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Abstract. This paper presents a framework for solving a risk response action selection
problem by considering: 1) the impact of risk events on the project objectives, 2) the
interactions between risk events, 3) management criteria and preferences. To ful�ll these
purposes, a framework is developed by combining an optimization-based model with a
Multi-Criteria Decision Making (MCDM) approach. First, in the optimization-based
model, Ant Colony Optimization (ACO) is used to �nd the best combination of response
actions with greater e�ects on time, cost, and quality. In addition, in this model, to
overcome the imprecision situation resulting from lack of knowledge or insu�cient data,
risk parameters are determined using the fuzzy set theory. Moreover, the Design Structure
Matrix (DSM) is used to capture the e�ect of interactions between risk events. Second, the
Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) method
is used to analyze the obtained solutions by ACO based on other management criteria.
Finally, the e�ciency of the proposed framework is examined by its implementation in a real
building construction project. Discussions concerning the case study show that decision-
makers can evaluate more aspects of response actions by using the proposed framework.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Risk is a complex phenomenon that has physical, mon-
etary, cultural, and social dimensions [1]. Project Man-
agement Institute (PMI) de�ned risk as an uncertain
event or condition that, in case it occurs, has a positive
or negative e�ect on one or more project objectives such
as scope, schedule, cost, and quality [2]. The construc-
tion industry is subjected to more risk and uncertainty
than perhaps any other industrial sector [3]. As a
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result, in the construction industry, we can see many
projects around the world that were completed with
considerable time and cost overruns [4]. Therefore,
risk management in construction projects has been
recognized as an inherent and strictly recommended
process in order to achieve project objectives [5,6]. Risk
management consists of risk management planning,
risk identi�cation, qualitative risk analysis, quantita-
tive risk analysis, risk response planning, and risk
monitoring and control processes [2]. Among these
processes, despite the signi�cance of the risk response
planning in minimizing the probability and/or negative
impact of project risks, it has rarely been addressed in
the studies relating to risk management [7]. However,
for reducing global risk exposure, appropriate response
actions should be selected. Accordingly, a few speci�c
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tools and systematic solutions were developed in the
area of risk response selection [7]. Regardless of the
response selection approach, factors including total
expected risk loss, risk interactions, budget constraints,
response costs, response e�ects, and uncertainty in the
risk parameters should be considered within the risk
response planning process. Ignoring each one of these
items can cause an inappropriate selection of response
actions and the waste of human and �nancial resources.
Based on the conducted previous researches, the main
approaches for generating risk response actions can be
classi�ed into �ve categories as follows: the zonal-based
approach [8,9], the trade-o� approach [10,11], the Work
Breakdown Structure (WBS)-based approach [7,12],
the optimization-model approach [13], and the Case-
Based Reasoning (CBR) approach [14].

Neither of the mentioned approaches is complete,
and they are subject to some limitations. For example,
only two criteria can be considered in the zonal-based
and trade-o� approaches [15], and some required in-
formation, such as the individual risks, involved in the
target case may not exist in the surveyed cases in the
CBR approach [14]. In the WBS-based approach, risks
are identi�ed for an analyzed activity; then, strategies
can be formulated in direct association with the corre-
sponding activity or can be selected among candidate
ones by an index of the scope expected deviation [7].
However, there is not any way to make sure that the
selected strategies on the basis of this approach are
the optimal solutions. In the optimization-model ap-
proach, by constructing a mathematical model whose
variables are project objectives such as time, cost, or
quality, the optimal risk response actions can be cho-
sen. Generally, in this model, the objective function is
to minimize the cost of implementing actions. Despite
other mentioned methods, the optimization model ap-
proach has shown its practicability in previous studies
for evaluating and selecting risk response actions to
achieve the project objectives [15]. For example, Kayis
et al. (2007) developed �ve computational algorithms
including least-cost-�rst, highest-risk-�rst, minimum-
cost-risk-ratio-�rst, random-search, and a genetic algo-
rithm to �nd feasible solutions for mitigating risks [16].
Fan et al. (2008) developed a conceptual model to
describe the quantitative relationships among risk re-
sponse strategies and project characteristics. The
optimization analysis was then performed to derive a
minimum-cost risk-handling strategy for a particular
risk event [13]. Ben-David and Raz (2001) presented
a model that integrated work contents of projects,
risk events, risk reduction actions, and their e�ects.
Then, the optimization techniques were used to solve
the model in order to generate the most cost-e�ective
combinations of risk reduction actions [17]. Zhang and
Fan (2014) developed an optimization model, which
integrated three critical elements: the project cost,

