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Abstract. Although after an earthquake, the injured person should be equipped with
food, shelter, and hygiene activities, before anything must be searched and rescued.
However, Disaster Management (DM) has focused heavily on emergency logistics and
developing an e�ective strategy for search operations has been largely ignored. In this study,
we suggest a stochastic multi-objective optimization model to allocate resource and time for
searching the individuals who are trapped in disaster regions. Since in disaster conditions,
the majority of information is uncertain, our model assumes ambiguity for the locations
where the missing people may exist. Fortunately, the suggested model �ts nicely into the
structure of the classical optimal search model as it uses a stochastic dynamic programming
approach to solving this problem. On the other hand, through a computational experiment,
we observed that the model needed heavy computation. Therefore, we reformulated
the suggested search model for a Multi-Criteria Decision Making (MCDM) problem and
employed two e�cient MCDM techniques, namely TOPSIS and COPRAS, to tackle the
ranking problem. Consequently, the computational e�ort signi�cantly decreased and a
promising solution was achieved.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In recent decades, increasing rates of the amounts of
natural catastrophes, people a�ected, and the economic
damages have been reported [1]. For example, during
the 1960s and 1970s, more than 3,000,000 people were
killed in natural disasters [2] and over 230 billion USD
of the world wealth was eradicated [3]. Also, since the
1980s, the rate and impact of disasters have terribly
increased (as shown in Figure 1). We refer the readers
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to the website of EM-DAT (EM-DAT is a famous
database of natural and technological disasters) for
valuable statistics about disasters from 1900 up to now.

According to World Health Organization (WHO)
available at: URL: http://www.who.int/topics/en/
(accessed 2016 August), a disaster (There is di�erence
between terms \disaster" and \catastrophe". But in
this study these terms are employed interchangeably.)
is a dire trouble in the normal operation of a commu-
nity whose e�ects exceed the capability of community
to control the conditions. As pointed out in EM-
DAT, between 2000 and 2010, around 8400 disasters
happened in the world, i.e., more than two catastrophes
every day. According to WHO, 3.4 billion dwell in
regions where at least one natural disaster may terribly
shock them. For example, Iran is one of the most
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Figure 1. The reported annual economic damages and
time trend of disasters: 1980-2015 derived from United
Nations O�ce for Disaster Risk Reduction
(http://www.unisdr.org/we/inform/publications/47804).

disaster-prone countries and has the 10th rank in this
regard in the world. This country has experienced
31 out of 40 forms of natural disasters and these
catastrophes have destroyed 232 million USD of the
wealth of this country in the last decade [4].

In 20th century, earthquakes killed more than
1,500,000 people around the world [5]. According to [6],
two earthquakes occur in the world every minute and,
as pointed out by United Nations (UN), millions of
people are in danger of earthquakes. For example, over

90% of Iran is built on fault lines. Also, Iran is one
of the top ten in terms of the rate of earthquakes.
Considering the number of victims of earthquake, Iran
is number one (United Nations, Living with risk: a
global review of disaster reduction initiatives, (2004)).
Tehran, the capital of Iran, is created above several
faults and the likelihood of the occurrence of a very
intense earthquake (Mw > 7) is approximately 70% [7].

On the other hand, it is believed that Global
Warming will speed up the number of natural calamity
shocks [8]. Lay [9] warned that between 2004 and 2014,
approximately 1.8 great earthquakes per year happened
globally, compared to 0.68 earthquakes per year from
1900 to 2004. These numbers show a terrifying increase
by 265%. Furthermore, Singh [10] pointed out that
the world population would increase from 7 billion in
2011 to 9.30 billion in 2050. Accordingly, due to the
unbridled growth of the population as well as the global
urbanization, the threat of earthquake will increase [5].

As pointed out by Hou and Shi [11], destruction
of an earthquake is not straight determined by its
magnitude. For example, from 1980 to 2002, India
experienced 14 earthquakes with 32,117 killed while
the United States experienced 18 earthquakes with 143
killed [8]. On the basis of the formula of risk, namely
Risk = Hazard � (V ulnerability �Resources), e�-
cient distribution of resources will reduce the likelihood
of damage considerably. According to [12], DM (or
emergency management) refers to a group of actions
done before, during, and after a catastrophe with
the aim of preventing loss of people, diminishing the
disaster shock, and coming back earlier to normal
conditions. Often, DM is divided into four key steps as
shown in Figure 2. Mitigation is the various activities
taken to lessen the possibility of catastrophe occurring

Figure 2. Disaster management cycle and some classic activities.
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or to decrease its destructive shocks. Preparedness
organizes the society to respond when a calamity
takes place. Response is the utilization of resources
to protect life, assets, the milieu, and the political
organization of the society. Recovery is the long-term
designs to revert to normality [12].

Obviously, in the early hours after a disaster, the
response step must concentrate on search and rescue
(SAR). SAR activities are utilized to track people
after a dreadful catastrophe and when individuals are
lost [13]. As mentioned, in all SAR activities, time is
one of the most vital factors. According to [14], nu-
merous human beings trapped under the debris in the
earthquake may have a great chance to remain alive if
they are saved in the golden time, i.e., 72 h after quake.
Chang and Nojima [15] pointed out that 24 h after
quake would be the golden rescue phase. According
to Chen and Miller-Hooks [16], between the �rst day
and �fth day after the 1976 Tangshan earthquake, the
survival rate decreases from 81% to 7.4%. Fiedrich
et al. [17] suggested a dynamic frame to approximate
such a rate as shown in Figure 3. Based on this
model, the �rst 72 h are the most serious for rescuing.
Obviously, SAR operations take massive amounts of
money and time. As a result, in disaster situation,
decision makers must utilize �nite resources and limited
time e�ciently to attain the best relief. However, one
signi�cant complexity of the response period is to �nd
the best strategy for assignment of time and resource
to SAR operations. In addition, due to the constraints
on time and resources, any strategy to support search
operations contains some aspects of uncertainty (e.g.,
the number of missing persons or the probable locations
of them after disaster). Thus, utilizing a practical and
e�cacious approach to importing this stochastic nature
into the decision-making procedure is very vital.

Search for individuals lost in disaster �ts into the
framework of the Search Theory (ST). ST is the study
of how to e�ciently use restricted resources when at-
tempting to detect a goal whose position is not exactly

Figure 3. Expected survival rate according to the model
of Fiedrich et al. [17].

known [18]. ST is one of the oldest parts of Operations
Research (OR) [19]; however, by analyzing the litera-
ture, severe scarcity of a search strategy on the basis of
OR techniques in DM is revealed. It is noteworthy that
because the majority of researchers have focused deeply
on emergency logistics, more speci�cally on two main
problems, namely location and transportation [20],
developing various e�ective strategies for search opera-
tions has been largely ignored. To reduce this gap, our
study focuses on the problem of optimal distribution
of time and resources to discover an objective, namely
missing people. Fortunately, the search problem for
missing people �ts nicely into the structure of the
Classical Optimal Search Model (COSM). Generally,
in this model, a single motionless goal (In this study,
the terms \aim", \target", and \goal" are employed
interchangeably.) is in one of the given locations. The
search consists of a series of discrete investigations
until the aim is detected. Looking into location, i,
costs Ci, and pi is the probability that the goal is
in the location i. The aim is to �nd out the goal at
minimum expected cost [21,22]. Among the various
measures of e�ciency that are employed in ST, the
most common factors are expected time for discovery,
expected cost of discovery, and probability of discovery.
From a mathematical point of view, this problem has
been broadly tackled by Dynamic Programming (DP)
method. DP, which was introduced by Bellman and
Dreyfus [23], is a valuable method to handle multi-step
decision processes [24,25]. On the other hand, multi-
objectivity is one of the most signi�cant attributes
of real-world problems. Generally, decision-making
in today's world needs various compromises among
several conicting goals. In view of the inherent
restrictions on resources and time, the problem of
search has a multi-objective frame. Consequently, a
multi-objective search model in stochastic environment
can appropriately satisfy the necessities of this problem
in the real world.

