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Abstract. Reliability analysis of structures is often problematic for the structures with
nonlinear and complex Limit State Functions (LSFs). For these cases, simulation methods
often provide accurate failure probability, but with a high number of LSFs in the analysis
of the structure. This paper presents an e�cient combined meta-model of Monte Carlo
Simulation (MCS) and Univariate Dimension Reduction (UDR) to approximate the failure
probability of structures with evaluation of few LSFs. For this purpose, the design of the
experiment applied in the meta-model was adapted such that the expected failure samples
in MCS were approximated with higher accuracy. Several numerical and engineering
reliability problems were solved by the proposed approach and the results were veri�ed
by MCS. Results showed that the proposed approach highly reduced the required number
of structural analyses to provide proper results.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In structural reliability analysis, the failure probability
Pf is de�ned as [1]:

Pf =
Z
G(X)

fx (X) dX; (1)

where fX(X) is the joint probability density func-
tion of the vector of basic random variables X =
[x1; x2; :::; xn]T , which represents uncertain quantities
such as material properties, loads, boundary condi-
tions, and geometry. In Eq. (1), G(X) is the Limit
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State Function (LSF) in which G(X) > 0 represents
the safety domain and G(X) < 0 represents the failure
domain. However, the failure probability of a given
problem by means of Eq. (1) is not a straight approach,
because the joint probability density function FX(X)
is not always available. In some cases, Eq. (1) cannot
be integrated analytically, even if FX(X) is available,
especially for the complex structures with low failure
probabilities and implicit LSFs. Therefore, in order
to avoid such calculation, various techniques have
been proposed, e.g., a) approximation methods (i.e.,
First Order Reliability Method (FORM) and Second
Order Reliability Method (SORM)) and b) simulation
methods [2-5]. FORM and SORM are accurate for
reliability problems with linear and moderate LSFs,
but inaccurate for highly nonlinear LSFs and di�cult
to solve when the actual implicit LSF cannot be
expressed explicitly. Besides, in some cases, FORM and
SORM may su�er convergence problems [6]. Hence,
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when an accurate reliability evaluation is required,
simulation methods are often employed.

1.1. Monte Carlo simulation
Monte Carlo Simulation (MCS) is considered as the
most e�cient and accurate simulation method and is
commonly used for the evaluation of the probability
of failure for structures, either for comparison with
other methods or as a standalone reliability analysis
tool [7,8]. This method involves sampling the design
space based on the mean, variance, and PDF values
of random variables. From a mathematical point of
view, MCS allows to estimate the expected value of a
quantity of interest more speci�cally. Suppose the goal
is to evaluate Ef [h(X)]; an expectation of the function
h : x ! R with respect to the Probability Density
Function (PDF) [9] is:Z

X
h(X)fx(X)dx = Ef [h(X)] : (2)

The idea behind MCS is straight forward application
of the law of large numbers, which states if X =
[x1;x2;:::; xn] is independent from and distributed iden-
tically to the PDF fx(X), then the empirical average
1
N

NP
i=1

h(xi) converges to the true value of Ef [h(X)]

when N approaches +1. Therefore, if the number of
samples N is large enough, then Ef [h(X)] and it can
be accurately estimated by the corresponding empirical
average:

Ef [h(X)] � 1
N

NX
i=1

h(xi): (3)

The relevance of DMC to the reliability problem (1)
follows a simple observation that the failure probability
Pf can be written as:

Pf =
Z
G(X)

fx (X) dX =
Z
X
If (X)fx(X)dX

= Ef [If (X)] =
1
N

NX
i=1

h(xi); (4)

where X = [x1;x2;:::; xn] is independent from and
distributed identically to the PDF fx(X), and If is
a counting vector with values of zero and unity for
samples in the failure and safe regions, respectively.
As it is seen, a vast number of simulations have
to be performed in order to achieve great accuracy,
especially for low values of failure probability. In the
e�orts to reduce the excessive computation cost of MCS
using purely random sampling methodologies, which
are considered as the drawback of the method, various
variance reduction techniques have been proposed,
e.g., importance sampling [10-12], direct sampling [13],
line sampling [14,15], Weighted Average Simulation

Method (WASM) [16], subset simulation [17], polyno-
mial chaos [18], and stochastic perturbation technique
[19]. Unfortunately, most of these techniques are not
as generally applicable as MCS. For example, impor-
tance sampling requires detailed information about the
failure regions for being useful, and it faces di�culties
when applied to high-dimension problems [16,20].