project schedule, and project quality. By solving the
model, the most desirable risk response strategies to
cope with the risk events could be determined [15].
Nik et al. (2011) proposed an optimization model that
integrated the project work breakdown structure, risk
events, risk responses, and their e�ects on the project's
time, cost, and quality. The e�ects on these three
objectives were changed into a single one by assigning a
weight factor to each objective [18]. Fang et al. (2013)
developed a quantitative framework of analysis to sup-
port decision-making in project risk response planning.
They used the design structure matrix representation
to capture risk interactions and, also, used a genetic
algorithm for choosing response actions and allocating
budget reserves [19]. Soo�fard and Khakzar Bafruei
(2016) proposed a mathematical model, in which work
structure breakdown, risk occurrences, risk reduction
measures, and their e�ects were clearly related to each
other to evaluate and select the project risk responses.
They also considered the relationship between risk
responses during model implementation [20]. Soo�fard
and Gharib (2017) proposed a model for proper risk
response selection from the responses portfolio with
the aim of optimizing de�ned criteria for projects.
They also considered the relationships between risk
responses, especially relationships between risks [21].
Zhang (2016) constructed an optimization model for
selecting risk response strategies considering the ex-
pected risk loss, risk interdependence, and its two direc-
tions. Further, the e�ects of the risk interdependence
on risk response were also investigated [22].

However, despite these numerous research e�orts,
there are some de�ciencies in the previous researches
in this �eld that are presented as follows:

1. In most of the previous researches includ-
ing [13,17,15,18,20,22], the integer programming
model was used to determine the optimum project
risk response actions. However, it is so hard to
�nd the exact solution in a reasonable amount of
time with the number of variables or increasing
constraints. Therefore, for the large-sized problem,
some techniques and heuristic algorithms need to
be developed [15];

2. In all of the previous researches except [19,21,22],
the interactions between risk events were not taken
into account for selecting risk response actions.
However, engineering projects are becoming com-
plex in both structure and context due to the
involvement of many interrelated elements [23].
This situation makes it necessary to consider the
interrelated structures among the risks and how
the risks can have an impact on each other [24],
particularly when estimating the e�ectiveness of
risk response actions;

3. In all of the previous researches except [13], the
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impacts of the risk response actions were considered
only on time, cost, and quality. However, mostly, it
is also necessary to take into account other project
objectives and management preferences (such as
stakeholders' satisfaction), some project features
(such as its technical complexity), and some project
success factors (such as executive support) to
evaluate the risk response action sets. Previous
studies discussed the applications of various risk
response strategies, yet o�ered scant guidelines for
choosing a strategy that matches the characteristics
of projects and risks [13]. In other words, it is not
clear how management should align risk response
strategies with unique risk situations and project
characteristics;

4. In all of the previous researches, the exact values
of the probability and/or impact of the risk events
were used to estimate the e�ects of the risk response
planning. However, because of the unique nature
of projects, having su�cient data to derive exact
values for the probability or impact of the risk
events is often di�cult in the construction industry.
Since output depends on the reliability of the input
data in optimization-model approaches, the gap
between the proposed solution and its neighbors
should be analyzed [19]. Therefore, it is necessary
to utilize the fuzzy set theory to evaluate the
e�ectiveness of the risk response actions.

Considering the above explanation, in order to �ll
the existing gap and solve the mentioned problems,
this paper presents a framework comprised of an
optimization-based model and an MCDM approach to
select the most e�ective risk response actions on project
objectives. To overcome the imprecision resulting from
lack of knowledge or insu�cient data, the fuzzy set
theory is used for determining risk parameters (refer
to the fourth mentioned de�ciency). The response
actions that are selected for mitigating the exposure of
some risks may a�ect other risks. Therefore, the DSM
method is also used to capture the e�ect of interactions
between risk events when selecting response actions (re-
fer to the second mentioned de�ciency). The proposed
model is solved using ACO to �nd the best combination
of response actions with higher e�ects on the project's
time, cost, and quality (refer to the �rst mentioned
de�ciency). For evaluating the obtained response set
alternatives by ACO, based on the other criteria, the
FTOPSIS method is used (refer to the third mentioned
de�ciency).

The e�ciency of the proposed framework is
demonstrated by implementing it in a real building
construction project. The computation results and
discussions concerning a case study show that decision-
makers can evaluate more aspects of obtained results
by an optimization-based model using the proposed

framework. Furthermore, by considering interactions
between risk events and uncertainty in the risk param-
eters, further data for decision-making can be achieved.

The remainder of this paper is organized as
follows. Section 2 describes the research methodology
including the proposed framework and the fundamental
concepts of ACO and FTOPSIS. The parameters of the
optimization-based model for selecting risk response
actions and minimizing the cost of implementation
of them using ACO are also given in this section.
In Section 3, the proposed framework is utilized for
selecting risk response actions through surveying a real
building construction project. The outcome results are
also presented in this section. Finally, we conclude this
paper in Section 4.

2. Research methodology

In this section, the fundamental concepts of ACO and
FTOPSIS as components of the proposed framework
are described. The owchart diagram of the di�erent
steps of the proposed framework is depicted in Figure 1.
As shown in Figure 1, the components of the WBS and
the top risk events that a�ect them are determined
in the �rst step. The risk parameters including
probability and impact on time, cost, and quality for
each risk after and before applying response actions
are determined in the second step. In the third step,
the interactions between risk events and the e�ect
of each risk on other risks are determined using the
DSM method. The constraints of the model including
the maximum allocated budget for implementing the
response actions and also the list of proper response
actions which can be selected; in addition, their costs
are determined in the fourth step. By using the data
obtained from the previous steps, the ACO is applied in
the �fth step. In the sixth step, the FTOPSIS method
is used to evaluate the response sets obtained by ACO
based on the other criteria. Finally, the solution that
ranked higher in the evaluation process is reported as
the best solution.