The aim of this study is to introduce a stochastic
multi-objective model based on COSM for SAR of
trapped people immediately after an earthquake. To
�nd a solution to this Multi-Objective Problem (MOP),
we employ Compromise Programming (CP). CP, which
is one of the most accepted techniques for coping with
the MOP, provides a robust solution which belongs to
the Pareto set. According to Gutjahr and Nolz [26],
who reviewed multicriteria optimization in humanitar-
ian help, there are few studies (e.g., [27]) adopting
CP in DM �eld. However, various stochastic problems
modeled by DP usually su�er from the \dimensional-
ity" concept, which leads to a huge increase in the com-
putational e�orts as well as required memory when the
dimension of the state grows [28]. Thus, it is essential
to point out that many MOPs on the basis of DP are
close to unfeasible to optimize for a practically sized
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Figure 4. The proposed decision framework for the search problem.

problem. Fortunately, as pointed out by Garey and
Johnson [29], optimization does not essentially mean
obtaining the (global) optimum solution to a problem,
because it may be impracticable due to the structure of
problem in some cases. Because using multi-objective
stochastic dynamic programming approach to handling
decision making problems is often very di�cult, in this
paper, as an alternative solution, an MCDM framework
is adopted for the search problem. It is noteworthy
that in the real cases, in which the exact technique
needs a long calculation time, MCDM methods act
as an approximate approach. The suggested decision
framework in this paper is depicted in Figure 4.

The remainder of this work is arranged as follows.
In Section 2, the related literature is briey reviewed.
We discuss the classical optimal search model and
multi-objective optimization problem in Section 3,
leading to the suggested method in Section 4. The
e�ciency of our model is analyzed by a case study in
Section 5. Section 6 provides an alternative framework
based on MCDM for the search problem. In Section 7,
we �nish this work with conclusion and future study
guidelines.

2. Literature review

Clearly, during the past 10 years, the papers related
to logistics of the response period have greatly been
expanded. For example, Afshar and Haghani [30]
suggested a comprehensive mathematical framework to

control the ow of various supplies in the response
system. Berkoune et al. [31] considered a compound
transportation problem, namely multi-vehicle, multi-
depot, and multi-product, for the transportation of
humanitarian help. Naja� et al. [32] focused on
a stochastic multi-objective, multi-commodity, multi-
mode, and multi-period framework to tackle the prob-
lem of providing logistics for injured persons as well as
supplies after earthquake. Bozorgi-Amiri et al. [27] de-
veloped a multi-objective robust stochastic approach to
disaster relief logistics. Abounacer et al. [20] suggested
a multi-objective location-transportation framework
and proposed an "-constraint technique to tackle it for
disaster response. Bozorgi-Amiri and Asvadi [33] con-
centrated on selecting optimum sites for relief logistic
hubs. Sheu [34] focused on a relief allocation problem
in the critical rescue stage. Ma et al. [35] provided
a robust transportation framework to minimize the
maximum time of rescue for wounded persons.

Altay and Green [12] prepared a signi�cant review
of the application of OR approach to DM until 2004.
Also, Galindo and Batta [36] presented a valuable study
as a continuation of the study by Altay and Green [12].
According to these studies, although DM is a dynamic
branch in OR, some gaps can be perceived. However,
we observed only one article related to the problem of
search in the reviewed literature, namely the study by
Jotshi and Batta [37]. They suggested a heuristic to
resolve the search problem for a stationary goal on a
network [37]. Before that, Fiedrich et al. [17] intro-
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duced a dynamic optimization model with the aim of
minimizing the number of victims in the period of SAR.
Chen and Miller-Hooks [16] formulated the problem
of optimally positioning SAR teams as a multistage
stochastic program. The object of this model was to
maximize the expected quantity of rescued persons.
Berger and Lo [38] proposed a mixed-integer linear
framework to optimally handle the multi-agent discrete
SAR path problem. Briey, by analyzing the literature,
especially four comprehensive reviews in [12,36,39,40],
we can see that the search problems have not been as
emphasized as location and transportation problems in
DM.

Search for persons who are lost after earthquake
falls under the realm of ST. The �rst developments to
ST were proposed by Koopman [41] in World War II
to prepare e�cacious techniques of �nding submarines.
Although surprisingly ST and related problems have
vanished for more than twenty years [42], several
problems such as searching for a hidden mine land [43],
hidden hostage, and explosive material emphasize the
need for e�ective search strategies for detecting targets
of di�erent forms [40]. As pointed out by [44], because
of its stochastic structure and the nonlinearity due to
the probability of �nding, the problem of obtaining
the \best" policy for search is basically very di�cult.
Several valuable studies on ST as well as search
problems have been presented [19,22,45,46]. A number
of parameters in which search scenarios vary are as
follows [38,45]:

1. One-Sided (OS) search in which the goal does not
react to the act of searcher. In this theme, the most
tangible measure of e�ciency for the search process
is the expected cost or the expected time of the
search. Black [21], Stone [19], and Washburn [46]
concentrated on the OS search framework for the
�rst time. Also, OS search can be clari�ed by
various attributes such as:
1.1. Discrete Search Problem (DSP) (e.g., [42])

versus Continuous Search Problem (CSP)
(e.g., [47]);

1.2. Stationary goal search (e.g., [21]) versus mov-
ing goal search;

1.3. Multiple goals search (e.g., [47]) versus single
goal search [22].

2. Two-Sided (TS) search in which the objective reacts
to the act of searcher (search games).

Also, constrained searcher motion is another
model which develops in search problem. In this type,
some constraints on the motion of searcher are consid-
ered. As pointed out by Trummel and Weisinger [48],
this category of search problem is NP-hard. A very
good survey of search games was provided in [49].
Also, Chudnovsky and Chudnovsky [50] presented a

review of OS search as well as TS search. Moreover, a
survey of pursuit-evasion game in mobile robotics was
conducted by Chung et al. [51]. Figure 5 depicts a
general categorization of search parameters.

After presenting the classic model by Black [21],
diverse models of DSPs have been developed. For
example, Chew [52] analyzed this problem for maxi-
mizing the probability of detection the target under
cost restraints. Ross [53] extended the outcome of the
study of Chew [52]. He assumed that in the new model,
a prize Ri was earned if the goal was detected in the
location i. Smith and Kimeldorf [54] suggested a DSP
with an unknown number of objectives. The goal of this
work was to minimize the expected cost in discovering
at least one goal. Assaf and Zamir [47] focused on
a DSP when there was over one immobile concealed
target. Wegener [55] proved that the general search
problem (switching cost problem) with the minimum
expected time and cost of switches was NP-hard.
Kadane [56] proposed a search strategy that maximized
the detection probability of the target considering a
restraint on the existing budget.

Various optimization techniques are being em-
ployed for solving search problems. Zahl [57] employed
Lagrange Multiplier (LM) to tackle a search problem.
Kadane [58] developed a branch and bound approach
to dealing with some limitations in the LM method for
a discrete instance. But, due to sequential nature of the
optimal search model as well as substitute decisions of
this optimization frame, Ross [22] utilized DP approach
to coping with this model. In contrast to several
other techniques such as LM, DP puts no constraint
on the non-convex structure of di�erent problems and
provides the global solution. In addition, this technique
is capable to model sequential decision systems and
non-linear structures [42]. However, DP is usually
not easy to apply. Further information on DP and
applications can be obtained in several well-known
books, e.g., [23].

On the other hand, ambiguity has stimulated
numerous researchers to address stochastic optimiza-
tion in disaster response procedures. Mathematically,
Stochastic Programming (SP) is a framework in which
the ambiguities are depicted as random variables with
identi�ed probability functions. However, SP tech-
niques are generally avoided because they increase
the intricacy of problems. A good survey of SP was
provided by Gutjahr and Pichler [59].