1.2. First order reliability method
First Order Reliability Method (FORM) is widely used
to approximate the failure probability of structures
and has become a basic reliability analysis approach
for reliability-based design codes [21,22]. In FORM,
structural failure probability is estimated based on the
reliability index (�) by linearizing limit state function
on the failure surface, i.e., Pf � �(��), which
corresponds to minimum distance of the origin from the
limit state function in the standard normal area [21,23].
Generally, the main goal of FORM is the search for the
most probable point (MPP), i.e., U�(b = jjU�jj) [24,25].
Hasofer Lind proposed a general iterative method for
computing reliability index [23], which was extended
by Rackwitz and Flessler to include distribution in-
formation of random variables [26], called the HL-RF
method. This method involves the following steps to
estimate the probability of failure [26] based on the
HL-RF method:

Step 1. Transform random variables in X-space into
U -space by the following relation:

u =
x� �ex
�ex

; (5)

where u is the standard normal variable with the
mean and standard deviations equal to zero and one,
respectively, and �ex and �ex are equivalent mean
and standard deviations of the random variable x,
respectively; for normal random variable, �ex = �x
and �ex = �x. The equivalent mean and standard
deviations of non-normal random variables can be
determined by the following equations [26-28]:

�ex =
1

fx(x)
�
�
��1 fFx(x)g� ; (6)

�ex = x� �ex��1 [Fx(x)] ; (7)

where Fx(x) is cumulative distribution, fx(x) is prob-
ability distribution, ��1 is inverse standard normal
cumulative distribution, and � is standard normal
probability distribution function.
Step 2. Find the reliability index.

The reliability index search is done based on an
iterative process that can be reformulated based on
design point (U) as:

Uk+1 = �k+1�k+1; (8)

where:
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�k+1 = � rT g(Uk)
krT g(Uk)k ; (9)

�k+1 =
g(Uk)�rT g(Uk)Uk
krT g(Uk)k ; (10)

where rg(U) = [@g/@u1;@g/@u2;:::; @g/@un]T is gra-
dient vector of the limit state function at the design
point Uk.
Step 3. Calculate the failure probability.

The probability of failure based on FORM can
be estimated as Pf � �(��) [21,29].

2. Meta-models in structural reliability

When performance evaluation of a structure is compu-
tationally expensive, the number of simulation-based
function evaluations required for reliability analysis
must be carefully controlled. To that end, researchers
have explored the use of meta-models, which are
simpler approximate models calibrated to sample runs
of the original simulation. The approximate model or
meta-model can replace the original one, thus reduc-
ing the computational burden of evaluating numerous
problem [30-35]. Bucher and Bourgund [36] proposed
a quadratic polynomial response surface without cross
terms. In their model, the response surface represented
the LSF along the coordinate axes of the space of
standard normal random variables. Nguyen et al. [37]
proposed an adaptive RSM based on a double weighted
regression technique. For the �rst iteration, a linear
response surface was chosen; for the following itera-
tions, a quadratic response surface with cross terms was
considered based on the complementary points. Kang
et al. [38] proposed an e�cient RSM applying a moving
least squares approximation instead of the traditional
least squares approximation. Allaix and Carbone [39]
discussed the locations of the experimental points
used for evaluating parameters of the response surface.
Recently, Dimension Reduction Method (DRM) as
an e�cient approach has been used to reduce the
computational costs of the analysis [40-43].

In order to use the capabilities of MCS and simul-
taneously reduce the computational e�orts, this paper
presents a framework that e�ciently employs the DRM
to evaluate the reliability of structures. The proposed
framework is presented after a brief review of DRM.

3. Dimension reduction method

DRM is a newly developed technique to calculate
statistical moments of the output performance func-
tion [40-43]. There are several DRMs depending
on the level of dimension reduction: (1) Univariate
Dimension Reduction Method (UDRM), which is an
additive decomposition of N -dimensional performance

function into one-dimensional functions; (2) Bivariate
Dimension Reduction (BDR), which is an additive
decomposition of N -dimensional performance function
into at most two-dimensional functions; (3) Multivari-
ate Dimension Reduction (MDR), which is an additive
decomposition of N -dimensional performance function
into at most S-dimensional functions, where S � N .