2.1. Ant Colony Optimization (ACO)
ACO is one of the swarm intelligence algorithms based
on the behavior of ants that cooperate through self-
organization without any central control to �nd an
optimal path between their colony and a source of
food [25]. They communicate with each other by means
of a chemical substance called Pheromone, which is
deposited on their trail [26]. The pheromone will
evaporate over time. Thus, when an ant starts to
�nd a food source, it is likely not to keep traveling
at random. It selects a trail with high pheromone
density. The highest pheromone density on a trail
shows that more ants select this trail to �nd food. The
pheromone density becomes higher on shorter paths
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Figure 1. The owchart diagrams of di�erent steps of the proposed framework.

over time, because the duration of traveling a shorter
path is less than longer paths. Thus, when one ant
�nds a good path from the colony to a food source,
other trails with little pheromone will eventually be
abandoned; �nally, all the ants will converge to the
same trail [27]. In ACO algorithms, an individual
ant constructs candidate solutions to a combinatorial
optimization problem by starting with an empty solu-
tion and, then, iteratively adding solution components
until a complete candidate solution is generated [26].
The ants make use of the information that reects
the experience accumulated by previous ants, called
pheromone information, and of problem-dependent
information, called heuristic information, in order to
decide which solution component to add to its current
partial solution by means of a stochastic construction
policy [28]. Dorigo postulated that the �rst ACO
algorithm is the ant system [29]. The ant system has
inspired a number of further extensions that aim to
improve the performance of the basic ACO algorithms
in problem-solving. These extensions include the Ant
Colony System (ACS), elitist ant system, maximum-
minimum (max-min) ant system, rank-based version of
that ant system, etc. The main di�erence between the
ant system and its extensions lies in the ways in which
the pheromone is updated as well as some additional
details in managing the pheromone trails. Generally,
the ACO can be formulated as follows [30,31]:

� Arti�cial ants construct solutions from the sequence

of solution components taken from a �nite set of N
available solution components C = fcijg;

� A solution construction starts with an empty partial
solution Sp = �;

� In each construction step, the current partial solu-
tion Sp is extended by adding a feasible solution
component from the setN(Sp) � C, which is de�ned
by the solution construction mechanism;

� The choice of a solution component from N(Sp) is
done probabilistically in each construction step. The
exact rules for the probabilistic choice of solution
components vary across di�erent variants of ACO:

p (Cij jSp) =
��ij � � (Cij)

�P
Cil2N(Sp) ��il � �(Cil)�

;

8 Cij 2 N(Sp); (1)

where �ij is the pheromone value associated with
component Cij , and �(Cij) is a weighting function
that assigns, in each construction step, a heuristic
value to each feasible solution component Cij 2
N(Sp). In addition, � and � are positive param-
eters; their values determine the relation between
pheromone information and heuristic information;

� The next step is to update the pheromone, which is
increasing the value of pheromone in a good solution
and decreasing it in a bad one. This step is done
based on Eq. (2):



Sh. Shoar and A. Nazari/Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 1763{1777 1767

�ij  
(

(1� �)�ij + ���; if �ij 2 Sch
(1� �)�ij ; Otherwise

(2)

where �� is a positive value for increasing the value
of pheromone in a good solution. � 2 [0; 1) is the
rate of pheromone evaporation that prevents the
algorithm from converging rapidly. Sch is the set
of good solutions.

2.2. Fuzzy TOPSIS approach
MCDM methods are common approaches to structure
information and decision evaluation in various prob-
lems with multiple and conicting goals [32]. A fuzzy
TOPSIS technique is extended to solve the MCDM
problem under a fuzzy environment in a systematic
process. TOPSIS o�ers the point as the solution,
that is, simultaneously, the farthest distance from the
negative ideal and the nearest distance to the positive
ideal [33]. The TOPSIS method is considered as a
major MCDM technique in comparison with other
related techniques because [33]:

� It can include an unrestricted range of criteria and
performance attributes;

� Changes in one attribute can be neutralized by other
attributes in a direct or indirect manner;

� It not only provides us with the preferential ranking
of alternatives, but also calculates a numerical value
for each alternative for a better understanding of
the di�erences and similarities between alternatives,
while other techniques only determine the rank of
alternatives;

� It provides us with a systematic procedure stream-
lined with a relatively simple computation process.