The term \Stochastic Dynamic Programming"
(SDP) was �rst utilized by Prof. Richard Bellman.
SDP di�ers from deterministic DP in that the state
at the following period is not absolutely speci�ed by
the state and decision at the present period. For
what the following state will be, we use a probability
distribution [60]. Cervellera et al. [28] proposed an
optimization model for a large-scale water reservoir
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Figure 5. General categorization of search parameters.

system using SDP. Li et al. [60] developed an un-
certain production planning based on SDP. Ross [22]
utilized SDP for solving the search problem. However,
Marescot et al. [61] pointed out that, despite the
growing number of the usages of this technique in
di�erent problems, SDP still su�ered from a general
incomprehension.

Multi-objectivity is a fundamental aspect of en-
gineering optimization, especially DM. Gutjahr and
Nolz [26] presented a comprehensive literature review
of the application of this form of optimization to DM.
Although real-life problems almost always have multi-
objective as well as stochastic nature, these branches,
namely stochastic optimization and MOP, ourished
individually and separately from each other [59]. Hoyos
et al. [40] reviewed the literature on DM based on OR
methods with stochastic elements. In this review, some
studies about facility location, resource allocation,
relief distribution, and evacuation can be found. But
few, if any, have attempted to present a study about the
search issue in DM. There are only two studies about
SAR, namely [16] and [37]. Although before them,
Richardson and Discenza [62] discussed the utilization
of ST in the SAR actions of the U.S. Coast Guard, none
of these articles helps directly to solve the problem of
search generally.

Finally, to the best of our knowledge, developing

a multi-objective stochastic frame for search in DM
literature is completely novel.

3. Preliminaries

In this part, a number of basic models and methods are
reviewed.

3.1. The classical optimal search model [22]
As mentioned by Chew [52], a class of optimization
problems, called searching problems, is concerned with
a procedure which provides optimal value instead of the
value itself. Of this nature, we review classical optimal
search model [52] as follows:

An immobile objective is in one of the n locations
where n(2 N) is known (N is the natural number
set). For each location i, Pi is the probability that
the goal is in the location i, where

Pn
i=1 Pi = 1 and

the cost for every glance in the location i is Ci. The
probability that an objective in the location i will be
discovered at a single glance is �i and, as a result, the
probability of failing to see the objective for location i
is 1��i. The aim of this model is to detect the goal at
minimum expected cost; therefore, it is a cost-oriented
search model. This process �nishes when the goal is
detected. Clearly, the plan for search is a procedure
which determines the search order. As mentioned by
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Ross [22], this model has a decision procedure whose
state is the posterior probability P = (P1; :::; Pn),
with Pi indicating the posterior probability, given all
that has happened and that the target is in region
i. Mathematically, V (P ) is minimum expected cost
equation and can be de�ned as follows:
V (P ) = min

i
[Ci + (1� �iPi)� V (Ti(P ))] : (1)

In the above equation:
Ti(P ) = [(Ti(P ))1; :::; (Ti(P ))n]

is the posterior probabilities given the previous prob-
ability P and given that an inspection of region i was
useless. Hence,

(Ti(P ))j = P (in j jsearch of i unsuccessful)

=

8><>:
Pj

1��iPi ; i 6= j

Pj(1��i)
1��iPi ; i = j

(2)

For a certain state P , a strategy can be considered
as an order of regions with the explanation that the
regions are sought in that arrangement until the target
is discovered.

Lemma 3.1

Suppose that V�(P ) indicates expected cost equation
under �. Also, assume that (i; j; �) represents the
strategy that �rst seeks i, then j, and at last �. For any
strategy �, we have V(i;j;�)(P ) � V(j;i;�)(P ) , �iPi

Ci �
�jPj
Cj .

Proof: Assume i 6= j. Subsequently, we have:

V(i;j;�)(P ) = Ci + (1� �iPi)
�
Cj

+
�

1� �jPj
1� �iPi

�
V�(TjTiP )

�
=Ci+Cj ;

+ V�(TjTiP )� �iPiV�(TjTiP )

+ �jPjV�(TjTiP )� �iPiCj ; (3)

V(j;i;�)(P ) = Cj + (1� �jPj)
�
Ci

+
�

1� �iPi
1� �jPj

�
V�(TiTjP )

�
=Ci+Cj

+ V�(TiTjP )� �iPiV�(TjTiP )

+ �jPjV�(TjTiP )� �jPjCi: (4)

We know that TjTiP = TiTjP and �iPiCj � �jPjCi;
thus, this completes the proof.

Proposition 3.1

In the above model, the best strategy is to seek a
region with the largest value of �iPi

Ci i = 1; 2; :::; n. In
other words, the maximum value of �iPiCi minimizes the
expected cost to detect.

Proof: Assume that �1P1
C1

= max �iPi
Ci . Now, think

about a strategy such as � that does not seek location
1 at �rst. This strategy searches location 1 at time j,
namely � = (i1; :::; ij�1; 1; ij+1; :::). By Lemma 3.1.,
clearly, a superior policy is acquired by swapping 1
and ij�1, i.e., �0 = (i1; :::; 1; ij�1; ij+1; :::) is superior
to �. By iterating this reasoning, we can see that
(1; i1; :::; ij�1; ij+1; :::) is superior to �. Consequently,
for every policy not at �rst searching 1, we can obtain
a better strategy that does start with 1.

3.2. Multi-objective optimization problems
In this sub-section, some de�nitions and famous
algorithms for multi-objective optimization problem
(known as multi-objective problem in this work), us-
ing [20,26,63-66] have been summarized.

Real problems are often multi-objective and the
objectives disagree with each other in them. Therefore,
nearly all decisions need trade-o�s among various non-
commensurable and incompatible objectives. MOP
is more rational than a Single-objective Optimization
Problem (SOP) in terms of real applications. It can be
formulated in a minimization case as follows:(

min f(x) = (f1(x); f2(x); :::; fm(x))
s:t: x 2 D (5)

In the above frame, m(� 2) is the number of objectives,
x = (x1; x2; :::; xn) is the vector of variables, and D is
the solution space. A MOP often does not have one
optimum, but a group of solutions recognized as the
Pareto-optimal set. First of all, some basic de�nitions
in MOP are reviewed. In a minimization form, these
notions are clari�ed as follows [20]:

� De�nition 1. Pareto dominance: A vector u 2 D
dominates a vector � 2 D in the Pareto logic if:(

fi(u) � fi(v) for all i 2 f1; ::::;mg
fj(u) < fj(v) for at least one j 2 f1; ::::;mg

� De�nition 2. Pareto optimal solution (non-
dominated solution or e�cient solution): A solution
u 2 D is a Pareto-optimal solution if there is no
� 2 D such that � dominates u.

� De�nition 3. Pareto optimal set: The Pareto op-
timal set is speci�ed as P = fx 2 D : x is a Pareto
optimal solution in Dg.
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� De�nition 4. Pareto front: The Pareto front is
speci�ed as PF = ff(x) : x 2 Pg, where P is the
Pareto optimal set.

More formally, a solution is in the Pareto set if
no amelioration is achievable in an objective function
without deterioration in another objective function.
As mentioned earlier, there are various techniques to
cope with MOP. One of the most common methods
for MOP is using scalarizing techniques (classical ap-
proaches). Scalarizing techniques reduce the MOP
into a SOP and optimize the SOP. Obviously, these
techniques facilitate the computational e�ort of MOPs.
The Weighted-Sum (WS) and the "-constrained are
among the most widespread techniques of this group.
Although the "-constrained technique has a number of
bene�ts over the WS method, each of these techniques
has various shortcomings. For example, WS technique
is not capable to acquire non-dominated solution in a
non-convex Pareto front. Also, this technique cannot
suitably estimate the Pareto-optimum curve [66,67].
On the other hand, "-constrained technique is not
suitable for a problem with several objective func-
tions.