According to UDRM, any N -dimensional perfor-
mance function h(X) can be additively decomposed
into one-dimensional functions as [44]:

h (X)�= ĥ (X)�
NX
i=1

h (�1; : : : ; �i�1; xi; �i+1; : : : ; �N )

� (N � 1)h (�1; : : : ; �N ) ; (11)

where �i is the mean value of a random variable Xi
and N is the number of design variables.

4. Proposed framework

This study employs the e�ciency of the UDR-based
meta-modeling in conjunction with the accuracy of
MCS to provide a suitable framework for structural
reliability analysis. The idea is to concentrate the ex-
periments of the UDR-based meta-model on the region
with high failure probability to correctly approximate
the performance function value for the samples that are
expected to be in the failure set. The following steps
could be conducted to provide the desirable results.

4.1. Axial Design Of Experiments (DOE)
based on the desired reliability index

UDR-based meta-model requires axial DOE to ap-
proximate the LSF. Determination of the location of
experience samples in the proposed approach is based
on the perception created by conducting the MCS
sampling and excluding the safe area part. In this
approach, as shown in Figure 1, which is presented in
standard normal space (U), the space is divided into
two separate regions D1 and D2 and it is assumed that
D1 is selected such that no failure occurs in this region.
Here, D1 is chosen as the region inside a sphere with
radius � [45].

Figure 1. Excluding the safe area part.
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To reduce the computational cost, the location
of DOEs could be considered such that the corpus of
experience samples in each axis is condensed within the
boundaries of D1 and D2 regions and regions with the
highest possibilities of failure. These samples should
be used with the aim of interpolating DRM for the
separated term in each dimension. By employing an
anticipated reliability index and mapping the proposed
experience samples in the physical space (original
design space), the location of experiences for each
variable is as follows:

XDOE = ��
p

2
2
:�target:�:�; (12)

where � and � are the mean value and standard
deviation of random variable, respectively, and � is the
location coe�cient.

4.2. Generation of random sample based on
crude MCS

After conducting the proposed step in the design of the
experiment, in the next step, crude MCS should be per-
formed to generate random samples for approximating
the failure probability. Figure 2 schematically shows
the proposed DOEs and the generated samples for a
two-dimensional problem. According to the proposed
approach, the approximated performance function cor-
responding to each sample is achievable by employing
the UDR-based meta-model.

4.3. LSF approximation by the UDRM-based
meta-model and reliability evaluation

Eq. (11) is employed at this step to approximate the
LSF. The following is the resulting function for a limit
state function with two random variables X1 and X2:

h (X)�= ĥ (X)�h (x1; �2)+h (�1; x2)�h (�1; �2) ; (13)

in which for the samples produced by MCS, through
employing the experiments and a proper interpolation

Figure 2. DOE and the generated samples based on
MCS.

Table 1. The employed interpolation techniques.

Sign Interpolation method

#1 Spline
#2 PCHIP
#3 Kriging
#4 Linear
#5 Cubic
#6 V5cubic

technique, the values of h(x1; �2) and h(�1; x2) for
each dimension are achievable thorough interpolation.
Then, the value of performance function for each
sample could be approximated using Eq. (13). Then,
the failure probability could be approximate by Eq. (4).

In this study, the e�ectiveness of various inter-
polation techniques is also investigated to suggest a
proper technique for use in the proposed framework.
It consists in several one-dimensional interpolations
implemented by MATLAB toolbox, which are pre-
sented in Table 1. The kriging method (method #3)
as a newly developed approximation method is also
used in the approach and compared with common
interpolation techniques.

5. Kriging method

Kriging meta-model is an interpolation technique based
on statistical theory, which consists in a parametric
linear regression model and a non-parametric stochas-
tic process. It needs a design of experiments to de�ne
the stochastic parameters and then, predictions of the
response can be completed on any unknown point.
An initial DOE X = [x1; x2; :::; xN0 ] is given with
xi 2 Rn(i = 1; 2; :::; N0) as the ith experiment and
G = [G(x1); G(x2); :::; G(xN0);] with G(xi) 2 R as the
corresponding response to X [46]. The approximate
relationships between any experiment X and the re-
sponse G(x) can be denoted as:bG(x) = F (�; x) + z(x) = fT (x)� + z(x); (14)

where �T = [�1; :::; �p] is a regression coe�cient
vector. Built by response surface method similar to the
polynomial, fT (x) = [f1(x); f2(x); :::; fp(x)]T makes a
global simulation in the design space. In the ordinary
kriging, F (�; x) is a scalar always taken as F (�; x) = �.
Hence, the estimated bG(x) can be simpli�ed as:bG(x) = F (�; x) + z(x) = � + z(x): (15)