For these reasons, in this study, in order to rank
the obtained risk response actions sets from ACO
and determine a compromise solution for the decision-
making problem with conicting criteria, the TOPSIS
approach is utilized. The fuzzy TOPSIS procedure
consists of the following steps [34]:

Step 1: Inputs are expressed in the decision matrix
format as follows:

D =

C1 C2 C3 � � � Cn
A1
...
Am

264 y11
...

ym1

y12

ym2

y13
...

ym3

� � �
� � �

y1n
...

ymn

375;
i = 1; 2; � � � ;m; j = 1; 2; � � � ; n; (3)

W = [w1; w2; w3j ; � � � ; wn] ; (4)

where yij is the rating of alternative Ai with respect
to criterion Cj , and Wj is the importance weight with
respect to Cj ;

Step 2: Calculate the normalized fuzzy decision
matrix, R:

R=[rij ]m�n i=1; 2; 3; � � � ;m; j=1; 2; 3; � � � ; n:
(5)

For the bene�t criterion, normalized value rij is
calculated as follows:

rij =

 
lij
u+
j
;
mij

u+
j
;
uij
u+
j

!
; (6)

where:

u+
j = max

i
uij :

Similarly, normalized value rij for cost criterion is
calculated as follows:

rij =

 
l�j
uij

;
l�j
mij

;
l�j
lij

!
; (7)

where:

l�j = min
i
lij ;

where l, m, and u are the parameters of a triangular
membership function;
Step 3: Calculate the weighted normalized fuzzy
decision matrix, V ;

V =[Vij ]m�n i=1; 2; 3; � � � ;m; j=1; 2; 3; � � � ; n:
(8)

Considering di�erent weights of each criterion, the
weighted normalized decision matrix can be com-
puted by multiplying the importance weights of the
evaluation criteria and the values in the normalized
fuzzy decision matrix. The weighted normalized
fuzzy value, Vij , is calculated as follows:

vij = rij 
 wj ; i = 1; 2; 3; � � � ;m;
j = 1; 2; 3; � � � ; n; (9)

where wj is the fuzzy weight of the jth criterion;
Step 4: Identify the Fuzzy Positive Ideal Solution
(FPIS) and Fuzzy Negative Ideal Solution (FNIS):

A+ =
�
v+

1 ; v
+
2 ; � � � ; v+

n
	
;

A� =
�
v�1 ; v�2 ; � � � ; v�n 	 ; (10)

where v+
j = (1; 1; 1) and v�j = (0; 0; 0), j =

1; 2; 3; � � � ; n;
Step 5: Calculate the distances of each alternative
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to FPIS and FNIS using:

d+
i =

nX
j=1

d
�
vij ; v+

j
�
; i = 1; 2; 3; � � � ;m;

j = 1; 2; 3; � � � ; n;

d�i =
nX
j=1

d
�
vij ; v�j

�
; i = 1; 2; 3; � � � ;m;

j = 1; 2; 3; � � � ; n; (11)

where d(va:vb) denotes the distance measurement
between two fuzzy numbers;
Step 6: Calculate the relative closeness to the ideal
solution. The relative closeness of alternative Ai is
calculated as follows:

CCi =
d+
i�

d+
i + d�i

� ; i = 1; 2; 3; � � � ;m; (12)

where 0 � CCi � 1, that is, alternative i is closer
to the fuzzy positive ideal reference point and far
from the fuzzy negative ideal reference point as CCi
approaches 1 [35];
Step 7: Rank the preference order. Choose an
alternative with maximum CCi or rank alternatives
according to CCi in descending order.

It is worth mentioning that this approach has
many applications in engineering and management
�elds and has a simple computation process and high
exibility [36].

2.3. Constructing the optimization model
To optimize the selection of risk response actions, ACO
is used to maximize the positive e�ects of the selected
risk response actions on project objectives including
time, cost, and quality. For considering the interactions
between the risk events, the DSM method is also used.
The DSM was introduced by Steward in 1981 [37], and
it provides a simple and visual way to perform both
the analysis and the management of complex systems,
especially to represent the interrelated structure of
system elements. The DSM is a square matrix. In
our case, the risk events are placed in the �rst row and
the �rst column in the same order. Diagonal cells of
the DSM are blacked out because reexive relation is
ignored, and o�-diagonal cells indicate the interactions
between risk events. The marks in the DSM below
the diagonal indicate feed-forward information, while
the marks above the diagonal are feedback informa-
tion [38]. In the probability assessment, a spontaneous
probability can be interpreted as the likelihood of
a risk whose e�ect is di�erent from those of other
activated risks inside the system. On the other hand,

the transition probability measures the likelihood of a
direct cause-e�ect relationship between two risks [19].

Therefore, according to Fang et al. (2013), the
global probability of each risk event (P ) can be deter-
mined using Eq. (13) [19]:

P = D:s; D = (I � T )�1; (13)

where T is the risk transition probability matrix which
is constructed using DSM, S is the spontaneous proba-
bilities, I is the identi�ed matrix, and P represents the
new values of the risk probabilities.

The impact of the risks on the project's time, cost,
and quality prior to selecting any risk response actions
can be calculated as follows. In order to relate the
risk response action selection to work packages of the
project, the WBS is used.