The CP is a reputable mathematical program-
ming which works e�ciently for MOPs. CP belongs
to a group of MOP techniques called \distance-based"
approaches, which seek the closest solution to the
reference point (ideal solution) considering a distance
index. The outstanding advantage of CP is its very
straightforward framework. The CP techniques vary
in their selections of the distance metric as well as
the reference point. The most common option as a
reference point is the ideal point that is optimum for
every objective function separately in a MOP. The
distance between a Pareto-optimum (to be searched)
and the reference point can be computed by the Lp
metric, which is de�ned as:

Lp =

"
mX
i=1

wi(zi� � zi)p
# 1
p

; 1 � p � 1: (6)

In Model (6), m shows the number of objective func-
tions, wi is the weight of objective i (the Lp metric
coe�cient), zi is non-dominated solution, z�i is the
ideal solution, and p indicates the signi�cance of the
maximum deviation from the ideal solution. In other
words, as p increases, the signi�cance of the deviations
escalates.

Going back to Model (6), because of the utiliza-
tion of non-commensurable units in various objectives,
normalization is necessary. We normalize Model (6) by
the reference point [68] as follows:

Lp =

(
mX
i=1

wip
�

(z�i � zi)
zi�

�p) 1
p

: (7)

To tackle a MOP by CP, the Lp given in Model (7)
is minimized. In other words, given p and wi, the
option with the minimum Lp will be the best since it
is the nearest point to the ideal solution. It should be
noted that when 1 � p <1 and all weights are strictly
positive, CP generates Pareto optimal solution [64].
Proofs have been provided in nearly all books about
MOP.

4. The stochastic multi-objective search
problem

This part explains the main problem of this paper and
provides a mathematical form for it.

4.1. Problem description
Let us begin with notations and explanation of the
objectives of the suggested framework. Table 1 demon-
strates the notations.

Table 1. Notations.

n Number of locations
N The natural number set
i Index of locations i = 1; 2; :::; n
Ci Search cost of location i
ti Search time of location i
�i Probability that a goal in location i will be discovered at a single glance
P Posterior probability vector that the goal is in location i
V (P ) Expected cost function
W (P ) Expected time function
Ti(P ) Posterior probability vector considering prior probability vector and failure in discovering the target in location i
� Solution space
k Number of possible scenarios
Z The value of Lp-metrics function
w Lp-metrics coe�cient
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Suppose that a motionless target is located in one
of the locations. It is essential to point out that the
number of locations is known and n 2 N. The precise
location of the goal is unknown, but to the searcher, the
probability that the goal is in that location is known.
Also, we have

Pn
i=1 Pi = 1. The solution (search) space

� is discrete and search cost and search time of location
i are Ci and ti, respectively. The search problem is to
obtain in what order the locations should be checked
to minimize the expected cost and expected time of the
search.

Avoiding unimportant cases, we suppose that
none of the parameters Ci, ti, and Pi is zero. Let us
point out that although Ross [53] relaxed the condition
Ci > 0 and analyzed this problem, in our suggested
model, any Ci = 0 (or ti = 0) is meaningless.

4.2. Solution procedure
Designing an applicable search procedure is a subset
of resource distribution problem. After earthquake,
resources for search are almost always inadequate.
Thus, there is a need for experts to decide on how to
apportion the resources among the various strategies in
order to minimize the impact of the earthquake. Fur-
thermore, the search plan in the response stage contains
another goal. After the majority of earthquakes, lives
of missing persons depend on minutes and the chance
to discover survivors after golden time is tremendously
low. Therefore, the decision maker aims to minimize
the time for unserved missing persons.

With the above postulation, we concentrate on
two objectives for the suggested model: to minimize
expected search cost and to minimize expected search
time.

On the basis of the aforementioned goals, we
present the following stochastic multi-objective model
for the search problem.

Two objectives are considered for the suggested
search problem as follows:

1. Expected search cost, which is the expected cost of
search in the DM. The �rst objective is to minimize
the expected search cost. It is the mathematical
expectation of search cost and takes the following
model:
V (P ) = min

i
[Ci + (1� �iPi)� V (Ti(P ))] : (8)

The objective function V (P ) takes into account
and minimizes the total cost of search operation,
including the transportation cost, expert cost, etc.;

2. Expected search time, which is the expected time
of search in the DM. Now, the second objective is
to minimize the expected search time. It is the
mathematical expectation of search time and takes
the following model:

W (P ) = [ti + (1� �iPi)�W (Ti(P ))] : (9)

The objective function W (P ) takes into account
and minimizes the total time of search operation,
including transportation time, deployment time,
etc.

As a result, the stochastic multi-objective
search problem will be formulated as follows:

Minimize8>>>>>>><>>>>>>>:

V (P ) = [Ci + (1� �iPi)� V (Ti(P ))]
expected search cost function| {z }

W (P ) = [ti + (1� �iPi)�W (Ti(P ))]
expected search time function| {z } (10)

Two objectives are simultaneously minimized in
the absence of certain restrictions. Therefore, a multi-
objective technique is indispensable for handling the
problem. After building our stochastic multi-objective
framework by Model (10), CP is employed to tackle
the suggested MOP for the search problem. For doing
so, �rst, we solve the suggested MOP as two single-
objective models, separately. Then, we reformulate
our MOP as a SOP by a weighted aggregation. This
SOP minimizes the sum of the di�erences between an
objective and its optimum when each objective function
is normalized. By recalling Model (7) for p = 1, the Lp-
metrics function will be obtained as follows:

Z = min
�
w
V �(P )� V (P )

V �(P )

+ (1� w)
W �(P )�W (P )

W �(P )

�
: (11)

According to Proposition 3.1, the policy which seeks a
location with the largest value of �iPi

Ci minimizes the
expected search cost in Model (8). Also, Sadi-Nezhad
et al. [43], by using a similar approach, showed that the
plan which searched a location with the largest value of
�iPi
ti could minimize the expected search time in Model

(9). Now, we employ Model (11) with the identical
relative weight of 0.5 to solve the proposed multi-
objective search problem. Let us point out that when
there are no preferences for the objectives, obtaining
a group of Pareto optimal solutions to a MOP is
challenging. In this problem, the decision maker is
not willing to give the preference for an objective to
another objective. For this reason, to highlight the
signi�cance of simultaneously considering the cost and
time of search, we set w equal to 0.5 in Model (11).
The reader is referred to [63] for a classi�cation of
MOP techniques on the basis of the role of the decision
maker in a solution procedure. To obtain a desirable
solution such that the expert can reach a compromise
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between cost and time on the basis of the results,
Model (11) can be solved while changing the Lp-metrics
coe�cient several times. The solution will be one of
the search scenarios (There is di�erence between terms
\scenario" and \policy". But in this study, these terms
are employed interchangeably.) which minimizes the
above Lp-metrics function. As mentioned, � is the set
of possible solutions and solution space is any search
sequence of the locations. Let us recall that the solution
in the suggested problem is a procedure which provides
optimal value instead of the value itself. Hence, we
will have k = n! possible scenarios. Clearly, the
suggested model determines the best scenario for search
process among the possible scenarios while trying to
minimize search cost and search time. Thus, in the
problem setting, a scenario-based approach is used to
contain all discrete scenarios. It is noteworthy that
scenario-based SP optimizes the expected value of the
objectives without directly employing priorities of the
expert [69]. In the scenario-based SP, a group of
discrete policies and their related probabilities will be
considered; but in this problem, we take into account
all possible scenarios. Obviously, due to the scenario-
based nature of the search problem, CP is better than
other multi-objective methods in terms of calculation
time. Now, in this step, we obtain all possible search
scenarios as the solution space. In our problem, search
scenario is any search sequence of the locations. In
these sequences, each location will appear only once.
For example, [location 1, location 3, location 4, location
2] or [location 4, location 1, location 2, location 3] is
a feasible search scenario for the given four locations.
Clearly, Model (11) is nearly impossible to handle
directly. Hence, all possible scenarios are separately
placed in Model (11). Finally, the scenario with the
minimum Z will be the best. It is obvious that
Model (11) is feasible as well as bounded. It is very
straightforward to prove.