Here, z(x) is a stationary Gaussian process [46]. The
statistic characteristics can be denoted as:

E(z(x)) = 0; (16)

V ar(z(x)) = �2
z ; (17)



3064 M. Rakhshani Mehr et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 3060{3071

Cov [Z(xi); Z(xj)] = �2
zR(xi; xj); (18)

where �2
z is the process variance; xi; and xj are

discretional points from the whole samples X; and
R(xi; xj) is the correlation function about xi and xj
with a correlation parameter vector � [46].

6. Numerical and engineering examples

Five numerical and engineering problems are investi-
gated in this section. For each example, the results
obtained by using the proposed approach are compared
with those by FORM and the accurate solution pro-
vided by using the MCS.

6.1. Example 1
This example is presented to investigate the e�ect of
the di�erent interpolation and prediction methods on
the function approximation in the proposed approach.
The performance function is presented as f (x1; x2) =
x3

1 + x3
2 � 18 and the distribution of random variables

are x1 = N(10; 5); and x2 = N(9:9; 5) [47].
The example is solved by three approaches and

the results are presented in Table 2. The six employed
interpolation methods are also shown in this table
based on their ranks to provide an accurate solution.
According to Table 2 and as shown in Figure 3, among
various interpolation methods used in the proposed ap-
proach, method #1 presents a suitable approximation
in such a manner that by 13 times function evaluation,
the provided results are in good agreement with MCS
with 104 function evaluations. Result shows that
the FORM requires few LSF evaluations to provide
solution, but the obtained solution is highly di�erent
from the accurate result provided by the MCS and the
proposed approach.

6.2. Example 2
A nonlinear limit state with two independent standard
normal variables is considered [48].

g (X)=�0:16(X1 � 1)3�X2+4�0:04cos(X1:X2) : (19)

In this example, the accuracy of the method for a non-
linear limit state function is investigated. The results
are presented in Table 3. According to Table 3 and
as shown in Figure 4, the proposed method provides
acceptable results when four techniques are used to
interpolate the results in Step 2. Results presented
in the table show that the proposed method has
provided accurate solution to the problem, although
the number of its function evaluations is even less
than that required by FORM. It should be noted that
due to the nonlinearity of the LSF, the reliability
index determined by FORM is higher than the correct
reliability index.

6.3. Example 3
An implicit reliability problem with highly nonlinear
performance function is investigated in this example.
Figure 5 shows the problem of a four-story building
excited by a single-period sinusoidal impulse of ground
acceleration. The building contains isolated equipment
on the second 
oor. The motion of the lowest 
oor is
resisted by a nonlinear hysteresis force in base isolation
bearings of the building and an additional sti�ness
force, if its displacement exceeds dc. Each 
oor has
a mass of mf and between 
oors, the sti�ness and
damping coe�cients are kf and cf , respectively. The
statistical parameters of the basic random variables
are listed in Table 4. All variables are assumed to be
lognormal and independent. The limit state function
is de�ned by [48]:

Table 2. Reliability results for Example 1.

Method Pf Reliability index No. of function evaluations

FORM 0.0832 1.384 13

MCS 0.0057 2.530 104

UDRM

In
te

rp
ol

at
io

n
m

et
h
od

#1 0.0057 2.530 13

#5 0.0043 2.628 13

#2 0.0042 2.636 13

#3 0.0026 2.794 13

#6 0.0024 2.820 13

#4 0.0020 2.878 13
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Figure 3. Failure region in the MCS and the proposed
approach by using: (a) Spline, (b) PCHIP, and (c) kriging
interpolation for Example 1.

g (X) = 12:5(0:04�max jrfi (t)� rfi�1 (t)j)i=2;3;4

+ (0:5�max jzg (t)� rm2 (t)j)
+ 2 (0:25�max jrf2 (t)� rm1 (t)j) ; (20)

where rfi refers to the displacement of the ith 
oor and
rfi(t)� rfi�1(t) is the inter-story displacement of two
consecutive 
oors. The accelerations �zg and �rm2 are
of the ground and the smaller mass block, respectively.
The displacement rm1 is of the larger mass block and
represents the displacement of the equipment isolation

Figure 4. Failure region in the MCS and the proposed
approach by using: (a) Spline, (b) PCHIP, and (c) kriging
interpolation for Example 2.

system. The limit state function in Eq. (20) is the
sum of three expressions of failure modes. The �rst
term describes damage to the structural system due
to excessive deformation. The second term represents
damage to equipment, which is caused by excessive
acceleration.