ETL =
nX
i=1

mX
j=1

lX
k=1

wtime
i xij � �PkItime

k Djk
�
; (14)

ECL =
nX
i=1

mX
j=1

lX
k=1

wcost
i xij � �PkIcost

k Djk
�
; (15)

EQL =
nX
i=1

mX
j=1

lX
k=1

wquality
i xij �

�
PkIquality

k Djk

�
;

(16)

where ETL, ECL, and EQL are the expected
time loss, expected cost loss, and expected quality
loss, respectively. In addition, wi represents the
time/cost/quality weight factor of the ith work pack-
age. As mentioned by Seyedhoseini et al. (2009), each
work activity in the WBS has its own scope, similar to
that of the project, which can be split into three key
aspects: quality, schedule, and cost [7]. For example,
wcost
i can be calculated by dividing the cost of the ith

work package by the total cost of the project. However,
the quality of an activity can usually be measured
subjectively by managers' judgment [7]. xij is a binary
variable. It is equal to 1 if the jth risk event inuences
the ith work package. Otherwise, it is equal to 0. Ik
is the impact of the kth risk event on the project's
time/cost/quality. Pk is the probability of the kth risk
event. Djk is the impact of the jth risk event on the
kth risk event which is obtained from the DSM method.

The response action list may include di�erent
types of risk response actions in terms of avoidance,
transference, mitigation, and acceptance [39]. Poten-
tial response actions can be identi�ed based on the
historical data of similar cases and lessons learned.
Risk response actions always consume time, money,
and other resources and a�ect the changing values of
the risk parameters such as probability or impact. The
impact of the risks on the project's time, cost, and
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quality after implementing risk response strategies can
be calculated as follows:

ETLAR =
nX
i=1

mX
j=1

lX
k=1

wtime
i xij

� �PARk IAR;time
k Djk

�
; (17)

ECLAR =
nX
i=1

mX
j=1

lX
k=1

wcost
i xij

� �PARk IAR;cost
k Djk

�
; (18)

EQLAR =
nX
i=1

mX
j=1

lX
k=1

wquality
i xij

� �PARk IAR;quality
k Djk

�
; (19)

where ETLAR, ECLAR, and EQLAR are the expected
time loss, expected cost loss, and expected quality
loss after implementing risk response strategies, respec-
tively. IARk is the impact of the kth risk event on
the project's objectives, and PARk is the probability
of the kth risk event after implementing risk response
strategies. In this study, the risk's parameters are
determined using fuzzy membership functions.

Based on the de�ned parameters, the Objective
Function (OF) of the ACO can be formulated as
follows:

minOF = Wt �
�
ETL� ETLAR

ETL

�
+Wc �

�
ECL� ECLAR

ECL

�
+Wq �

�
EQL� EQLAR

EQL

�
; (20)

where Wt, Wc, Wq are the time, cost, and quality
weight factors that can be calculated subjectively
by managers' judgment using the Analytic Hierarchy
Process (AHP) method.

The cost of implementing the risk response plan
should meet the budget requirements. Therefore, the
following constraint should be considered in OF .0@R:C =

mX
j=1

Cj

1A � B; (21)

where Cj is the cost of the response strategy which is
selected for the jth risk event, and B is the maximum

allocated budget by managers for implementing the risk
response plan.

The budget constraint in the OF (�tness) of
the optimization problem is investigated, aiming to
maximize the value. Therefore, the OF is revised as
follows:

Fitness f = OF �Violation;

Violation = alpha�max
�
R:C
B
� 1; 0

�
; (22)

where R:C is the total cost of response actions. Alpha
is a variable more than \1000". Violation is a penalty
value and signi�cantly increases if the response actions'
costs exceed B and, thus, signi�cantly decrease f value.
Therefore, exceeding the constraint is penalized by the
decrease of the �tness.

After generating the best response action sets
by considering the numerical e�ects of the response
actions on project's cost, time, and quality, the fuzzy
TOPSIS method is used to evaluate the obtained
solutions by ACO based on the other criteria.

3. Case study

To verify the validity of the proposed framework for
risk response selection, it is implemented in a real
building construction project. The project scope of
this case should be determined �rst; the project cost
is $5.6 million, and the allocated budget by the project
manager for implementing risk response actions is
$225.000. This case is a commercial o�ce building and
includes 12 oors on ground and 7 oors underground.
The WBS of the entire project and critical risk events
with respect to the identi�ed work packages are shown
in Figure 2.

The critical risk events were identi�ed by con-
ducting a brainstorming session among a total of 34
identi�ed risk events. By using the DSM method
introduced in Section 2.3, the interactions between the
top 10 risk events have been identi�ed with the help of
the project manager and the team of experts, including
5 risk owners. For this purpose, each expert is asked to
show a level that reects the impact of the one risk on
another risk. The scale of scores ranged from 0 to 4.
Then, by using Eq. (13), the inuences of risks on each
other are determined. The exposure of risks is assessed
in terms of a qualitative scale of impact and probability.
For this purpose, the project manager is asked to de�ne
�ve membership functions that a�ect time, cost, and
quality according to the de�nition shown in Table 1.
The direct method with one expert [40] was used to
elicit the ranges of each membership function. To
determine the probability of di�erent risk events, the
variations in the probability of risk events were divided
into 10 fuzzy intervals. To achieve highly precise results
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Figure 2. The WBS of the project.