In the next section, we prepare a numerical exam-
ple to elucidate the working of the proposed model.

5. Numerical example

In this section, to explain how the suggested model
works, we analyze a realistic application.

5.1. Database formation
This case is derived from a real event after an earth-
quake. (Because of some social and political concerns,
the name of the earthquake remains con�dential.) At
�rst, we asked an experienced expert in the �eld of
DM to score the locations by using the experiences of
the 1990 Manjil, the 2003 Bam, and the 2012 Ahar
and Varzaghan earthquakes in Iran. This expert had
more than 30 years of experience for various topics
of DM in Iran and fortunately, he was familiar with

the basic concepts of OR. Finally, the senior manager
who veri�ed those responses had above 20 years of
experience in the relief activities.

5.2. Case study
After an earthquake, a search committee in the Relief
Distribution Center (RDC) is organized to search and
rescue a missing family. According to some evidences,
they are probably trapped during the earthquake in
one of the following locations: a cottage far from the
city (location 1), a forest near the city (location 2), and
a mountain near the city (location 3).

The probability that they are in each of the above
locations is as follows (Table 2).

As explained, the family is in one of these lo-
cations. Thus, we have

P3
i=1 Pi = 1. Due to the

need for experts as well as special equipment, search is
more expensive in the mountain than in other locations.
Considering this fact, the search cost of each location
is estimated as shown in Table 3.

Helicopter cannot land near the cottage. Thus,
access to the cottage is possible only through a road.
The distance between the cottage and RDC is more
than 175 km. Therefore, due to the impossibility of
using helicopter, road damage, and remoteness, more
time will be spent on search in the cottage than in other
locations. The search time of each location is estimated
as shown in Table 4.

As mentioned by Chew [52], this class of op-
timization problems is concerned with a procedure
which obtains optimal value instead of the value itself.
Therefore, the key problem is how to select a policy
to simultaneously minimize the expected cost and
expected time of searching for the family.

Table 2. Probability of �nding the goal.

Location Probability (%)
Location 1 (cottage) 38
Location 2 (forest) 28
Location 3 (mountain) 34

Table 3. Search cost of each location.

Location Search cost
(thousand USD)

Location 1 (cottage) 23
Location 2 (forest) 25.5
Location 3 (mountain) 30

Table 4. Search time of each location.

Location Search time (hour)
Location 1 (cottage) 19
Location 2 (forest) 17.5
Location 3 (mountain) 16
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5.3. Solution
As mentioned, it is assumed that the family is in one
of the 3 locations (

P3
i=1 Pi = 1). On the other hand,

each policy for searching for the family is a search
order of locations. In this case, we have 3 locations.
Therefore, there are 6 (k = 3!) possible scenarios for
search. Suppose that [location 1, location 2, location 3]
indicates that at the start, location 1 is searched; if the
family is not detected, then location 2 is searched and
if the family is not detected in location 2, then location
3 is searched. These three locations will be referred to
as 1, 2, and 3 abbreviated as [1, 2, 3]. As mentioned,
there are 6 possible policies for search as follows:

f[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]; [3; 1; 2]; [3; 2; 1]g2�:
For simplicity, we suppose that the probability that
the family in location i will be discovered at a single
glance is one. Thus, 8i; �i = 1 that is, according to
this scenario, �rstly location i is searched; if the family
is not detected, this location will not be considered
anymore. Now, Model (11) is used to obtain the
solution. However, the model is nearly impossible to
solve directly. Therefore, all six possible scenarios are
separately placed in Model (11) and the scenario with
the minimum Z will be the best. The model has
been coded by Python 3.3 for each strategy. Python
has a very lucid syntax and provides the majority of
the functionalities. Also, this interpreter is free. A
comparison between Python and MATLAB (another
high-level language) was presented by Fangohr [70]. It
is noteworthy that our suggested model is carried out
on a laptop with Intel Core i5, CPU 2.5 GHz, and 4GB
RAM. Now, we calculate the value of Model (11) for
each policy as follows.

First, by using Proposition 3.1, we obtain
max �iPi

Ci as well as max �iPi
ti for i = 1,2,3; considering

the assumption of 8i; �i = 1, we have:

P1

C1
=

0:38
23

= 0:0165;
P2

C2
=

0:28
25:5

= 0:0109;

P3

C3
=

0:34
30

= 0:0113

as well as:

P1

t1
=

0:38
19

= 0:02;
P2

t2
=

0:28
17:5

= 0:016;

P3

t3
=

0:34
16

= 0:0212:

Therefore, we consider all possible scenarios as follows:

� Policy 1: Model (11) for scenario [1, 2, 3] as shown
in Box I.

� Policy 2: Model (11) for scenario [1, 3, 2] as shown
in Box II.

� Policy 3: Model (11) for scenario [2, 1, 3] as shown
in Box III.

� Policy 4: Model (11) for scenario [2, 3, 1] as shown
in Box IV.

� Policy 5: Model (11) for scenario [3, 2, 1] as shown
in Box V.

� Policy 6: Model (11) for scenario [3, 1, 2] as shown
in Box VI.

The values for all strategies are graphically shown
in Figure 6. Consequently, considering the order
[1; 3; 2], the locations should be checked to minimize
the expected cost and expected time of the search.

Unfortunately, the above procedure is not practi-
cally useful. Obviously, this combination of SDP and
MOP is not simple to carry out for medium or even

Z[1;2;3] =
C1 + (1� �1P1)[C2 + (1� �2P2

1��1P1
)� C3]� 0:0165

0:0165
+
t1 + (1� �1P1)[t2 + (1� �2P2

1��1P1
)� t3]� 0:021

0:021

= 4450:28) Z[1;2;3] = 4450:28:

Box I

Z[1;3;2] =
C1 + (1� �1P1)[C3 + (1� �3P3

1��1P1
)� C2]� 0:0165

0:0165
+
t1 + (1� �1P1)[t3 + (1� �3P3

1��1P1
)� t2]� 0:021

0:021

= 4372:05) Z[1;3;2] = 4372:05:

Box II
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Z[2;1;3] =
C2 + (1� �2P2)[C1 + (1� �1P1

1��2P2
)� C3]� 0:0165

0:0165
+
t2 + (1� �2P2)[t1 + (1� �1P1

1��2P2
)� t3]� 0:021

0:021

= 4702:99) Z[2;1;3] = 4702:99:

Box III

Z[2;3;1] =
C2 + (1� �2P2)[C3 + (1� �3P3

1��2P2
)� C1]� 0:0165

0:0165
+
t2 + (1� �2P2)[t3 + (1� �3P3

1��2P2
)� t1]� 0:021

0:021

= 4903:68) Z[2;3;1] = 4903:68:

Box IV

Figure 6. All possible search sequences.

small values of n. In other words, this problem is too
hard to solve in the ordinary sense. It is noteworthy
that for the optimization problem, diverse origins of
di�culty, including the huge number of solutions and
the intricacy of objective functions, can be considered.
Clearly, we face all these factors in the suggested model.
After the sensitivity analysis, we will try to diminish
this di�culty.

5.4. Sensitivity analysis
To facilitate investigation into the performance of the

suggested model, a sensitivity analysis is carried out.
Sensitivity analysis is the study of how change of a
parameter can inuence the solution generated by the
model when the others are constant. Now, we conduct
the sensitivity analysis with variations in the cost and
time of the model. In other words, when a speci�c
parameter, e.g., time or cost, is changed and the
others are constant, variation in the result of the model
demonstrates its sensitivity to the speci�c parameter.
According to Figure 7, the model is insensitive to
increase in the value of cost after near 43% from the
beginning of its range, namely 32.9. Please see Figure 7
for C1 = 25; 28; 30; 32; 32:9.