The last term represents the damage to the isola-
tion system. They are multiplied by weighing factors,
which emphasize the three failure modes equally. As
Eq. (20) states, it is desirable that:

1. None of the inter-story displacements exceed
0.04 m;
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Figure 5. Base-isolated structure with an equipment isolation system on the 2nd 
oor, including the e�ects of isolation
displacement limits [47].

Table 3. Reliability results for Example 2.

Method Pf Reliability index No. of function evaluations

FORM 7:4883:105 3.791 17

MCS 1:1900:104 3.675 106

UDRM

In
te

rp
ol

at
io

n
M

et
h
od

#1 1:1900:104 3.675 13

#3 1:1400:104 3.686 13

#2 1:0800:104 3.700 13

#5 1:3400:104 3.644 13

#4 6:2000:105 3.838 13

#6 4:3000:105 3.927 13

Table 4. Statistical properties of random variables for Example 3.

Variable Description Units Mean value COV

mf Floor mass Kg 6000 0.1
kf Floor sti�ness N/m 30000000 0.1
cf Floor damping coe�cient N/m/s 60000 0.2
dy Isolation yield displacement m 0.05 0.2
fy Isolation yield force N 20000 0.2
dc Isolation contact displacement m 0.5 0
kc Isolation contact sti�ness N/m 30000000 0.3
m1 Mass of block 1 Kg 500 0
m2 Mass of block 2 Kg 100 0
k1 Sti�ness of spring 1 N/m 2500 0
k2 Sti�ness of spring 2 N/m 100000 0
c1 Damping coe�cient of damper 1 N/m/s 350 0
c2 Damping coe�cient of damper 2 N/m/s 200 0
T Pulse excitation period s 1.0 0.2
A Pulse amplitude m/s/s 1.0 0.5
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2. The peak acceleration of the smaller mass block
(the equipment) be less than 0.5 m/s2;

3. The displacement across the equipment isolation
system be less than 0.25 m.

Failing to meet one or two of the conditions does
not necessarily lead to a failure in the limit state
function, e.g., g(X < 0), but will decrease the value
of the limit state function. In these simulations, the
system fails mainly because of the large acceleration
of the smaller mass. The estimation of Pf with direct
full-scale MCS of 105 sample size is 0.196 [48].

The problem has been solved by the three meth-
ods and the results are presented in Table 5. Results
show the fail of FORM to converge to a proper solution.
The reason is the high nonlinearity of performance
function and the dimension size of the problem. How-
ever, it is noteworthy that by employing the proposed
method, an approximation of failure probability is
achievable by 65 times function evaluation with the

results in agreement with MCS with 105 function
evaluations. Result shows that the proposed approach
provides accurate solution when the kriging (interpola-
tion #3) method is employed.

6.4. Example 4
Consider a roof structure subjected to a uniformly
distributed vertical load q, as shown in Figure 6. The
example is adapted from [49]. The top cords and the
compression bars are concrete, and the bottom cords
and the tension bars are steel. In structural analysis,
the uniformly distributed load q is transformed into
three nodal loads with each being P = ql/4. The
serviceability limit state of the structure with respect to
its maximum vertical displacement is considered. The
limit state function is given by:

g = ua � ql2

2

�
3:81
AcEc

+
1:13
AsEs

�
; (21)

where ua is the allowable displacement and set to

Figure 6. A roof structure (redrawn from [48]).

Table 5. Reliability results for Example 3.

Method Pf Reliability index No. of function evaluations

FORM { { {

MCS 0.196 0.856 105

UDRM

In
te

rp
ol

at
io

n
m

et
h
od #3 0.1848 0.897 65

#2 0.2243 0.758 65

#5 0.2399 0.707 65

#1 0.2402 0.706 65

#6 8:3800:104 3.142 65

#4 7:6900:104 3.167 65
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Table 6. Random variables for Example 4.