and obtain a smaller probability span, this number
of divisions were considered. More division depends
on the extent of risk events' uncertainty and experts'
opinions. Then, the experts were asked to choose the
probability of risks events from one of the 10 given
intervals, as shown in Figure 3. The exposure of the
identi�ed risks before and after implementing response
actions is shown in Tables 2 and 3, respectively.
The limitation of experts' knowledge and experiences
may result in proposing di�erent response actions by
experts. Therefore, response actions are obtained by
using the Delphi technique and are intended to reduce
the risk probability or risk impact. The Delphi method
is a forecasting method based on the results of ques-
tionnaires sent to a group of experts. Several rounds

of questionnaires are sent out, and the anonymous
responses are aggregated and shared with the group
after each round. The experts are allowed to adjust
their answers in subsequent rounds. Since multiple
rounds of questions are asked and the panel is told what
the group thinks as a whole, the Delphi method seeks
to reach the correct response through a consensus [41].

In order to determine Wc, Wt, and Wq parameters
of Eq. (20), AHP method was used. The AHP was
�rst established by Saaty [42] to aid decision-making
for problems that involve multiple criteria. The AHP
method is generally implemented in four following
stages [43]:

� Decomposition of a decision problem and the con-
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Table 1. Linguistic de�nition of impact.

Terms Impact categories
Cost Time Quality

Very High (VH) >15% cost increase >15% project duration increase Project end item is e�ectively
useless

High (H) 10-15% cost increase 10-15% project duration increase Quality is unacceptable to
a project sponsor

Medium (M) 5-10% cost increase 5-10% project duration increase A major area of quality
is a�ected

Low (L) <5% cost increase <5% project duration increase Few areas of quality is a�ected

Very Low (VL) Insigni�cant cost increase Insigni�cant project duration increase Quality degradation barely
noticeable

Table 2. Exposure of the critical risks before implementing response actions.

Risk ID Description
Probability

(no. of
interval)

Impact categories
Cost

impact
Time

impact
Quality
impact

R1 Under estimation of the contract duration 6 M VH M
R2 Problem with opponents 3 M M VL
R3 Delaying in utility services (water, electricity, etc.) 2 M M VL
R4 Execution phase pitfalls problem 5 H H M
R5 Problems related to the technical complexity 6 VH H H
R6 Design changes 4 L M M
R7 Delay in approval of shop drawings 5 L M L
R8 Inadequate experience of sub-contractor 3 H M VH
R9 Shortage of material in local market 3 L H M
R10 Problem in supplying equipment from aboard 7 M H M

Figure 3. Membership functions for: (a) Probability and (b) time, cost, and quality impact.

struction of a hierarchical model of criteria and de-
cision variants a�ecting the solution of the problem;

� Pairwise comparison of the criteria and generation
of the vector of weights for individual criteria;

� Pairwise comparison of decision variants in relation

to individual criteria and generation of the local
weight vectors for those variants in relation to those
criteria;

� Determination of the vector of global preferences
of decision variants arranged in relation to the
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Table 3. Exposure of the critical risks after implementing response actions.

Action
ID

Description
Inuencing

on
(risk ID)

Cost
estimate

($)

Probability
(no. of given

intervals)

Impact categories
Cost

impact
Time

impact
Quality
impact

A1 Flexibility in contract R1 95.000 3 M VH M

A2 Allocating more resources for
compensating delay

R1 175.000 6 M M L

A3

Having a system based on
historical data in place to
validate the allocated time
to the project

R1 85.000 4 M VH M

A4 Investigating the validity of
land ownership documents

R2 7.000 1 M M VL

A5 Satisfying the opponents R2 20.000 3 L L VL

A6 Increasing interaction with
public service organizations

R3 15.000 1 M M VL

A7 Diversi�cation on the providers R3 23.000 2 M L VL

A8 Employ skillful and experienced
sta�

R4 17.000 2 H H M

A9 Training of the sta� R4 11.000 2 H H M

A10
Allocation of the experienced
sta�, more closer to the
complexity of the work

R5 64.000 3 VH H H

A11 Having enough resources to
deal with the complexity

R5 68.000 6 H M M

A12

Getting as much information on
the complex part of the project
and interdependencies of the
phases and activities

R5 53.000 3 VH H H

A13
Determination of the provision
of the design change within the
building contract

R6 13.000 1 L M M

A14 Identi�cation of potential design
changes as a risk

R6 8.000 2 L L L

A15

Having a training system in
place to indoctrinate
subcontractors in the ways of
the company

R8 87.000 1 H M M

A16

Avoiding the selection of the
cheapest subcontractor if there
is doubt on the performance
track record

R8 95.000 1 M M M

A17
Accurate initial studies to
identify the place of supply
materials

R9 25.000 1 L M M

A18 Supply material on time from
other sources

R9 31.000 1 L M L

A19 Purchasing some of main
equipment from local factories

R10 | 4 L M H

contribution of variants in achieving the objective
of the ultimate decision problem.