Also, according to Figure 8, the model is insen-
sitive to increase in the value of time after near 74%
from the beginning of its range, namely 33.1. Please
see Figure 8 for t1 = 20; 25; 30; 33; 33:1.

Clearly, the sensitivity analysis has been con-
ducted only for this very small case of the search
problem and the greater cases for larger quantities of

Z[3;2;1] =
C3 + (1� �3P3)[C2 + (1� �2P2

1��3P3
)� C1]� 0:0165

0:0165
+
t3 + (1� �3P3)[t2 + (1� �2P2

1��3P3
)� t1]� 0:021

0:021

= 4825:44) Z[3;2;1] = 4825:44:

Box V

Z[3;1;2] =
C3 + (1� �3P3)[C3 + (1� �1P1

1��3P3
)� C2]� 0:0165

0:0165
+
t3 + (1� �3P3)[t1 + (1� �1P1

1��3P3
)� t2]� 0:021

0:021

= 4572:73) Z[3;1;2] = 4572:73:

Box VI
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Figure 7. Sensitivity analysis for di�erent values of search cost.

n require too much calculation time. As explained by
many researchers, stochastic multi-objective structure
for most of the problems is often hard to implement.
Also, it is essential to mention that several MOPs on
the basis of DP are close to unfeasible to optimize for
practically sized problems. It is noteworthy that, as
pointed out by [10], DP approach has been restricted
to the problems with 2 or 3 state variables. Although
for small cases, we try to employ exact method based
on SDP, the computational e�orts rise exponentially
with the number of locations. On the other hand, in
emergency situations, an operational problem should
be solved within a limited time. However, exact
algorithms such as SDP are time-consuming and very
di�cult to use in such problems. As stated before,
optimization does not fundamentally emphasize only
obtaining the global optimum solution to a problem.
For example, Su et al. [71] mentioned that the optimum
solution to the manifold emergency resources problem
based on integer programming was very di�cult and

lengthy to obtain. Thus, they concentrated on another
method to solve this problem for �nding a suboptimal
solution in a rational time. Consequently, in the next
section, we will suggest an approximate approach on
the basis of MCDM for the suggested search problem.

6. Alternative model based on MCDM
framework for search problem

Although SDP prepares a potent tool for stochastic
optimization, it is not easy to apply to large-scale
search problems. Also, we observed in a computational
case that stochastic multi-objective frame for search
problem usually needed huge computational e�ort. In
this part, as an alternative solution, an MCDM frame-
work is adapted for the search problem. The model
discussed in this part is the assessment of locations for
the optimal search. To this end, a ranking of locations
needs to be found. In other words, the goal of this
problem is to order choices (locations) in the presence
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Figure 8. Sensitivity analysis for di�erent values of search time.

in the presence of various attributes. Therefore, an
MCDM approach that has the aptitude to give a
complete ordering of options is essential. Generally,
MCDM methods obtain the best choice among the
possible options by considering diverse conicting de-
cision factors [72]. It should be noted that usually the
complexities of MOP and SDP are obvious and the
software for solving these methods is relatively scarce.
Fortunately, nearly all MCDM methods are relatively
straightforward and the software for solving them is
available. Now, we reformulate the search problem as
an MCDM framework; that is, we reduce the MOP into
an MCDM problem. Consequently, the computational
e�ort is decreased considerably and a good solution is
produced.

6.1. Multi-Criteria Decision Making (MCDM)
Let us begin with explanation of the typical MCDM

model. An MCDM framework can be depicted as
follows:

D =

C1 C2 ::: Cn
A1
A2
:
:
:
Am

26666664
x11
x21
:
:
:

xm1

x12
x21
:
:
:

xm2

::::
::::

::::

x1n
x2n
:
:
:

xmn

37777775
W = [w1; w2; :::; wn]; (12)

where D is the decision matrix; A1; A2; :::; Am are
feasible options among which the expert has to select
one; C1; C2; :::; Cn are the criteria with which choices
are measured; xij is the rating of Ai with regards to
Cj ; and wj is the weight of Cj .
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First, D should be normalized so that it becomes
dimensionless to allow for comparison. There are
various normalization techniques [73]. Also, obtaining
the suitable weights for all attributes is one of the
key steps in the majority of MCDM methods. These
techniques can be divided into two main categories [74]:

1. Subjective methods that obtain weights only by
considering the preferences of experts, and

2. Objective methods that obtain weights by solving
mathematical approaches without reection on the
preferences of the experts.

Obviously, opinion of the experts should be con-
sidered in the majority of the real problems. Therefore,
subjective techniques can generally be more desirable.
However, when providing a set of reliable subjective
weights is not easy, the application of objective weights
is bene�cial. Among the objective techniques, Shannon
entropy is one the most popular. In this work, the
weight of each attribute is identi�ed using Shannon
entropy. Also, in MCDM approaches, the criteria will
be categorized into two groups; the criteria that should
be maximized are bene�t factors and the criteria that
should be minimized are cost factors.

As mentioned by Sun and Li [75], more than 70
MCDM methods have been presented. Although the
goal of all these techniques is to help making a good
decision, as pointed out by Zanakis et al. [76], various
MCDM approaches may result in conicting outcomes
when applied to the same problem. Vincke [77] men-
tioned that choosing of an MCDM technique should
be performed skillfully based on the nature of the
problem, measurement scales, dependency of criteria,
the amount of alternatives, form of ambiguity, and
expectation of the experts. According to L�ken [78],
we often cannot conclude that one method is better
than the others for a general problem. In other
words, no one MCDM method is selected as the most
appropriate for all problems. But, a number of MCDM
methods better suit a given problem than others do.
Therefore, MCDM techniques have been compared in
several studies. However, the majority of researchers
avoid selecting a single MCDM technique over another,
because such assertion would require a �rm theoretical
base or evaluation for numerous real cases [79].

As mentioned, up to now, several MCDM tech-
niques have been introduced. However, selection of
a proper MCDM technique is an intricate MCDM
problem [75]. Transparency is one of the most essential
factors that should be addressed in choosing an MCDM
technique [80]. If an expert does not realize what is
taking place within the MCDM procedure, the outcome
may be that the expert does not trust the suggestion
of the approach [78]. Simplicity and computation
time are two important criteria in selecting an MCDM

technique. As pointed out by Chatterjee et al. [80], it
is recommended not to employ a very intricate MCDM
approach without transparency, because it becomes
very di�cult for a user to recognize any mistake made
throughout the computation procedure.

Chatterjee et al. [80] compared COPRAS, TOP-
SIS, VIKOR, and AHP in a material selection problem
on the basis of simplicity, transparency, calculation
time, etc. According to that study, COPRAS is
straightforward to employ and very good in trans-
parency. Also, it has a low calculation time. On the
other hand, although AHP is one of the most broadly
used MCDM techniques, it is a very controversial
method. For example, AHP method su�ers from nu-
merous pairwise evaluations [78]. Also, if the pairwise
assessment is recognized to be inconsistent, the expert
should execute this task again. In other words, AHP
mathematically has an intricate procedure [80].