Variable Mean COV
q (N/m) 20,000 0.07
l (m) 12 0.01
As (m2) 9:82� 10�4 0.06
Ac (m2) 400� 10�4 0.12
Es (N/m2) 1� 1011 0.06
Ec (N/m2) 2� 1010 0.06

0.03 m, E and A denote the modulus of elasticity and
cross-sectional area, respectively, and the subscripts s
and c indicate the steel and concrete material, respec-
tively. Table 6 summarizes the statistical information
of the random variables. All random variables are
assumed to be independent normal. The probability
of failure is found to be 9:37�10�3 after direct 5�107

Monte Carlo simulations.
Table 7 presents the results of the MCS, FORM,

and proposed method. The results of the proposed
method agree reasonably well with the Monte Carlo
results. The relative error is 5% after 49 times function
evaluation.

6.5. Example 5
In automobile engineering, the front axle beam is
used to carry the weight of the front part of the
vehicle (Figure 7) [50]. As the entire front part of the
automobile rests on the front axle beam, it must be
robust enough in construction to ensure its reliability.
An I-beam is often used in the design of front axle
due to its high bend strength and light weight. In
this example, as shown in Figure 7, a dangerous cross
section happens in the I-beam part. The maximum
normal stress and shear stress are � = M/Wx and
� = T/Wp, respectively, in which M and T are bending
moment and torque, respectively, and Wx and WP are
section factor and polar section factor, respectively,
given as:

Figure 7. Schematic diagram of automobile front
axle [48].

Table 8. Random variables for Example 5.

Variable Mean COV
a (mm) 12 0.06
b (mm) 65 0.325
t (mm) 14 0.07
h (mm) 85 0.425

M (N.mm) 3:5� 106 1:75� 105

T (N.mm) 3:1� 106 1:55� 105

Wx =
a(h� 2t)3

6h
+

b
6h

h
h3 � (h� 2t)3

i
; (22)

Wp = 0:8bt2 + 0:4
�
a3(h� 2t)

�
t
�
: (23)

To test the static strength of the front axle, the limit-
state function can be expressed as:

g = �s �
p
�2 + 3�2; (24)

where �s is limit-state stress of yielding. Considering
the characteristic of material in the front axle, the
limit stress of yielding �s is 460 MPa. The geometry
variables of I-beam, namely a, b, t, h, the local M; and
T , are independent normal; they are listed with their
distribution parameters in Table 8.

Table 7. Reliability results for Example 4.

Method Pf Reliability index No. of function evaluations

FORM { { {

MCS 0.00479 2.59 105

UDRM

In
te

rp
ol

at
io

n
m

et
h
od #1 0.00307 2.74 49

#2 0.00297 2.75 49

#6 0.00297 2.75 49

#5 0.00280 2.77 49

#3 0.00225 2.84 49

#4 0.00002605 4.046 49
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Table 9. Reliability results for Example 5.

Method Pf Reliability index No. of function evaluations

FORM 0.0194 2.06 49

MCS 0.0195 2.05 105

UDRM

In
te

rp
ol

at
io

n
m

et
h
od #1 0.0195 2.05 49

#2 0.0195 2.05 49

#5 0.0195 2.05 49

#6 0.0195 2.05 49

#3 0.0192 2.07 49

#4 0.0000145 4.18 49

Table 9 presents the estimated values of failure
probability with di�erent methods. The number of
samples used for each method is also listed in Ta-
ble 9. The table shows that the proposed method
can achieved good results with the lowest number
of samples. According to Table 9, among various
interpolation methods used in the proposed approach,
the methods #1, #2, #5, and #6 present suitable
approximations in such a manner that by 49 times
function evaluation, they provide acceptable results in
comparison with MCS with 105 function evaluations.

E�ciently solving these examples involving highly
nonlinear and implicit LSFs con�rms the high potential
of the method to be applied to the real-world engineer-
ing problems.

7. Conclusions

In this study, an adapted DOE was presented for
decomposition-based meta-models in structural relia-
bility. The idea of the proposed approach was based
on simulation approaches that separated the design
space into two safe and unsafe regions. The employed
DRM-based meta-model required a one-dimensional
interpolation method to approximate the LSF; hence,
this study also investigated the e�ciency and accuracy
of various interpolation techniques in applicability of
the proposed method. Solving numerical and engineer-
ing problems with 6 di�erent interpolation techniques
proved that among the investigated interpolation ap-
proaches, using the spline and kriging method in the
proposed approach provided results with acceptable
accuracy. By using the proposed framework, we found
out that e�ciency of the method was similar to that of
FORM, while its accuracy was close to that of MCS.
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