According to the AHP results, the mentioned parame-
ters are calculated, as shown in Eq. (23):

Wt = 0:46; Wc = 0:40; Wq = 0:14: (23)

3.1. Computational results
3.1.1. ACO results
The proposed ACO for the risk response action selec-
tion is performed for the minimum, most likely, and
maximum values of risk parameters, separately. The
obtained results are shown in Figure 4. The parameters
of the proposed ACO are determined through experi-
ence and testing. The number of ants in each iteration
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Figure 4. The �tness parameters results of the minimum, most likely, and maximum values of risk parameters.

Table 4. Fuzzy-decision matrix of alternatives and deterministic weights of each criterion.

Alternatives
(optimal selected
response actions)

Fitness function
Weight = 56%

Executive
support

Weight = 14%

Stakeholders'
satisfaction

Weight = 18%

Technical
complexity

Weight = 12%
DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

[A1,A4,A9,A12,A13,A18,A19] (0.5131,0.56710.6471) M M M H H M M M M
[A4,A6,A8,A10,A13,A18,A19] (0.4587,0.50160.5733) H H M H VH VH L L L
[A1,A4,A6,A9,A12,A13,A18,A19] (0.5154,0.5693,0.6502) M H M H H H M L L
[A1,A4,A6,A8,A12,A13,A17,A19] (0.5126,0.5669, 0.6494) M M H H H H L L M

is set to 10. The Roulette Wheel method is used for
selecting the next node (response action in this study)
by an ant in its tour. Roulette Wheel is a selection
method in which a proportion of the wheel is assigned
to each of the possible selections based on their �tness
value. Then, a random selection is made similar to how
the roulette wheel rotates. The termination condition
is set as the maximum number of 300 iterations. The
value of alpha is set to 0.05 and the value of � to
0.05 by testing. The optimal selected response actions
obtained by performing the ACO are shown in Table 4.
The best �tness value for the minimum, most likely,
and maximum values of risk parameters is equal to
(0.5154, 0.5693, and 0.6502), as shown in Figure 4.
The optimal total cost of implementing the action
plan is $225,000. The application of the proposed
method shows some promising results as OF reduces
by 56.93%, expected time loss by 59.07%, expected cost
loss by 55.91%, and expected quality loss by 52.79%.
Therefore, the impact of response actions on time,
cost, and quality can be analyzed simultaneously. It
is worth mentioning that, unlike previous researches,
these results have been achieved with regard to the

interaction between risk events. The obtained results
without considering the risk interactions are also shown
in Figure 4 with a dashed line. Further research should
be done to investigate the sensitivity of the optimal
response action set and OF value to these interactions.

Moreover, unlike previous approaches, since the
results are obtained in a fuzzy environment, further
analysis using possibility and necessity measures, which
are widely used in fuzzy literature, can also be carried
out to provide valuable data for decision-making. For
details, readers can refer to [44]. For example, let us
assume that the value of expected cost loss after apply-
ing response actions to the necessity measure of 90%
is 20%. Therefore, if the risk tolerance is set to 10%,
a risk-averse project manager may request additional
budget for the risk response planning process;

3.1.2. FTOPSIS results
it is possible to assign a weight factor in terms of time,
cost, or quality to a work package and, subsequently,
determine the expected time, cost, or quality e�ects of
a particular risk event on that work package. However,
there are other criteria that are susceptible to the
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risks. These criteria cannot be quanti�ed in this way.
Therefore, it is required to utilize subjective judgment
of the management team to consider them. For this
purpose, in this stage, an MCDM model using the
FTOPSIS method is employed to evaluate and select
the most satisfying or the best combination of response
actions in accordance with the pre-determined criteria.
These criteria can be de�ned by surveying the man-
agement team of a speci�c contractor. In this study,
executive support, stakeholders' satisfaction, and tech-
nical complexity criteria along with �tness function
are used to determine the most satisfying solution.
These criteria have been proposed by the management
team. The main factor for choosing criteria is the
unique characteristics of the project. Therefore, these
criteria could di�er from project to project on the basis
of the project's unique features and management's
attitudes. The linguistic opinions of three persons
associated with the contractor management team are
aggregated and used for this purpose. Since these
experts have the same quali�cation, the importance of
experts against each other is not considered. However,
in another situation, it is worthwhile to consider the
importance weight of each expert. The decision matrix
and the computational results of the proposed fuzzy
TOPSIS are shown in Tables 4 and 5, respectively. The
deterministic weights of the attributes are obtained
by the AHP method. The linguistic variables in
Figure 3(b) are also used to evaluate alternatives based
on the pre-determined criteria in Table 4.

The obtained results of the proposed FTOPSIS
indicate that the most satisfying response actions for
the identi�ed risks in this case can be selected as
follows:

� Investigate the validity of land ownership docu-
ments;

� Increase the interaction of public service organiza-
tions;

� Employ skillful and highly experienced sta�;
� Allocate the experienced sta� acquainted with the

complexity of the work;
� Determine the provision of the design change within

the building contract;

Table 5. Closeness coe�cient of each optimal selected
response action set and its ranking.