Antucheviciene et al. [81] evaluated the results
of VIKOR, TOPSIS, and COPRAS in building rede-
velopment problem and deduced that COPRAS and
TOPSIS were superior to VIKOR. It is noteworthy
that VIKOR is one of the popular MCDM methods.
However, Huang et al. [82] warned that VIKOR might
generate an incorrect ranking in some cases. Also,
according to [83], TOPSIS method may have higher
distinguishing ability due to vector normalization.
Peng [84] appraised TOPSIS, VIKOR, ELECTRE,
PROMETHEE, GRA, and WSM in the earthquake
vulnerability problem. In their study, TOPSIS was
chosen as the most trustable technique. Sun and
Li [75] assessed 24 MCDM techniques such as TOPSIS,
ELECTRE, AHP, SAW, etc. in the aircraft selection
problem. In this study, TOPSIS was chosen as the
most proper technique. On the basis of an exten-
sive literature review, Mousavi-Nasab and Sotoudeh-
Anvari [85] revealed that TOPSIS and COPRAS were
the best MCDM methods for the general material
selection problem. However, in some problems, there is
not a solid reason to select a speci�c MCDM method.
For example, Athawale and Chakraborty [86] compared
10 MCDM techniques such as VIKOR, AHP, TOPSIS,
GRA, ELECTRE, PROMETHEE, WPM, etc. in robot
selection problem. According to this comparison, all
the aforementioned techniques provide very similar
orderings of the alternatives. Mulliner et al. [83]
analyzed some MCDM methods such as revised AHP,
TOPSIS, COPRAS, WSM, etc. in a sustainable hous-
ing a�ordability problem; they deduced that none of
these techniques were perfect. Accordingly, Mulliner et
al. [83] suggested that more than one technique should
be employed for a problem to make a �rmer decision.
However, when use of several MCDM techniques is
not feasible, COPRAS should be employed. Mela et
al. [79] presented a comparison among VIKOR, WPM,
TOPSIS, SAW, and PROMETHEE for a building
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design problem. They inferred that the best MCDM
techniques would hardly be acquired. The reader can
see [72] and [87] for two comparative studies of MCDM
methods.

It is a well-known approach to employ more than
one MCDM method to handle a given prioritizing
problem [88]. Thus, we select two MCDM approaches,
namely COPRAS and TOPSIS, to prioritize the search
locations for several reasons. First of all, the ordering
concurred by two MCDM techniques is more reliable
than a result produced by one MCDM technique.
Furthermore, COPRAS and TOPSIS allow for bene�t
as well as cost factors to be combined in one analysis
without complexity. But, for example, cost factors in
AHP and WSM should be converted into bene�t factors
before normalization [83]. In addition, COPRAS and
TOPSIS can provide a perfect ranking of options. But,
for example, ELECTRE and PROMETHEE cannot
often give a full ordering of the choices. Also, these
two methods require large expert interaction in solving
procedures. Hence, ELECTRE and PROMETHEE are
unsuitable for our problem. In contrast, TOPSIS and
COPRAS perform well with numerous choices and cri-
teria [72,83]. Let us point out that the only aim of this
subsection is not to declare which MCDM technique is
the best. Rather, our key aim is to highlight that the
use of two (or more) MCDM techniques can generate
more reliable results.

In brief, some main reasons that we choose TOP-
SIS and COPRAS for this problem are as follows:

1. The idea behind TOPSIS and COPRAS is logical
as well as easy to realize and use. As L�ken [78]
mentioned, for many decision makers, ELECTRE
is complicated to understand and utilize. Velasquez
and Hester [89] pointed out that one of the im-
portant shortcomings of ELECTRE was that its
procedure and results could be di�cult to elucidate
for a layman. Also, AHP and PROMETHEE are
computationally intricate and need intervention of
the user. In these methods, subjective judgments
have large inuence on the results;

2. Calculation procedures of TOPSIS and COPRAS
can be simply programmed;

3. TOPSIS and COPRAS can be employed e�ciently
when the amount of alternatives or selection factors
is large. In contrast, AHP, PROMETHEE, and
ELECTRE are time-consuming in this situation
and their performance is attenuated rapidly when
the quantity of options or attributes is large [72,85];

4. TOPSIS and COPRAS are easily applied with
positive and negative decision factors with one
procedure. In contrast, in AHP and SAW, negative
criteria must be transformed into positive criteria
before normalization. Millet and Schoner [90]

revealed that this transformation might lead to
computational di�culty and extract incompatible
outcomes in AHP;

5. TOPSIS and COPRAS o�er a full ranking of op-
tions. In contrast, ELECTRE and PROMETHEE
are sometimes unable to determine the best choice.
For example, �Ozcan et al. [72] pointed out that
since ELECTRE did not give a complete ranking
in some situations, it might suggest plural solution
as the best choice. A plural solution is two or more
options that �nd the same ranking;

6. The TOPSIS and COPRAS results are not inu-
enced by any additional parameter. In contrast,
for example, VIKOR result relies on parameter
severely [79]. Also, in PROMETHEE, unsuitable
tuning of parameters can generate incoherent out-
comes;

It is important to mention that, as literature
review shows, SAW and AHP can be considered as the
most frequently used MCDM techniques [89]. However,
some points about these two MCDM methods should
be made. Since the introduction of AHP, there has
been widespread argument about the theoretical truth
of this technique. These arguments have focused on
four points: the axiomatic foundation, the true mean-
ing of the weights of criteria, the measurement scale,
and the rank reversal phenomenon [91]. Also, although
SAW is the simplest and probably the most generally
used MCDM technique, as Velasquez and Hester [89]
warned, in some cases, the outcome provided by SAW
may not be reasonable. Besides, Mulliner et al. [83]
pointed out that WPM was a straightforward method,
but its disadvantage was that bene�t-type and cost-
type criteria should not be utilized simultaneously.

6.2. Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS)

TOPSIS, as one of the most famous MCDM techniques,
was �rst suggested by Hwang and Yoon [92]. The
preferred choice is the closest to the ideal solution
and farthest from the anti-ideal solution. TOPSIS
is a compensatory approach and allows for tradeo�s
among decision attributes. It is noteworthy that
TOPSIS has been e�ectively employed in tremendous
real applications [84,85,93,94].

The steps of TOPSIS are explained as follows:

Step 1: Normalize the decision matrix (D) using the
following formula:

rij =
xijs
nP
j=1

xij

i = 1; 2; :::;m; j = 1; 2; :::; n:
(13)

Step 2: Provide weight for this matrix by:

vij = wj � rij i = 1; 2; :::;m; j = 1; 2; :::; n; (14)
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where wj is the weight of attribute j and
Pn
j=1 wj =

1.

Step 3: Specify the ideal solution and anti-ideal
solution using Model (13):

A� = fv�1 ; v�2 ; ::::; v�ng
= f(max

j
vij ji 2 I 0); (min

j
vij ji 2 I 00)g;

i = 1; 2; :::;m; j = 1; 2; :::; n:

A� = fv�1 ; v�2 ; ::::; v�n g
= f(min

j
vij ji 2 I 0); (max

j
vij ji 2 I 00)g;

i = 1; 2; :::;m; j = 1; 2; :::; n; (15)

where I 0 is related to bene�t factors and I 00 is related
to cost factors.

Step 4: Obtain the distance of each option from
A+ and A� using the following equations (the n-
dimensional Euclidean distance):

D+
i =

vuut nX
j=1

(vij � v+
j )2 i = 1; 2; :::;m;

D�i =

vuut nX
j=1

(vij � v�j )2 i = 1; 2; :::;m:
(16)

Step 5: Obtain the comparative closeness to the
ideal solution by:

CC�i =
D�i

D�i +D+
i

i = 1; 2; :::;m: (17)

Step 6: Rank the choices according to CC�i . The
bigger CC�i , the better choice Ai.

6.3. Complex Proportional Assessment
(COPRAS)

COPRAS method, which was introduced by Zavadskas
et al. [95], considers straight (direct) and relative (pro-
portional) dependences of the priority (signi�cance)
and utility degree of the options with regards to the mu-
tually incompatible attributes. This technique chooses
the best option considering the ideal solution and the
ideal-worst solution [80]. Similar to TOPSIS, COPRAS
is a compensatory technique. Also, owing to its
distinguishing features, COPRAS has been e�ectively
employed in various �elds [80,81,83,85].

