the numerical
results of Grilli et al. [9] and experimental results of
Li [21] with H/ho = 0.30 and H/ho = 0.45 in Figures 9
and 10. In this method, nodal points can move in
both coordinate directions by introducing appropriate
mapping functions as defined in Eq. (7). The model
is validated by comparing numerical results with other
results.
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Figure 7. Solitary wave propagation with H/ho = 0.20
on a bed with slope=0.075.

At=2.0 sec, 200X 5 mesh
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Figure 8. Solitary wave propagation with H/ho = 0.20
on a bed with slope=0.09.

6. Conclusion

The method involves a two-dimensional finite element
to solve the Navier-Stokes equations. The free sur-
faces in previous research only reach vertical wall and
they cannot show any overturning. So the mapping
was developed to solve highly deformed free surface
problems such as plunging breaker. The model was
able to demonstrate the multi-valued surface when
steepening of the forward face of wave passes the
vertical position. Also this mapping can transform
any bathymetry from the physical domain to the
computational domain. This mapping models the

1.5
[ e Experimental
. U Grili (1997)
Current model
> 1.0
0.5
1.5

Experimental
————— Grili (1997)
Current model

Y
[
=)
T T 7T T T1yrT T 1 T 7 7T
!E

0.5 | |
12 13 14 15
T

Figure 9. Comparison of the breaking wave shape
obtained from numerical results of Grilli et al. [9] with
experimental results of Li [21] and the current model

(H/ho = 0.30 and slope=0.067).

1.5

Experimental
————— Grili (1997)
Current model

Experimental
,,,,, Grili (1997)

Current model

! ]
13

Figure 10. Comparison of the breaking wave shape
obtained from numerical results of Grilli et al. [9] with
experimental results of Li [21] and the current model

(H/ho = 0.45 and slope=0.1).

overturning wave, but cannot touch the frontier sur-
face.

It is almost a general method to handle different
aspects of fluid mechanics problems. Another advan-
tage of the present study is that no smoothing or
artificial viscosity is applied. The model’s convergence
is satisfactory and contrasts to most of the other
methods. The developed techniques could easily be
extended to analyze other free surface problems such
as dam break and hydraulic jump.
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