Alternatives
(optimal selected
response actions)

CCi Rank

[A1,A4,A9,A12,A13,A18,A19] 0.341893 3
[A4,A6,A8,A10,A13,A18,A19] 0.50883 1
[A1,A4,A6,A9,A12,A13,A18,A19] 0.405937 2
[A1,A4,A6,A8,A12,A13,A17,A19] 0.339605 4

� Supply material on time from other sources;
� Purchase some of the main equipment from local

factories.

As shown in Table 4, the best optimal selected
response actions, obtained from the ACO, were used
in the TOPSIS procedure. Utilizing the TOPSIS,
the authors believe that more aspects of the obtained
solutions by ACO can be evaluated. In the studied
case, all alternatives in Table 4, except the second
one, acquired an almost similar �tness value in ACO.
However, the second one, with a lower �tness value,
was selected as the best solution using the TOPSIS.
The main di�erence between these optimally selected
response actions lies in the response actions, which
were selected for R4 and R5. As shown in Table 4,
response actions A8 and A10 achieve more executive
support and stakeholders' satisfaction in comparison
to response actions A9 and A12. In other words,
although providing training for sta� and supervision
measures can prevent the occurrence of R4 and R5,
even with a lower cost, the stakeholders prefer to em-
ploy experienced and skillful personnel and sta�. This
action prevents accidents during the implementation.
Moreover, it can also reduce the technical complexity
of the execution phase and achieve more executive
support. The mentioned aspects of the response
actions cannot be quanti�ed using ACO. Therefore,
applying an MCDM technique, such as TOPSIS, is
recommended for evaluating the obtained solutions by
ACO in accordance with other criteria.

In order to evaluate the validity of the proposed
framework, its results were also discussed with the
project manager and his team in some common meet-
ings. Based on their judgments, the results of this
methodology proved more appealing in comparison
with traditional approaches. The participants �nally
acknowledged that the model indeed could provide a
quantitative decision support for their practical work.

4. Conclusion and remarks

This paper presented an integrated framework that
consists of an optimization-based model and an MCDM
approach to select the most e�ective risk response ac-
tions considering the expected risk loss and interactions
between risk events. In the optimization-based model,
to overcome the imprecision resulting from lack of
knowledge or insu�cient data, the fuzzy set theory was
used for determining the parameters of the risk events.
Furthermore, the DSM method was used to capture
the e�ect of interactions between the risk events when
selecting response actions. Then, the proposed model
was solved using ant colony optimization to �nd the
best combination of response actions that have high
e�ects on time, cost, and quality. In the MCDM model,
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for evaluating the solutions obtained by ACO, based on
the other criteria, the FTOPSIS method was used. The
e�ciency of the proposed framework was demonstrated
by its implementation in a real building construction
project. In the studied case, the impact of the optimal
response action sets on project objectives, including
time, cost, and quality, unlike previous approaches,
can be represented in a fuzzy environment. Therefore,
further analysis using possibility and necessity mea-
sures, which are widely used in the fuzzy literature, can
be carried out to provide valuable data for decision-
making. The case-study results also show that the
evaluation of the obtained alternatives by ACO on the
basis of other criteria, which could not be considered
in the optimization-based model, may lead to changes
in the optimal solution. Generally, the advantages of
the proposed framework can be summarized as follows:

� Providing a new framework in a fuzzy environment,
unlike the previous researches, in which insu�cient
information and uncertain project environment in
the construction industry domain are considered. In
other words, by using the proposed method, the
impact of uncertainty in risk parameters on the
e�ciency of risk response actions can be analyzed;

� Considering multiple criteria for evaluating response
actions, including time, quality, executive support,
stakeholders' satisfaction, etc., for risk response
action selection besides the cost criterion existing
in the literature. Therefore, decision-makers can
evaluate the candidate response actions set and
make a decision more e�ciently;

� Considering the interactions between risk events
in the process of evaluating the e�ects of selected
response actions on project objectives. It was shown
that the �nal results could be di�erent by taking into
account these relations;

� By using ACO as a heuristic algorithm, the proposed
framework can also be used for more complex and
large-sized problems.

The results demonstrated that the proposed framework
could assist the project manager and professional ex-
perts to identify and evaluate risk response actions
more e�ciently. Therefore, the proposed framework is
expected to be applicable to a wide set of engineering
projects for the risk response actions selection problem.
Of note, there exist limitations of applying the pro-
posed approach in practice presented in the following:

1. In the studied case, the optimally selected response
actions varied for di�erent uncertainty levels; there-
fore, it was necessary to investigate the sensitivity of
the optimally selected response actions with respect
to the level of uncertainty in the probability or
impact of the risk events;

2. The di�culties and uncertainties, which are un-
avoidable in identifying and quantifying the risk
interactions using the DSM methods, should be
considered;

3. The probability and impacts of the secondary risks
(risks that did not exist before and were created
by the risk response actions) should be de�ned and
considered;

4. The sensitivity of the optimal response action set
and OF value to risk interactions should be ana-
lyzed. For further research, the application of the
proposed framework in more complex environments
with respect to the mentioned limitations should be
investigated.
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