The procedure of COPRAS is explained be-
low [80]:

Step 1: Similar to most MCDM methods, normalize
D by:

rij =
xij
mP
i=1

xij
: (18)

Step 2: Provide weight for this matrix by:

yij = wj � rij i = 1; 2; :::;m; j = 1; 2; :::; n:

In the above-mentioned equation, rij is the nor-
malized value of choice i of attribute j and wj is
the weight of factor j. Using this alteration, the
total dimensionless weighted value of every attribute
equals the weight of that attribute:

mX
i=1

yij = wj : (19)

Step 3: Obtain the sum of Weighted Normalized
Values (WNV) by:

S+i =
nX
j=1

y+ij ;

S�i =
nX
j=1

y�ij ; (20)

where y+ij and y�ij are the WNVs for the positive
(bene�cial) and negative (non-bene�cial) criteria,
respectively. The greater S+i, the superior is the
option and the lower is S�i; therefore, the better is
the choice. Note that S+i and S�i indicate the levels
of goals reached by every choice.
Step 4: Obtain the priorities of the choices by
de�ning the positive option S+i and negative option
S�i traits. The comparative signi�cance Qi of each
Ai is calculated by:

Qi = S+i +
S�min

mP
i=1

S�i

S�i
mP
i=1

S�min
S�i

i = 1; 2; :::;m: (21)

In the above-mentioned equation, S�min indicates
the minimum S�i. The greater Qj , the higher the
signi�cance of the option. Thus, the choice with the
highest relative priority (Qmax) is the best option.
Step 5: Determine the level of utility (Ui) for choice
i. Ui (absolute prioritizing) is calculated by:

Ui =
Qi
Qmax

� 100: (22)

To specify the adaptability of these two MCDM
techniques, namely TOPSIS and COPRAS, their
comparative accomplishments are compared by the
Spearman's rank correlation test.
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6.4. Spearman's Rank Correlation Coe�cient
(SRCC)

SRCC is employed to obtain the measure of relation-
ship (agreement) between results (ranks) generated by
various MCDM techniques. If Ri and Ri0 indicate the
results obtained by two various MCDM techniques for
alternative i and m is the number of options, then
SRCC will be calculated as follows:

rs = 1� 6

mP
i=1

(Ri �Ri0)2

m(m2 � 1)
: (23)

The bigger rs, the better the association is be-
tween the two techniques. Please note that rs = 1
shows complete agreement, rs = �1 shows complete
disagreement, and rs = 0 indicates no relationship
between the results. The reader can refer to [81] and
references therein to study further about SRCC.

6.5. MCDM-based method for search problem
In this part, we introduce a multiple-criteria evaluation
framework for the search problem.

6.5.1. Problem description and solution
Suppose that a motionless target is located or hidden
in location i and this goal does not react to the
activity of the searcher. Please note that the number
of locations is known. The probability that the goal is
in location i is Pi and it is clear that

Pn
i=1 Pi = 1. The

search cost and search time of location i are Ci and
ti, respectively. Again, in this problem, a wounded
man trapped under debris is the \target" and the
positions where a missing person has probably been
before a disaster are \locations". Now, the aim of this
problem is prioritization for the search of locations. In
other words, the model prioritizes the given locations
based on three weighted attributes, namely search cost,
search time, and probability of �nding the goal. It
should be noted that various criteria are signi�cant in
studying the search problem as an MCDM problem.
From [14,17,26,32,43], the criteria for the prioritization
of locations can be identi�ed. More formally, we select
four of them, which correspond to the previous two
objectives as follows:

1. Search cost;
2. Search time;
3. Probability that the goal is in location;

4. Overlook probability.

Let us reconsider the case that was presented in
Sub-section 5.2. We consider three attributes, i.e.,
search cost, search time, and probability of detecting
the goal. In this case, without loss of generality,
we suppose the probability of overlook is zero, i.e.,
8i; �i = 1. Among these three attributes, probability
of �nding the goal is the bene�cial criterion. On
the other hand, search cost and search time are non-
bene�cial criteria. Three locations are considered as
the candidates. From these three choices, the one
with the highest priority should be chosen. Table 5
demonstrates the ratings of the locations regarding the
selected attributes on the basis of Tables 2, 3, and 4.
Now, the weights of attributes should be calculated.
In this work, the weights of criteria are obtained by
using Shannon entropy. Shannon entropy values of the
attributes are calculated as follows. We have:

Ej = � 1
lnm

nX
j=1

pij ln pij ;

where:

pij =
xij
mP
i=1

xij
;

and the weights will be calculated by:

wj =
1� Ej
nP
j=1

1� Ej
:

Thus, to prioritize the locations by TOPSIS and
COPRAS, weights of attributes are speci�ed using
Shannon entropy as shown in Table 6.

Finally, we run COPRAS and TOPSIS, and ob-
tain the rankings of alternatives, separately. According
to Table 7, COPRAS gives the rankings of locations as
1-3-2. Also, TOPSIS gives the rankings of locations as
1-3-2. Hence, based on the order [1, 3, 2], the locations
should be checked.

Figure 9 graphically demonstrates the rankings
of locations. Clearly, the value of SRCC between
TOPSIS and COPRAS is 1. Therefore, an important
observation in the use of various MCDM techniques is
that the outcome of TOPSIS is in excellent agreement

Table 5. Decision matrix.

Search cost
(thousand USD)

Search time
(hour)

Probability of
�nding the goal

Location 1 23 19 h 38%
Location 2 25.5 17.5 h 28%
Location 3 30 16 h 34%
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Figure 9. Rankings of locations (the horizontal axis shows the alternatives).

Table 6. Weights of criteria.

Criterion Search cost Search time Probability that the goal
is in location i

Weight 0.373 0.152 0.473

Table 7. Rankings of locations by two MCDM methods.

TOPSIS COPRAS

Location Rank Similarity ratio Location Rank Degree of utility

Location 1 (cottage) 1 0.868 Location 1 (cottage) 1 1
Location 2 (forest) 3 0.308 Location 2 (forest) 3 0.881

Location 3 (mountain) 2 0.436 Location 3 (mountain) 2 0.967

with the result of COPRAS for this problem. It is
noteworthy that this is consistent with the study of
Mousavi-Nasab and Sotoudeh-Anvari [85].

Finally, it is important to note that although
the models attained the same results, the calculation
e�ort and computation time were intuitively smaller
in MCDM-based model than in the stochastic multi-
objective model for the suggested search problem.

7. Conclusion

Although SAR is one of the most vital operations for
the earthquake DM, its various models have not been
as accentuated as the models for transportation or
location in this �eld. In this paper, we suggested a
stochastic multi-objective model to optimize the search
operation in the response stage of DM based on COSM.
Due to sequential nature of the optimal search problem
and stochastic organization of this model, we employed
SDP technique to tackle this problem similar to COSM.
The proposed framework minimized expected cost and
expected time of search procedure successfully. How-
ever, the outcome obtained by the suggested model
illustrated that computing time in real cases would be
large. In other words, the stochastic multi-objective
nature of the problem made it very intricate to �nd
the optimal solution, even for small-size cases, using
SDP. Therefore, we reformulated the search problem as
an MCDM problem. This study showed that not only

MCDM methods were workable for the search problem,
but also the use of MCDM methods seemed inevitable
for coping with large cases. Due to their outstanding
features, TOPSIS and COPRAS were employed to
rank the locations. The observation indicated an
excellent agreement between TOPSIS and COPRAS in
the search problem.

Let us now note a number of directions for future
research. The development of the proposed stochastic
multi-objective framework for the search problem in
the presence of various constraints is remarkable. Also,
heuristic methods can be proposed to handle large
problems. Furthermore, it can be very interesting to
introduce an MCDM framework when MCDM tech-
niques produce conicting results.
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